1
|
Lussiez R, Chanauria N, Ouelhazi A, Molotchnikoff S. Effects of visual adaptation on orientation selectivity in cat secondary visual cortex. Eur J Neurosci 2020; 53:588-600. [PMID: 32916020 DOI: 10.1111/ejn.14967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/20/2020] [Accepted: 09/02/2020] [Indexed: 11/28/2022]
Abstract
Neuron orientation selectivity, otherwise known as the ability to respond optimally to a preferred orientation, has been extensively described in both primary and secondary visual cortices. This orientation selectivity, conserved through all cortical layers of a given column, is the primary basis for cortical organization and functional network emergence. While this selectivity is programmed and acquired since critical period, it has always been believed that in a mature brain, neurons' inherent functional features could not be changed. However, a plurality of studies has investigated the mature brain plasticity in V1, by changing the cells' orientation selectivity with visual adaptation. Using electrophysiological data in both V1 and V2 areas, this study aims to investigate the effects of adaptation on simultaneously recorded cells in both areas. Visual adaptation had an enhanced effect on V2 units, as they exhibited greater tuning curve shifts and a more pronounced decrease of their OSI. Not only did adaptation have a different effect on V2 neurons, it also elicited a different response depending on the neuron's cortical depth. Indeed, in V2, cells in layers II-III were more affected by visual adaptation, while infragranular layer V units exhibited little to no effect at all.
Collapse
|
2
|
Apthorp D, Griffiths S, Alais D, Cass J. Adaptation-Induced Blindness Is Orientation-Tuned and Monocular. Iperception 2017; 8:2041669517698149. [PMID: 28540029 PMCID: PMC5433556 DOI: 10.1177/2041669517698149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We examined the recently discovered phenomenon of Adaptation-Induced Blindness (AIB), in which highly visible gratings with gradual onset profiles become invisible after exposure to a rapidly flickering grating, even at very high contrasts. Using very similar stimuli to those in the original AIB experiment, we replicated the original effect across multiple contrast levels, with observers at chance in detecting the gradual onset stimuli at all contrasts. Then, using full-contrast target stimuli with either abrupt or gradual onsets, we tested both the orientation tuning and interocular transfer of AIB. If, as the original authors suggested, AIB were a high-level (perhaps parietally mediated) effect resulting from the ‘gating’ of awareness, we would not expect the effects of AIB to be tuned to the adapting orientation, and the effect should transfer interocularly. Instead, we find that AIB (which was present only for the gradual onset target stimuli) is both tightly orientation-tuned and shows absolutely no interocular transfer, consistent with a very early cortical locus.
Collapse
Affiliation(s)
- Deborah Apthorp
- Research School of Psychology, College of Medicine, Biology & Environment, Australian National University, Australia
| | - Scott Griffiths
- Melbourne School of Psychological Sciences, University of Melbourne, Australia
| | - David Alais
- School of Psychology, Faculty of Science, University of Sydney, Australia
| | - John Cass
- School of Social Sciences and Psychology, University of Western Sydney, Australia
| |
Collapse
|
3
|
Abstract
There are 15–20 different types of retinal ganglion cells (RGC) in the mammalian retina, each encoding different aspects of the visual scene. The mechanism by which post-synaptic signals from the retinal network generate spikes is determined by each cell’s intrinsic electrical properties. Here we investigate the frequency responses of morphologically identified rat RGCs using intracellular injection of sinusoidal current waveforms, to assess their intrinsic capabilities with minimal contributions from the retinal network. Recorded cells were classified according to their morphological characteristics (A, B, C or D-type) and their stratification (inner (i), outer (o) or bistratified) in the inner plexiform layer (IPL). Most cell types had low- or band-pass frequency responses. A2, C1 and C4o cells were band-pass with peaks of 15–30 Hz and low-pass cutoffs above 56 Hz (A2 cells) and ~42 Hz (C1 and C4o cells). A1 and C2i/o cells were low-pass with peaks of 10–15 Hz (cutoffs 19–25 Hz). Bistratified D1 and D2 cells were also low-pass with peaks of 5–10 Hz (cutoffs ~16 Hz). The least responsive cells were the B2 and C3 types (peaks: 2–5 Hz, cutoffs: 8–11 Hz). We found no difference between cells stratifying in the inner and outer IPL (i.e., ON and OFF cells) or between cells with large and small somas or dendritic fields. Intrinsic physiological properties (input resistance, spike width and sag) had little impact on frequency response at low frequencies, but account for 30–40% of response variability at frequencies >30 Hz.
Collapse
|
4
|
Lüders J, Kurtz R. Octopaminergic modulation of temporal frequency tuning of a fly visual motion-sensitive neuron depends on adaptation level. Front Integr Neurosci 2015; 9:36. [PMID: 26074790 PMCID: PMC4443275 DOI: 10.3389/fnint.2015.00036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Several recent studies in invertebrates as well as vertebrates have demonstrated that neuronal response characteristics of sensory neurons can be profoundly affected by an animal's locomotor activity. The functional consequences of such state-dependent modulation have been a matter of intense debate. In flies, a particularly interesting finding was that tethered walking or flying causes not only general response enhancement of visual motion-sensitive neurons, but also broadens their temporal frequency tuning towards higher values. However, in other studies such state-dependent alterations of neuronal tuning functions were not found. We hypothesize that these discrepancies were due to different adaptation levels of the motion-sensitive neurons, resulting from the use of different stimulation protocols. This is plausible, because the strength of adaptation during ongoing stimulation was shown to be affected by chlordimeform (CDM), an agonist of the insect neuromodulator octopamine, which mediates state-dependent modulation. Our results show that CDM causes broadening of the temporal frequency tuning of the blowfly's visual motion-sensitive H1 neuron only in the adapted state, but not prior to the presentation of adapting motion. Thus, our study indicates that seemingly conflicting results on the locomotor state-dependence of neuronal tuning functions are consistent when considering the neurons' adaptation level. Moreover, it demonstrates that stimulation history has to be considered when the significance of state-dependent modulation of sensory processing is interpreted.
Collapse
Affiliation(s)
- Janina Lüders
- Department of Neurobiology, Faculty of Biology, Bielefeld University Bielefeld, Germany
| | - Rafael Kurtz
- Department of Neurobiology, Faculty of Biology, Bielefeld University Bielefeld, Germany
| |
Collapse
|
5
|
Reprogramming of orientation columns in visual cortex: a domino effect. Sci Rep 2015; 5:9436. [PMID: 25801392 PMCID: PMC4371149 DOI: 10.1038/srep09436] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/02/2015] [Indexed: 02/06/2023] Open
Abstract
Cortical organization rests upon the fundamental principle that neurons sharing similar properties are co-located. In the visual cortex, neurons are organized into orientation columns. In a column, most neurons respond optimally to the same axis of an oriented edge, that is, the preferred orientation. This orientation selectivity is believed to be absolute in adulthood. However, in a fully mature brain, it has been established that neurons change their selectivity following sensory experience or visual adaptation. Here, we show that after applying an adapter away from the tested cells, neurons whose receptive fields were located remotely from the adapted site also exhibit a novel selectivity in spite of the fact that they were not adapted. These results indicate a robust reconfiguration and remapping of the orientation domains with respect to each other thus removing the possibility of an orientation hole in the new hypercolumn. These data suggest that orientation columns transcend anatomy, and are almost strictly functionally dynamic.
Collapse
|
6
|
Jurica P, Gepshtein S, Tyukin I, van Leeuwen C. Sensory optimization by stochastic tuning. Psychol Rev 2014; 120:798-816. [PMID: 24219849 DOI: 10.1037/a0034192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Individually, visual neurons are each selective for several aspects of stimulation, such as stimulus location, frequency content, and speed. Collectively, the neurons implement the visual system's preferential sensitivity to some stimuli over others, manifested in behavioral sensitivity functions. We ask how the individual neurons are coordinated to optimize visual sensitivity. We model synaptic plasticity in a generic neural circuit and find that stochastic changes in strengths of synaptic connections entail fluctuations in parameters of neural receptive fields. The fluctuations correlate with uncertainty of sensory measurement in individual neurons: The higher the uncertainty the larger the amplitude of fluctuation. We show that this simple relationship is sufficient for the stochastic fluctuations to steer sensitivities of neurons toward a characteristic distribution, from which follows a sensitivity function observed in human psychophysics and which is predicted by a theory of optimal allocation of receptive fields. The optimal allocation arises in our simulations without supervision or feedback about system performance and independently of coupling between neurons, making the system highly adaptive and sensitive to prevailing stimulation.
Collapse
|
7
|
Adaptation shifts preferred orientation of tuning curve in the mouse visual cortex. PLoS One 2013; 8:e64294. [PMID: 23717586 PMCID: PMC3662720 DOI: 10.1371/journal.pone.0064294] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
In frontalized mammals it has been demonstrated that adaptation produces shift of the peak of the orientation tuning curve of neuron following frequent or lengthier presentation of a non-preferred stimulus. Depending on the duration of adaptation the shift is attractive (toward the adapter) or repulsive (away from the adapter). Mouse exhibits a salt-and-pepper cortical organization of orientation maps, hence this species may respond differently to adaptation. To examine this question, we determined the effect of twelve minutes of adaptation to one particular orientation on neuronal orientation tuning curves in V1 of anesthetized mice. Multi-unit activity of neurons in V1 was recorded in a conventional fashion. Cells were stimulated with sine-wave drifting gratings whose orientation tilted in steps. Results revealed that similarly to cats and monkeys, majority of cells shifted their optimal orientation in the direction of the adapter while a small proportion exhibited a repulsive shift. Moreover, initially untuned cells showing poor tuning curves reacted to adaptation by displaying sharp orientation selectivity. It seems that modification of the cellular property following adaptation is a general phenomenon observed in all mammals in spite of the different organization pattern of the visual cortex. This study is of pertinence to comprehend the mechanistic pathways of brain plasticity.
Collapse
|
8
|
Abstract
The response of a sensory neuron to an unchanging stimulus typically adapts, showing decreases in response gain that are accompanied by changes in the shape of tuning curves. It remains unclear whether these changes arise purely due to spike rate adaptation within single neurons or whether they are dependent on network interactions between neurons. Further, it is unclear how the timescales of neural and perceptual adaptation are related. To examine this issue, we compared speed tuning of middle temporal (MT) and medial superior temporal neurons in macaque visual cortex after adaptation to two different reference speeds. For 75% of speed-tuned units, adaptation caused significant changes in tuning that could be explained equally well as lateral shifts, vertical gain changes, or both. These tuning changes occurred rapidly, as both neuronal firing rate and Fano factor showed no evidence of changing beyond the first 500 ms after motion onset, and the magnitude of tuning curve changes showed no difference between trials with adaptation durations shorter or longer than 1 s. Importantly, the magnitude of tuning shifts was correlated with the transient-sustained index, which measures a well characterized form of rapid response adaptation in MT, and is likely associated with changes at the level of neuronal networks. Tuning curves changed in a manner that increased neuronal sensitivity around the adapting speed, consistent with improvements in human and macaque psychophysical performance that we observed over the first several hundred ms of adaptation.
Collapse
|
9
|
Liang P, Kern R, Kurtz R, Egelhaaf M. Impact of visual motion adaptation on neural responses to objects and its dependence on the temporal characteristics of optic flow. J Neurophysiol 2011; 105:1825-34. [PMID: 21307322 DOI: 10.1152/jn.00359.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is still unclear how sensory systems efficiently encode signals with statistics as experienced by animals in the real world and what role adaptation plays during normal behavior. Therefore, we studied the performance of visual motion-sensitive neurons of blowflies, the horizontal system neurons, with optic flow that was reconstructed from the head trajectories of semi-free-flying flies. To test how motion adaptation is affected by optic flow dynamics, we manipulated the seminatural optic flow by targeted modifications of the flight trajectories and assessed to what extent neuronal responses to an object located close to the flight trajectory depend on adaptation dynamics. For all types of adapting optic flow object-induced response increments were stronger in the adapted compared with the nonadapted state. Adaptation with optic flow characterized by the typical alternation between translational and rotational segments produced this effect but also adaptation with optic flow that lacked these distinguishing features and even pure rotation at a constant angular velocity. The enhancement of object-induced response increments had a direction-selective component because preferred-direction rotation and natural optic flow were more efficient adaptors than null-direction rotation. These results indicate that natural dynamics of optic flow is not a basic requirement to adapt neurons in a specific, presumably functionally beneficial way. Our findings are discussed in the light of adaptation mechanisms proposed on the basis of experiments previously done with conventional experimenter-defined stimuli.
Collapse
Affiliation(s)
- Pei Liang
- Neurobiology and Cognitive Interaction Technology Center of Excellence (CITEC), Bielefeld University, Bielefeld, Germany
| | | | | | | |
Collapse
|
10
|
Marshansky S, Shumikhina S, Molotchnikoff S. Repetitive adaptation induces plasticity of spatial frequency tuning in cat primary visual cortex. Neuroscience 2011; 172:355-65. [PMID: 20969932 DOI: 10.1016/j.neuroscience.2010.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/04/2010] [Indexed: 11/20/2022]
Abstract
Sensory neurons display transient changes in their response properties following prolonged exposure to an appropriate stimulus (adaptation). In adult cat primary visual cortex, spatial frequency-selective neurons shift their preferred spatial frequency (SF) after being adapted to a non-preferred SF. In anesthetized cats prepared for electrophysiological recordings in the visual cortex, we applied a non-preferred spatial frequency for two successive periods of adaptation (a recovery and interval of ∼90 min separated both phases of adaptation) in order to determine if a first adaptation retained an influence on a second adaptation. The first application of a non-preferred SF shifted the tuning curve of the cell mainly in the direction of the imposed SF. The results showed that attractive shifts occurred more frequently (68%) than repulsive (12%) changes in cortical cells. The increase of responsivity was band-limited and occurred around the imposed SF, while flanked responses remained unmodified in all conditions. After a recovery period allowing neurons to restore their original SF tuning curves, we carried out a second adaptation which produced four major results: (1) a higher proportion of repulsive shifts (31%) compared to attractive shifts (49%), (2) an increase of the magnitude of the attractive shifts, (3) an additional enhancement of the evoked firing rate for the newly acquired SF, and (4) for the acquired SF the variability coefficient decreased following the second adaptation. The supplementary response changes suggest that neurons in area 17 keep a "memory" trace of the previous stimulus properties. It also highlights the dynamic nature of basic neuronal properties in adult cortex since repeated adaptations modified both the spatial frequency tuning selectivity and the response strength to the preferred spatial frequency. These enhanced neuronal responses suggest that the range of adaptation-induced plasticity available to the visual system is broader than anticipated.
Collapse
Affiliation(s)
- S Marshansky
- Department of Biological Sciences, University of Montreal, Montréal, PQ, H3C 3J7, Canada
| | | | | |
Collapse
|
11
|
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V. Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol 2010; 20:1470-5. [PMID: 20655222 PMCID: PMC4435946 DOI: 10.1016/j.cub.2010.06.072] [Citation(s) in RCA: 200] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 11/26/2022]
Abstract
Changes in behavioral state modify neural activity in many systems. In some vertebrates such modulation has been observed and interpreted in the context of attention and sensorimotor coordinate transformations. Here we report state-dependent activity modulations during walking in a visual-motor pathway of Drosophila. We used two-photon imaging to monitor intracellular calcium activity in motion-sensitive lobula plate tangential cells (LPTCs) in head-fixed Drosophila walking on an air-supported ball. Cells of the horizontal system (HS)--a subgroup of LPTCs--showed stronger calcium transients in response to visual motion when flies were walking rather than resting. The amplified responses were also correlated with walking speed. Moreover, HS neurons showed a relatively higher gain in response strength at higher temporal frequencies, and their optimum temporal frequency was shifted toward higher motion speeds. Walking-dependent modulation of HS neurons in the Drosophila visual system may constitute a mechanism to facilitate processing of higher image speeds in behavioral contexts where these speeds of visual motion are relevant for course stabilization.
Collapse
Affiliation(s)
- M Eugenia Chiappe
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | | | | | |
Collapse
|
12
|
van Kleef JP, Stange G, Ibbotson MR. Applicability of White-Noise Techniques to Analyzing Motion Responses. J Neurophysiol 2010; 103:2642-51. [DOI: 10.1152/jn.00591.2009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motion processing in visual neurons is often understood in terms of how they integrate light stimuli in space and time. These integrative properties, known as the spatiotemporal receptive fields (STRFs), are sometimes obtained using white-noise techniques where a continuous random contrast sequence is delivered to each spatial location within the cell's field of view. In contrast, motion stimuli such as moving bars are usually presented intermittently. Here we compare the STRF prediction of a neuron's response to a moving bar with the measured response in second-order interneurons (L-neurons) of dragonfly ocelli (simple eyes). These low-latency neurons transmit sudden changes in intensity and motion information to mediate flight and gaze stabilization reflexes. A white-noise analysis is made of the responses of L-neurons to random bar stimuli delivered either every frame (densely) or intermittently (sparsely) with a temporal sequence matched to the bar motion stimulus. Linear STRFs estimated using the sparse stimulus were significantly better at predicting the responses to moving bars than the STRFs estimated using a traditional dense white-noise stimulus, even when second-order nonlinear terms were added. Our results strongly suggest that visual adaptation significantly modifies the linear STRF properties of L-neurons in dragonfly ocelli during dense white-noise stimulation. We discuss the ability to predict the responses of visual neurons to arbitrary stimuli based on white-noise analysis. We also discuss the likely functional advantages that adaptive receptive field structures provide for stabilizing attitude during hover and forward flight in dragonflies.
Collapse
Affiliation(s)
- Joshua P. van Kleef
- Division of Biomedical Science and Biochemistry and ARC Centre of Excellence in Vision Science, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gert Stange
- Division of Biomedical Science and Biochemistry and ARC Centre of Excellence in Vision Science, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael R. Ibbotson
- Division of Biomedical Science and Biochemistry and ARC Centre of Excellence in Vision Science, Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
13
|
Cloherty SL, Hietanen MA, Suaning GJ, Ibbotson MR. Focal activation of primary visual cortex following supra-choroidal electrical stimulation of the retina: Intrinsic signal imaging and linear model analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2010:6765-6768. [PMID: 21095835 DOI: 10.1109/iembs.2010.5625999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
UNLABELLED We performed optical intrinsic signal imaging of cat primary visual cortex (Area 17 and 18) while delivering bipolar electrical stimulation to the retina by way of a supra-choroidal electrode array. Using a general linear model (GLM) analysis we identified statistically significant (p < 0.01) activation in a localized region of cortex following supra-threshold electrical stimulation at a single retinal locus. OUR RESULTS (1) demonstrate that intrinsic signal imaging combined with linear model analysis provides a powerful tool for assessing cortical responses to prosthetic stimulation, and (2) confirm that supra-choroidal electrical stimulation can achieve localized activation of the cortex consistent with focal activation of the retina.
Collapse
Affiliation(s)
- Shaun L Cloherty
- Division of Biomedical Science and Biochemistry and the ARC Centre of Excellence in Vision Science, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | | | | | | |
Collapse
|
14
|
Ghisovan N, Nemri A, Shumikhina S, Molotchnikoff S. Long adaptation reveals mostly attractive shifts of orientation tuning in cat primary visual cortex. Neuroscience 2009; 164:1274-83. [DOI: 10.1016/j.neuroscience.2009.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
|
15
|
Hietanen MA, Cloherty SL, Clifford CWG, Ibbotson MR. Differential changes in perceived contrast following contrast adaptation in humans. Vision Res 2009; 50:12-9. [PMID: 19815024 DOI: 10.1016/j.visres.2009.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 09/25/2009] [Accepted: 10/01/2009] [Indexed: 11/16/2022]
Abstract
Perceived contrast is reduced after prolonged exposure to a textured pattern (contrast adaptation). The size of this effect is dependent on the relationship between the adapting contrast and the test contrast. It is generally accepted that the greatest reductions occur when the adapting contrast is much higher than the test contrast. Here this relationship was examined for a wide range of spatial frequencies. The results show that the effect of the adapt/test ratio on perceived contrast following contrast adaptation is highly spatial frequency dependent. At high spatial frequencies >1cpd perceived contrast was reduced for all adapting contrasts, which is consistent with other studies. However, at low spatial frequencies (<1cpd) the perceived contrast was actually above veridical perception when the adapting contrast was lower than the test contrast. This finding has not been previously reported and has important implications for models of contrast perception.
Collapse
Affiliation(s)
- M A Hietanen
- Visual Sciences Group and ARC Centre of Excellence in Vision Science, School of Biology, Australian National University, Canberra, ACT, Australia.
| | | | | | | |
Collapse
|
16
|
Ghisovan N, Nemri A, Shumikhina S, Molotchnikoff S. Synchrony between orientation-selective neurons is modulated during adaptation-induced plasticity in cat visual cortex. BMC Neurosci 2008; 9:60. [PMID: 18598368 PMCID: PMC2481260 DOI: 10.1186/1471-2202-9-60] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 07/03/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Visual neurons respond essentially to luminance variations occurring within their receptive fields. In primary visual cortex, each neuron is a filter for stimulus features such as orientation, motion direction and velocity, with the appropriate combination of features eliciting maximal firing rate. Temporal correlation of spike trains was proposed as a potential code for linking the neuronal responses evoked by various features of a same object. In the present study, synchrony strength was measured between cells following an adaptation protocol (prolonged exposure to a non-preferred stimulus) which induce plasticity of neurons' orientation preference. RESULTS Multi-unit activity from area 17 of anesthetized adult cats was recorded. Single cells were sorted out and (1) orientation tuning curves were measured before and following 12 min adaptation and 60 min after adaptation (2) pairwise synchrony was measured by an index that was normalized in relation to the cells' firing rate. We first observed that the prolonged presentation of a non-preferred stimulus produces attractive (58%) and repulsive (42%) shifts of cell's tuning curves. It follows that the adaptation-induced plasticity leads to changes in preferred orientation difference, i.e. increase or decrease in tuning properties between neurons. We report here that, after adaptation, the neuron pairs that shared closer tuning properties display a significant increase of synchronization. Recovery from adaptation was accompanied by a return to the initial synchrony level. CONCLUSION We conclude that synchrony reflects the similarity in neurons' response properties, and varies accordingly when these properties change.
Collapse
Affiliation(s)
- Narcis Ghisovan
- Department of Biological Sciences, University of Montreal, QC, Canada.
| | | | | | | |
Collapse
|
17
|
Crowder NA, Hietanen MA, Price NSC, Clifford CWG, Ibbotson MR. Dynamic contrast change produces rapid gain control in visual cortex. J Physiol 2008; 586:4107-19. [PMID: 18599535 DOI: 10.1113/jphysiol.2008.156273] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During normal vision, objects moving in the environment, our own body movements and our eye movements ensure that the receptive fields of visual neurons are being presented with continually changing contrasts. Thus, the visual input during normal behaviour differs from the type of stimuli traditionally used to study contrast coding, which are presented in a step-like manner with abrupt changes in contrast followed by prolonged exposure to a constant stimulus. The abrupt changes in contrast typically elicit brief periods of intense firing with low variability called onset transients. Onset transients provide the visual system with a powerful and reliable cue that the visual input has changed. In this paper we investigate visual processing in the primary visual cortex of cats in response to stimuli that change contrast dynamically. We show that 1-4 s presentations of dynamic increases and decreases in contrast can generate stronger contrast gain control than several minutes exposure to a stimulus of constant contrast. Thus, transient mechanisms of contrast coding are not only less variable than sustained responses but are also more rapid and flexible. Finally, we propose a quantitative model of contrast coding which accounts for changes in spike rate over time in response to dynamically changing image contrast.
Collapse
Affiliation(s)
- N A Crowder
- Visual Sciences, Research School of Biological Sciences, Australian National University, Canberra, ACT, 2061, Australia
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Narcis Ghisovan
- Department of Biological Sciences, University of Montreal, C.P. 6128, succursaleCentre-ville Montreal, QC H3C 3J7, Canada.
| | | |
Collapse
|