1
|
Sanson A, Demarchi L, Rocaboy E, Bosch OJ. Increased CRF-R1 transmission in the nucleus accumbens shell facilitates maternal neglect in lactating rats and mediates anxiety-like behaviour in a sex-specific manner. Neuropharmacology 2025; 265:110256. [PMID: 39647775 DOI: 10.1016/j.neuropharm.2024.110256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
During the transition to motherhood, complex brain adaptations occur to ensure adequate maternal responses to offspring' needs accompanied by reduced anxiety. Among others, the corticotropin-releasing factor (CRF) and oxytocin (OXT) systems have emerged as crucial regulators of these essential postpartum adaptations. Here, we investigated their roles within the nucleus accumbens shell (NAcSh), a central region of the reward and maternal circuits, in maternal neglect of lactating rats. Furthermore, we assessed the contribution of the local CRF system to anxiety-like behaviour, comparing lactating female, virgin female and male rats to evaluate potential sex-differences. Increasing CRF receptor (CRF-R) 1 transmission via local CRF infusion in the NAcSh led to maternal neglect, reducing nursing and increasing self-directed behaviours. In turn, local CRF-R1 inhibition impaired maternal motivation. Intra-NAcSh Urocortin3 infusion did not promote maternal neglect but increased anxiety-like behaviour in lactating and virgin female rats, whereas CRF infusion had anxiogenic effects only in male rats. Crh-r1 mRNA expression was higher in male and lactating rats compared to virgin females; furthermore, male rats had increased Crh-bp mRNA expression compared to virgin female rats, only. Lastly, pharmacological manipulations of the OXT system did not affect maternal responses. In conclusion, finely balanced CRF-R1 signalling in the NAcSh is required for the proper expression of maternal behaviours. Dampened CRF-R2 signalling prevents the onset of anxiety-like behaviour in female rats, whereas CRF-R1 plays a more prominent role in males, highlighting complex sex-differences of the CRF system's regulation of anxiety within the NAcSh.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Luisa Demarchi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Emma Rocaboy
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
2
|
Bruce KE, Wouk K, Grewen KM, Pearson B, Meltzer-Brody S, Stuebe AM, Bauer AE. HPA axis dysregulation and postpartum depression and anxiety symptoms in breastfeeding vs bottle-feeding parents. Psychoneuroendocrinology 2025; 172:107253. [PMID: 39675161 PMCID: PMC11830542 DOI: 10.1016/j.psyneuen.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/17/2024]
Abstract
OBJECTIVE Hypothalamic-pituitary-adrenal (HPA) axis dysregulation has been implicated in the pathogenesis of perinatal mood disorders. Further, HPA axis response is known to be blunted during breastfeeding. We hypothesized that 1) postpartum depression/anxiety symptoms would be associated with HPA axis dysregulation, indexed by loss of expected adrenocorticotropic hormone (ACTH)-cortisol coupling, and 2) this association would vary by method of infant feeding. METHODS Participants (N=222) intending to breastfeed were recruited in their 3rd trimester of pregnancy. During a lab visit at 2 months postpartum, depression and anxiety symptoms were assessed (Beck Depression Inventory score ≥14 and/or Speilberger State-Trait Anxiety Inventory score ≥40). Participants then breast or bottle-fed their infants as they would at home. After a 10-minute rest, participants completed the Trier Social Stress Test (TSST), a standardized stressor involving speech and math tasks. Blood ACTH and cortisol were measured 10 minutes after feeding, during each task, and at 10, 20, and 30 minutes of recovery. Multilevel models evaluated whether coupling of ACTH at time j with cortisol at time j+1 differed between those with and without depression/anxiety symptoms, and whether differences varied by feeding method. RESULTS Of 205 participants who completed the TSST, 44 had depression/anxiety symptoms at 2-months postpartum. Depression/anxiety symptoms were associated with reduced ACTH-cortisol coupling (adjusted beta: -0.03; p-value: 0.03). Among those who breastfed, those with depression/anxiety showed greater blunting of ACTH-cortisol coupling than those without (adjusted beta: -0.04; p-value: 0.02), while those who bottle-fed had similar coupling patterns regardless of depression/anxiety symptoms (adjusted beta: -0.01; p-value: 0.87). CONCLUSION HPA axis response was blunted in those with postpartum depression/anxiety symptoms, and blunting varied by method of infant feeding. Findings support HPA axis dysregulation in perinatal mood and anxiety disorders. Future research should explore how method of infant feeding influences the relationship between perinatal mood disorders and HPA axis dysregulation. Elucidating the mechanistic pathways underlying perinatal mood disorders can aid in the development of better diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Katharine E Bruce
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, USA; Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, USA.
| | - Kathryn Wouk
- Pacific Institute for Research and Evaluation, USA
| | - Karen M Grewen
- Department of Psychiatry, University of North Carolina School of Medicine, USA
| | - Brenda Pearson
- Department of Psychiatry, University of North Carolina School of Medicine, USA
| | | | - Alison M Stuebe
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, USA; Department of Maternal and Child Health, Gillings School of Global Public Health, USA
| | - Anna E Bauer
- Department of Psychiatry, University of North Carolina School of Medicine, USA
| |
Collapse
|
3
|
Puska G, Szendi V, Egyed M, Dimén D, Cservenák M, Dobolyi Á. Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus. Brain Struct Funct 2025; 230:27. [PMID: 39775138 DOI: 10.1007/s00429-024-02870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025]
Abstract
The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv. Retrograde tract tracing identified various brain regions potentially influencing LSv neuronal activation through their projections. Among all, anterograde tract tracing confirmed that the posterior intralaminar thalamic nucleus (PIL), implicated in processing touch-related stimuli, targets the pup-activated region of the LSv. Moreover, nerve terminals containing the maternally induced PIL neuropeptide parathyroid hormone 2 (PTH2), were found to form synaptic connections with c-Fos activated LSv neurons using electron microscopy. Confirmation of PTH2 + PIL fibers projecting to LSv was achieved by retrograde tract tracing methods. Furthermore, double retrograde injections revealed that neurons within the PIL can project to both LSv and MPOA, suggesting their simultaneous regulation by PIL input. We also established that septal neurons activated by the pups in the mother are GABAergic and send inhibitory projections to the MPOA and other components of the maternal brain circuitry. This implies that the LSv and MPOA form an interconnected subcircuit in the maternal brain network, which is primarily driven by somatosensory input from the pups via the PIL PTH2 + neurons.
Collapse
Affiliation(s)
- Gina Puska
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Szendi
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Máté Egyed
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Diána Dimén
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Department of Psychological and Brain Sciences, Addiction and Neuroplasticity Laboratory, Indiana University, Bloomington, IN, USA
| | - Melinda Cservenák
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Árpád Dobolyi
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.
- Department of Anatomy, Histology and Embryology, Laboratory of Neuromorphology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
4
|
Hare MM, Barber A, Shaffer SA, Deligiannidis KM. Bidirectional associations between perinatal allopregnanolone and depression severity with postpartum gray matter volume in adult women. Acta Psychiatr Scand 2024; 150:404-415. [PMID: 38923502 PMCID: PMC11444908 DOI: 10.1111/acps.13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 04/30/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Perinatal depression (PND) is a debilitating condition affecting maternal well-being and child development. Allopregnanolone (ALLO) is important to perinatal neuroplasticity, however its relationship with depression severity and postpartum structural brain volume is unknown. METHOD We examined perinatal temporal dynamics and bidirectional associations between ALLO and depression severity and the association between these variables and postpartum gray matter volume, using a random intercept cross-lagged panel model. RESULTS We identified a unidirectional predictive relationship between PND severity and ALLO concentration, suggesting greater depression severity early in the perinatal period may contribute to subsequent changes in ALLO concentration (β = 0.26, p = 0.009), while variations in ALLO levels during the perinatal period influences the development and severity of depressive symptoms later in the postpartum period (β = 0.38, p = 0.007). Antepartum depression severity (Visit 2, β = 0.35, p = 0.004), ALLO concentration (Visit 2, β = 0.37, p = 0.001), and postpartum depression severity (Visit 3, β = 0.39, p = 0.031), each predicted the right anterior cingulate volume. Antepartum ALLO concentration (Visit 2, β = 0.29, p = 0.001) predicted left suborbital sulcus volume. Antepartum depression severity (Visit 1, β = 0.39, p = 0.006 and Visit 2, β = 0.48, p < 0.001) predicted the right straight gyrus volume. Postpartum depression severity (Visit 3, β = 0.36, p = 0.001) predicted left middle-posterior cingulate volume. CONCLUSION These results provide the first evidence of bidirectional associations between perinatal ALLO and depression severity with postpartum gray matter volume.
Collapse
Affiliation(s)
- Megan M Hare
- Center for Children and Families, Department of Psychology, Florida International University, Miami, Florida, USA
| | - Anita Barber
- Department of Psychiatry, Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York, USA
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Scott A Shaffer
- The Mass Spectrometry Facility, UMass Chan Medical School, Shrewsbury, Massachusetts, USA
| | - Kristina M Deligiannidis
- Department of Psychiatry, Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York, USA
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York, USA
- Departments of Psychiatry, Molecular Medicine and Obstetrics and Gynecology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
5
|
Grossmann CP, Sommer C, Fahliogullari IB, Neumann ID, Menon R. Mating-induced release of oxytocin in the mouse lateral septum: Implications for social fear extinction. Psychoneuroendocrinology 2024; 166:107083. [PMID: 38788461 DOI: 10.1016/j.psyneuen.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In mammals, some physiological conditions are associated with the high brain oxytocin (OXT) system activity. These include lactation in females and mating in males and females, both of which have been linked to reduced stress responsiveness and anxiolysis. Also, in a murine model of social fear conditioning (SFC), enhanced brain OXT signaling in lactating mice, specifically in the lateral septum (LS), was reported to underlie reduced social fear expression. Here, we studied the effects of mating in male mice on anxiety-related behaviour, social (and cued) fear expression and its extinction, and the activity of OXT neurons reflected by cFos expression and OXT release in the LS and amygdala. We further focused on the involvement of brain OXT in the mating-induced facilitation of social fear extinction. We could confirm the anxiolytic effect of mating in male mice irrespective of the occurrence of ejaculation. Further, we found that only successful mating resulting in ejaculation (Ej+) facilitated social fear extinction, whereas mating without ejaculation (Ej-) did not. In contrast, mating did not affect cues fear expression. Using the cellular activity markers cFos and pErk, we further identified the ventral LS (vLS) as a potential region participating in the effect of ejaculation on social fear extinction. In support, microdialysis experiments revealed a rise in OXT release within the LS, but not the amygdala, during mating. Finally, infusion of an OXT receptor antagonist into the LS before mating or into the lateral ventricle (icv) after mating demonstrated a significant role of brain OXT receptor-mediated signaling in the mating-induced facilitation of social fear extinction.
Collapse
Affiliation(s)
- Cindy P Grossmann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Christopher Sommer
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | | | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Puska G, Szendi V, Dobolyi A. Lateral septum as a possible regulatory center of maternal behaviors. Neurosci Biobehav Rev 2024; 161:105683. [PMID: 38649125 DOI: 10.1016/j.neubiorev.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The lateral septum (LS) is involved in controlling anxiety, aggression, feeding, and other motivated behaviors. Lesion studies have also implicated the LS in various forms of caring behaviors. Recently, novel experimental tools have provided a more detailed insight into the function of the LS, including the specific role of distinct cell types and their neuronal connections in behavioral regulations, in which the LS participates. This article discusses the regulation of different types of maternal behavioral alterations using the distributions of established maternal hormones such as prolactin, estrogens, and the neuropeptide oxytocin. It also considers the distribution of neurons activated in mothers in response to pups and other maternal activities, as well as gene expressional alterations in the maternal LS. Finally, this paper proposes further research directions to keep up with the rapidly developing knowledge on maternal behavioral control in other maternal brain regions.
Collapse
Affiliation(s)
- Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Sanson A, Krieg P, Schramm MM, Kellner K, Maloumby R, Klampfl SM, Brunton PJ, Bosch OJ. CRF binding protein activity in the hypothalamic paraventricular nucleus is essential for stress adaptations and normal maternal behaviour in lactating rats. Neurobiol Stress 2024; 30:100631. [PMID: 38601362 PMCID: PMC11004997 DOI: 10.1016/j.ynstr.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
To ensure the unrestricted expression of maternal behaviour peripartum, activity of the corticotropin-releasing factor (CRF) system needs to be minimised. CRF binding protein (CRF-BP) might be crucial for this adaptation, as its primary function is to sequester freely available CRF and urocortin1, thereby dampening CRF receptor (CRF-R) signalling. So far, the role of CRF-BP in the maternal brain has barely been studied, and a potential role in curtailing activation of the stress axis is unknown. We studied gene expression for CRF-BP and both CRF-R within the paraventricular nucleus (PVN) of the hypothalamus. In lactating rats, Crh-bp expression in the parvocellular PVN was significantly higher and Crh-r1 expression in the PVN significantly lower compared to virgin rats. Acute CRF-BP inhibition in the PVN with infusion of CRF(6-33) increased basal plasma corticosterone concentrations under unstressed conditions in dams. Furthermore, while acute intra-PVN infusion of CRF increased corticosterone secretion in virgin rats, it was ineffective in vehicle (VEH)-pre-treated lactating rats, probably due to a buffering effect of CRF-BP. Indeed, pre-treatment with CRF(6-33) reinstated a corticosterone response to CRF in lactating rats, highlighting the critical role of CRF-BP in maintaining attenuated stress reactivity in lactation. To our knowledge, this is the first study linking hypothalamic CRF-BP activity to hypothalamic-pituitary-adrenal axis regulation in lactation. In terms of behaviour, acute CRF-BP inhibition in the PVN under non-stress conditions reduced blanket nursing 60 min and licking/grooming 90 min after infusion compared to VEH-treated rats, while increasing maternal aggression towards an intruder. Lastly, chronic intra-PVN inhibition of CRF-BP strongly reduced maternal aggression, with modest effects on maternal motivation and care. Taken together, intact activity of the CRF-BP in the PVN during the postpartum period is essential for the dampened responsiveness of the stress axis, as well as for the full expression of appropriate maternal behaviour.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula Krieg
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Milena M. Schramm
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Kerstin Kellner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Stefanie M. Klampfl
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Uvnäs-Moberg K, Gross MM, Calleja-Agius J, Turner JD. The Yin and Yang of the oxytocin and stress systems: opposites, yet interdependent and intertwined determinants of lifelong health trajectories. Front Endocrinol (Lausanne) 2024; 15:1272270. [PMID: 38689729 PMCID: PMC11058227 DOI: 10.3389/fendo.2024.1272270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
During parturition and the immediate post-partum period there are two opposite, yet interdependent and intertwined systems that are highly active and play a role in determining lifelong health and behaviour in both the mother and her infant: the stress and the anti-stress (oxytocin) system. Before attempting to understand how the environment around birth determines long-term health trajectories, it is essential to understand how these two systems operate and how they interact. Here, we discuss together the hormonal and neuronal arms of both the hypothalamic-pituitary-adrenal (HPA) axis and the oxytocinergic systems and how they interact. Although the HPA axis and glucocorticoid stress axis are well studied, the role of oxytocin as an extremely powerful anti-stress hormone deserves more attention. It is clear that these anti-stress effects depend on oxytocinergic nerves emanating from the supraoptic nucleus (SON) and paraventricular nucleus (PVN), and project to multiple sites at which the stress system is regulated. These, include projections to corticotropin releasing hormone (CRH) neurons within the PVN, to the anterior pituitary, to areas involved in sympathetic and parasympathetic nervous control, to NA neurons in the locus coeruleus (LC), and to CRH neurons in the amygdala. In the context of the interaction between the HPA axis and the oxytocin system birth is a particularly interesting period as, for both the mother and the infant, both systems are very strongly activated within the same narrow time window. Data suggest that the HPA axis and the oxytocin system appear to interact in this early-life period, with effects lasting many years. If mother-child skin-to-skin contact occurs almost immediately postpartum, the effects of the anti-stress (oxytocin) system become more prominent, moderating lifelong health trajectories. There is clear evidence that HPA axis activity during this time is dependent on the balance between the HPA axis and the oxytocin system, the latter being reinforced by specific somatosensory inputs, and this has long-term consequences for stress reactivity.
Collapse
Affiliation(s)
- Kerstin Uvnäs-Moberg
- Department of Animal Environment and Health, Section of Anthrozoology and Applied Ethology, Swedish University of Agricultural Sciences, Skara, Sweden
| | - Mechthild M. Gross
- Midwifery Research and Education Unit, Hannover Medical School, Hannover, Germany
| | - Jean Calleja-Agius
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Jonathan D. Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch sur Alzette, Luxembourg
| |
Collapse
|
9
|
Wilson KM, Arquilla AM, Hussein M, Rosales-Torres KM, Chan MG, Saltzman W. Effects of reproductive status on behavioral and neural responses to isolated pup stimuli in female California mice. Behav Brain Res 2024; 457:114727. [PMID: 37871656 DOI: 10.1016/j.bbr.2023.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/25/2023]
Abstract
The transition to motherhood in mammals is marked by changes in females' perception of and responsiveness to sensory stimuli from infants. Our understanding of maternally induced sensory plasticity relies most heavily on studies in uniparental, promiscuous house mice and rats, which may not be representative of rodent species with different life histories. We exposed biparental, monogamous California mouse (Peromyscus californicus) mothers and ovariectomized virgin females to one of four acoustic and olfactory stimulus combinations (Control: clean cotton and white noise; Call: clean cotton and pup vocalizations; Odor: pup-scented cotton and white noise; Call + Odor: pup-scented cotton and pup vocalizations) and quantified females' behavior and Fos expression in select brain regions. Behavior did not differ between mothers and ovariectomized virgins. Among mothers, however, those exposed to the Control condition took the longest to sniff the odor stimulus, and mothers exposed to the Odor condition were quicker to sniff the odor ball compared to those in the Call condition. Behavior did not differ among ovariectomized virgins exposed to the different conditions. Fos expression differed across conditions only in the anterior hypothalamic nucleus (AHN), which responds to aversive stimuli: among mothers, the Control condition elicited the highest AHN Fos and Call + Odor elicited the lowest. Among ovariectomized virgin females, Call elicited the lowest Fos in the AHN. Thus, reproductive status in California mice alters females' behavioral responses to stimuli from pups, especially odors, and results in the inhibition of defense circuitry in response to pup stimuli.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Biology, Pomona College, Claremont, CA, USA; Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA.
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Kelsey M Rosales-Torres
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - May G Chan
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA, USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA, USA
| |
Collapse
|
10
|
Paul B, Buchholz DR. Minireview: Glucocorticoid-Leptin Crosstalk: Role of Glucocorticoid-Leptin Counterregulation in Metabolic Homeostasis and Normal Development. Integr Comp Biol 2023; 63:1127-1139. [PMID: 37708034 DOI: 10.1093/icb/icad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Glucocorticoids and leptin are two important hormones that regulate metabolic homeostasis by controlling appetite and energy expenditure in adult mammals. Also, glucocorticoids and leptin strongly counterregulate each other, such that chronic stress-induced glucocorticoids upregulate the production of leptin and leptin suppresses glucocorticoid production directly via action on endocrine organs and indirectly via action on food intake. Altered glucocorticoid or leptin levels during development can impair organ development and increase the risk of chronic diseases in adults, but there are limited studies depicting the significance of glucocorticoid-leptin interaction during development and its impact on developmental programming. In mammals, leptin-induced suppression of glucocorticoid production is critical during development, where leptin prevents stress-induced glucocorticoid production by inducing a period of short-hyporesponsiveness when the adrenal glands fail to respond to certain mild to moderate stressors. Conversely, reduced or absent leptin signaling increases glucocorticoid levels beyond what is appropriate for normal organogenesis. The counterregulatory interactions between leptin and glucocorticoids suggest the potential significant involvement of leptin in disorders that occur from stress during development.
Collapse
Affiliation(s)
- Bidisha Paul
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
11
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
12
|
Georgescu T. The role of maternal hormones in regulating autonomic functions during pregnancy. J Neuroendocrinol 2023; 35:e13348. [PMID: 37936545 DOI: 10.1111/jne.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Offspring development relies on numerous physiological changes that occur in a mother's body, with hormones driving many of these adaptations. Amongst these, the physiological functions controlled by the autonomic nervous system are required for the mother to survive and are adjusted to meet the demands of the growing foetus and to ensure a successful birth. The hormones oestrogen, progesterone, and lactogenic hormones rise significantly during pregnancy, suggesting they may also play a role in regulating the maternal adaptations linked to autonomic nervous system functions, including respiratory, cardiovascular, and thermoregulatory functions. Indeed, expression of pregnancy hormone receptors spans multiple brain regions known to regulate these physiological functions. This review examines how respiratory, cardiovascular, and thermoregulatory functions are controlled by these pregnancy hormones by focusing on their action on central nervous system circuits. Inadequate adaptations in these systems during pregnancy can give rise to several pregnancy complications, highlighting the importance in understanding the mechanistic underpinnings of these changes and potentially identifying ways to treat pregnancy-associated afflictions using hormones.
Collapse
Affiliation(s)
- T Georgescu
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
13
|
Howland MA. Recalibration of the stress response system over adult development: Is there a perinatal recalibration period? Dev Psychopathol 2023; 35:2315-2337. [PMID: 37641984 PMCID: PMC10901284 DOI: 10.1017/s0954579423000998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
During early life-sensitive periods (i.e., fetal, infancy), the developing stress response system adaptively calibrates to match environmental conditions, whether harsh or supportive. Recent evidence suggests that puberty is another window when the stress system is open to recalibration if environmental conditions have shifted significantly. Whether additional periods of recalibration exist in adulthood remains to be established. The present paper draws parallels between childhood (re)calibration periods and the perinatal period to hypothesize that this phase may be an additional window of stress recalibration in adult life. Specifically, the perinatal period (defined here to include pregnancy, lactation, and early parenthood) is also a developmental switch point characterized by heightened neural plasticity and marked changes in stress system function. After discussing these similarities, lines of empirical evidence needed to substantiate the perinatal stress recalibration hypothesis are proposed, and existing research support is reviewed. Complexities and challenges related to delineating the boundaries of perinatal stress recalibration and empirically testing this hypothesis are discussed, as well as possibilities for future multidisciplinary research. In the theme of this special issue, perinatal stress recalibration may be a mechanism of multilevel, multisystem risk, and resilience, both intra-individually and intergenerationally, with implications for optimizing interventions.
Collapse
Affiliation(s)
- Mariann A Howland
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
14
|
Neumann ID. Monitoring oxytocin signaling in the brain: More than a love story. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2023; 16:100206. [PMID: 38108033 PMCID: PMC10724740 DOI: 10.1016/j.cpnec.2023.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 12/19/2023] Open
Abstract
More than any other neuropeptide, oxytocin (OXT) is attracting the attention of neurobiologists, psychologists, psychiatrists, evolutionary biologists and even economists. It is often called a "love hormone" due to its many prosocial functions described in vertebrates including mammals and humans, especially its ability to support "bonding behaviour". Oxytocin plays an important role in female reproduction, as it promotes labour during parturition, enables milk ejection in lactation and is essential for related reproductive behaviours. Therefore, it particularly attracts the interest of many female researchers. In this short narrative review I was invited to provide a personal overview on my scientific journey closely linked to my research on the brain OXT system and the adventures associated with starting my research career behind the Iron Curtain.
Collapse
Affiliation(s)
- Inga D. Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Centre of Neurosciences, University of Regensburg, Regensburg, Germany
| |
Collapse
|
15
|
Gryksa K, Schmidtner AK, Masís-Calvo M, Rodríguez-Villagra OA, Havasi A, Wirobski G, Maloumby R, Jägle H, Bosch OJ, Slattery DA, Neumann ID. Selective breeding of rats for high (HAB) and low (LAB) anxiety-related behaviour: A unique model for comorbid depression and social dysfunctions. Neurosci Biobehav Rev 2023; 152:105292. [PMID: 37353047 DOI: 10.1016/j.neubiorev.2023.105292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/25/2023]
Abstract
Animal models of selective breeding for extremes in emotionality are a strong experimental approach to model psychopathologies. They became indispensable in order to increase our understanding of neurobiological, genetic, epigenetic, hormonal, and environmental mechanisms contributing to anxiety disorders and their association with depressive symptoms or social deficits. In the present review, we extensively discuss Wistar rats selectively bred for high (HAB) and low (LAB) anxiety-related behaviour on the elevated plus-maze. After 30 years of breeding, we can confirm the prominent differences between HAB and LAB rats in trait anxiety, which are accompanied by consistent differences in depressive-like, social and cognitive behaviours. We can further confirm a single nucleotide polymorphism in the vasopressin promotor of HAB rats causative for neuropeptide overexpression, and show that low (or high) anxiety and fear levels are unlikely due to visual dysfunctions. Thus, HAB and LAB rats continue to exist as a reliable tool to study the multiple facets underlying the pathology of high trait anxiety and its comorbidity with depression-like behaviour and social dysfunctions.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Anna K Schmidtner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Marianella Masís-Calvo
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Odir A Rodríguez-Villagra
- Centro de Investigación en Neurosciencias, Universidad de Costa Rica, San Pedro, San José, Costa Rica.
| | - Andrea Havasi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Gwendolyn Wirobski
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - Herbert Jägle
- Department of Ophthalmology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Heinrich-Hoffmann-Straße 10, 60528 Frankfurt am Main, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany.
| |
Collapse
|
16
|
Mota-Rojas D, Marcet-Rius M, Domínguez-Oliva A, Martínez-Burnes J, Lezama-García K, Hernández-Ávalos I, Rodríguez-González D, Bienboire-Frosini C. The Role of Oxytocin in Domestic Animal’s Maternal Care: Parturition, Bonding, and Lactation. Animals (Basel) 2023; 13:ani13071207. [PMID: 37048463 PMCID: PMC10093258 DOI: 10.3390/ani13071207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Oxytocin (OXT) is one of the essential hormones in the birth process; however, estradiol, prolactin, cortisol, relaxin, connexin, and prostaglandin are also present. In addition to parturition, the functions in which OXT is also involved in mammals include the induction of maternal behavior, including imprinting and maternal care, social cognition, and affiliative behavior, which can affect allo-parental care. The present article aimed to analyze the role of OXT and the neurophysiologic regulation of this hormone during parturition, how it can promote or impair maternal behavior and bonding, and its importance in lactation in domestic animals.
Collapse
Affiliation(s)
- Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Míriam Marcet-Rius
- Department of Animal Behaviour and Welfare, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Julio Martínez-Burnes
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Victoria City 87000, Mexico
| | - Karina Lezama-García
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Ismael Hernández-Ávalos
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de Mexico (UNAM), Cuautitlán 54714, Mexico
| | - Daniela Rodríguez-González
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Xochimilco Campus, Universidad Autónoma Metropolitana, Mexico City 04960, Mexico
| | - Cécile Bienboire-Frosini
- Department of Molecular Biology and Chemical Communication, Research Institute in Semiochemistry and Applied Ethology (IRSEA), 84400 Apt, France
| |
Collapse
|
17
|
Hipólito LTM, Batista TH, Dos Anjos-Garcia T, Giusti-Paiva A, Vilela FC. Methimazole-induced gestational hypothyroidism affects the offspring development and differently impairs the conditioned fear in male and female adulthood rodents. Int J Dev Neurosci 2023; 83:108-120. [PMID: 36445265 DOI: 10.1002/jdn.10243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/30/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Gestational hypothyroidism is a prevalent disorder in pregnant women and also impairs fetal development with relevant outcomes. One of the outcomes of greatest interest has been rodent fear- and anxiety-like behavior. However, the relationship between maternal hypothyroidism and onset of conditioned fear-related responses in offspring remains controversial. Here, we used a well-validated methimazole-induced gestational hypothyroidism to investigate the behavioral consequences in offspring. Dams were treated with methimazole at 0.02% in drinking water up to gestational Day 9. Maternal body weights and maternal behavior were evaluated, and the puppies ware analyzed for weight gain and physical/behavioral development and assigned for the open field and fear conditioning test. Methimazole-induced gestational hypothyroidism induced loss in maternal and litter weight, increases in maternal behavior, and impairs in offspring developmental landmarks in both male and female rodents. Only male offspring enhanced responsiveness to conditioned fear-like behavior in adulthood.
Collapse
Affiliation(s)
- Laísa T M Hipólito
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Tatiane H Batista
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Tayllon Dos Anjos-Garcia
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Alexandre Giusti-Paiva
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação Multicêntrico em Ciências Fisiológicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| | - Fabiana C Vilela
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil.,Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas (Unifal-MG), Alfenas, Brazil
| |
Collapse
|
18
|
The Impact of the COVID-19 Pandemic on Postpartum Maternal Mental Health. J Pers Med 2022; 13:jpm13010056. [PMID: 36675717 PMCID: PMC9866377 DOI: 10.3390/jpm13010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/11/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES There are reports of mental health worsening during the COVID-19 pandemic. We aimed to assess whether this occurred in women who were pregnant at baseline (late 2019) and unaware of the pandemic, and who delivered after the implementation of COVID-19 restrictions and threat (March-April 2020). To compare the pandemic period with the pre-pandemic, we capitalized on a retrospective 2014-2015 perinatal sample which had had affective symptoms assessed. METHODS The COVID sample were administered the Postnatal Depression Scale (EPDS), Zung Self-Rating Anxiety Scale (SAS), Hypomania Checklist-32 (HCL-32), Pittsburgh Sleep Quality Index (PSQI), and Perceived Stress Scale (PSS) at T0 (pregnancy) and T1 (post-delivery). The Non-COVID sample had completed EPDS and HCL-32 at the same timepoints. RESULTS The COVID sample included 72 women, aged 21-46 years (mean = 33.25 years ± 4.69), and the Non-COVID sample included 68 perinatal women, aged 21-46 years (mean = 34.01 years ± 4.68). Our study showed greater levels of mild depression in T1 among the COVID sample compared to the Non-COVID sample. No significant differences in terms of major depression and suicidal ideation were found. The levels of hypomania were significantly different between the two groups at T1, with the COVID sample scoring higher than the Non-COVID sample. This may be related to the high levels of perceived stress we found during the postpartum evaluation in the COVID sample. LIMITATIONS There was a relatively small sample size. CONCLUSIONS New mothers responded to the pandemic with less mental health impairment than expected, differently from the general population. Women delivering amidst the pandemic did not differ in depressive and anxiety symptoms from their pre-pandemic scores and from pre-pandemic women. Because stress responses have high energy costs, it is optimal for maternal animals to minimize such high metabolic costs during motherhood. Evidence suggests that reproductive experience alters the female brain in adaptive ways. This maternal brain plasticity facilitates a higher purpose, the continuation of the species. This may point to the recruitment of motherhood-related resources, for potentially overcoming the effects of the pandemic on mental health.
Collapse
|
19
|
Triana-Del Rio R, Ranade S, Guardado J, LeDoux J, Klann E, Shrestha P. The modulation of emotional and social behaviors by oxytocin signaling in limbic network. Front Mol Neurosci 2022; 15:1002846. [PMID: 36466805 PMCID: PMC9714608 DOI: 10.3389/fnmol.2022.1002846] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/22/2022] [Indexed: 01/21/2024] Open
Abstract
Neuropeptides can exert volume modulation in neuronal networks, which account for a well-calibrated and fine-tuned regulation that depends on the sensory and behavioral contexts. For example, oxytocin (OT) and oxytocin receptor (OTR) trigger a signaling pattern encompassing intracellular cascades, synaptic plasticity, gene expression, and network regulation, that together function to increase the signal-to-noise ratio for sensory-dependent stress/threat and social responses. Activation of OTRs in emotional circuits within the limbic forebrain is necessary to acquire stress/threat responses. When emotional memories are retrieved, OTR-expressing cells act as gatekeepers of the threat response choice/discrimination. OT signaling has also been implicated in modulating social-exposure elicited responses in the neural circuits within the limbic forebrain. In this review, we describe the cellular and molecular mechanisms that underlie the neuromodulation by OT, and how OT signaling in specific neural circuits and cell populations mediate stress/threat and social behaviors. OT and downstream signaling cascades are heavily implicated in neuropsychiatric disorders characterized by emotional and social dysregulation. Thus, a mechanistic understanding of downstream cellular effects of OT in relevant cell types and neural circuits can help design effective intervention techniques for a variety of neuropsychiatric disorders.
Collapse
Affiliation(s)
| | - Sayali Ranade
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| | - Jahel Guardado
- Center for Neural Science, New York University, New York, NY, United States
| | - Joseph LeDoux
- Center for Neural Science, New York University, New York, NY, United States
| | - Eric Klann
- Center for Neural Science, New York University, New York, NY, United States
| | - Prerana Shrestha
- Department of Neurobiology and Behavior, School of Medicine, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
20
|
Dam (Canis familiaris) Welfare throughout the Peri-Parturient Period in Commercial Breeding Kennels. Animals (Basel) 2022; 12:ani12202820. [PMID: 36290206 PMCID: PMC9597717 DOI: 10.3390/ani12202820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Welfare problems experienced during gestation and lactation may negatively affect dams and their puppies. However, the welfare states of dams in commercial breeding (CB) kennels during this period have not been well examined. Therefore, we examined a range of behavioral, physical, and physiological metrics throughout the period around parturition to identify if changes indicative of impaired welfare were present. We tested 74 dams from eight CB kennels at 6 and 1 week prepartum, and 4 and 8 weeks postpartum. At each time point we measured their responses to a stranger approaching, their physical health, and indicators of their stress response, immune function, and parasite burden. Findings did not reveal major changes in dam welfare. Most changes observed were likely because of natural biological changes resulting from pregnancy, lactation, and weaning. However, as some changes in metrics deviated from what was expected and there were changes in environmental and management factors during this time, future research should identify how they affect dam welfare. Abstract Poor dam welfare throughout the peri-parturient period can also negatively affect that of their offspring. This study aimed to identify changes in physical, physiological, and behavioral metrics indicative of dam welfare throughout the peri-parturient period. Dams (n = 74) from eight U.S. Midwest commercial breeding (CB) kennels were tested at 6 and 1 week prepartum, and 4 and 8 weeks postpartum. At each time point dams underwent a stranger approach test, physical health assessment, hair collection for hair cortisol concentration (HCC) and fecal collection for fecal glucocorticoid metabolites (FGM), fecal secretory immunoglobulin A (sIgA) and parasite detection. Linear mixed-effects models indicated dams exhibited more affiliative behaviors towards the stranger at 4 weeks postpartum than 6 weeks prepartum (p = 0.03), increased HCC from 4-weeks to 8 weeks postpartum (p = 0.02), and increased FGM from 1 week prepartum to 8 weeks postpartum (p = 0.04). At each respective time point, the percentage of dams with intestinal parasites was 11%, 4%, 23%, and 15%. Most changes are likely due to increased energy requirements and hormonal variations. However, deviations from expected changes may have resulted from changes in environment and/ or management, which should be explored in future studies.
Collapse
|
21
|
Swanson V, Hannula L. Parenting stress in the early years – a survey of the impact of breastfeeding and social support for women in Finland and the UK. BMC Pregnancy Childbirth 2022; 22:699. [PMID: 36088286 PMCID: PMC9463736 DOI: 10.1186/s12884-022-05010-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Being a new parent can be both joyful and stressful. Parenting stress is associated with poorer health and well-being for parents and infant and increased psychological distress. For new mothers, physical and hormonal changes, expectations of mothering and demands of a new baby may cause additional stress. Breastfeeding is promoted as optimal for maternal and infant health, but can have both positive and negative psychological impacts. Formal and informal social support can offset parenting and breastfeeding stress. Source, content and context of support for new parents are important considerations. This study compares two countries with different parenting and breastfeeding contexts, Finland (more supportive) and the UK (less supportive), investigating the role of breastfeeding stress, self-efficacy and social support as predictors of stress and role strain for new mothers.
Methods
A cross-sectional online survey was completed by 1550 breastfeeding mothers of infants up to 2 years old, recruited via social media platforms in Finland and the UK. Predictors of parenting stress and strain, including demograpic factors, childbirth experiences, breastfeeding and social support were investigated.
Results
We found fewer differences between countries than expected, perhaps due to demographic and contextual differences. Women in Finland reported better childbirth experiences, more positive breastfeeding attitudes, and more self-efficacy than in the UK. Levels of parenting stress were similar in both countries. Women in the UK reported more parental role strain, but fewer breastfeeding stressors. Participants accessed more informal than formal supports, including their partner for parenting and facebook groups and family for breastfeeding. Analysis suggested breastfeeding stress and social support had significant direct effects – respectively increasing and reducing parenting stress and role strain, but no moderating effects of social support suggesting support did not change the relationship between breastfeeding and parenting stress.
Conclusions
Results have important implications for the provision of breastfeeding and parenting support for new mothers. Simple interventions to manage stress for mothers in the postnatal period could be beneficial and are easily delivered by supporters. As shown elsewhere, socio-economic and cultural factors are crucial influences on parenting experiences.
Collapse
|
22
|
Capistrano CG, Grande LA, McRae K, Phan KL, Kim P. Maternal socioeconomic disadvantage, neural function during volitional emotion regulation, and parenting. Soc Neurosci 2022; 17:276-292. [PMID: 35620995 PMCID: PMC10829500 DOI: 10.1080/17470919.2022.2082521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/27/2022] [Indexed: 10/18/2022]
Abstract
The transition to becoming a mother involves numerous emotional challenges, and the ability to effectively keep negative emotions in check is critical for parenting. Evidence suggests that experiencing socioeconomic disadvantage interferes with parenting adaptations and alters neural processes related to emotion regulation. The present study examined whether socioeconomic disadvantage is associated with diminished neural activation while mothers engaged in volitional (i.e., purposeful) emotion regulation. 59 mothers, at an average of 4 months postpartum, underwent fMRI scanning and completed the Emotion Regulation Task (ERT). When asked to regulate emotions using reappraisal (i.e., Reappraise condition; reframing stimuli in order to decrease negative emotion), mothers with lower income-to-needs ratio exhibited dampened neural activation in the dorsolateral and ventrolateral PFC, middle frontal and middle temporal gyrus, and caudate. Without explicit instructions to down-regulate (i.e., Maintain condition), mothers experiencing lower income also exhibited dampened response in regulatory areas, including the middle frontal and middle temporal gyrus and caudate. Blunted middle frontal gyrus activation across both Reappraise and Maintain conditions was associated with reduced maternal sensitivity during a mother-child interaction task. Results of the present study demonstrate the influence of socioeconomic disadvantage on prefrontal engagement during emotion regulation, which may have downstream consequences for maternal behaviors.
Collapse
Affiliation(s)
| | - Leah A Grande
- Department of Psychology, University of Denver, Denver, CO, USA
| | - Kateri McRae
- Department of Psychology, University of Denver, Denver, CO, USA
| | - K Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Pilyoung Kim
- Department of Psychology, University of Denver, Denver, CO, USA
| |
Collapse
|
23
|
Higashida H, Gerasimenko M, Yamamoto Y. Receptor for advanced glycation end-products and child neglect in mice: A possible link to postpartum depression. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100146. [PMID: 35967921 PMCID: PMC9363643 DOI: 10.1016/j.cpnec.2022.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022] Open
Abstract
The receptor for advanced glycation end-products (RAGE), a pattern recognition molecule, has a role in the remodeling of vascular endothelial cells mainly in lungs, kidney and brain under pathological conditions. We recently discovered that RAGE binds oxytocin (OT) and transports it to the brain from circulation on neurovascular endothelial cells. We produced knockout mice of the mouse homologue of the human RAGE gene, Ager, designated RAGE KO mice. In RAGE KO mice, while hyperactivity has been reported in male mice, maternal behavior was impaired in female mice. After an additional stress, deficits in pup care were observed in RAGE KO mother mice. This resulted in pup death within 1–2 days, suggesting that RAGE plays a critical role during the postpartum period. Thus, RAGE seems to be important in the manifestation of normal maternal behavior in dams. In this review, we summarize the significance of brain OT transport by RAGE and propose that RAGE-dependent OT can dampen stress signals during pregnancy, delivery and early postpartum periods. To the best of our knowledge, there have been no previous articles on these RAGE-dependent results. Based on these results in mice, we discuss a potential critical role of RAGE in emotion swings at the puerperium (peripartum) and postpartum periods in women.
RAGE play a role in oxytocin transport via the blood-brain barrier into the brain. RAGE KO dams had maternal behavior impairment after stress exposure that is in line with the two-hit theory. The first hit is RAGE signaling absence, the second hit is a stress event occurred in the postpartum period. We can hypothesize that RAGE signaling can affect maternal depression development through oxytocin transportation into the brain.
Collapse
|
24
|
Species differences in the effect of oxytocin on maternal behavior: A model incorporating the potential for allomaternal contributions. Front Neuroendocrinol 2022; 65:100996. [PMID: 35429546 DOI: 10.1016/j.yfrne.2022.100996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/25/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022]
Abstract
Oxytocin has historically been linked to processes involved with maternal behavior. However, the relative importance of oxytocin for maternal behavior widely varies among mammalian species, from indispensable to apparently nonessential. This review proposes a new model in which the relative importance of oxytocin for mothering across species is explained by an evolutionary pressure which we term "allomaternal potential", or the degree to which other conspecifics are capable and likely to assist with caregiving. It is notable that in animals where allomaternal potential is high (i.e., many quality helpers are available), oxytocin is decoupled from mothering. However, in animals where allomaternal potential is low (i.e., conspecifics refuse to, or do not provide, quality help), oxytocin is crucial for mothering. We posit that this relationship is a form of kin selection, whereby oxytocin is a signal that leads mothers to preferentially dispense resources to their own young when quality helpers are unlikely.
Collapse
|
25
|
Ragan CM, Ahmed EI, Vitale EM, Linning-Duffy K, Miller-Smith SM, Maguire J, Lonstein JS. Postpartum State, but Not Maternal Caregiving or Level of Anxiety, Increases Medial Prefrontal Cortex GAD65 and vGAT in Female Rats. Front Glob Womens Health 2022; 2:746518. [PMID: 35211693 PMCID: PMC8861351 DOI: 10.3389/fgwh.2021.746518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Upregulation of the inhibitory neurotransmitter, GABA, is involved in many of the behavioral differences between postpartum and nulliparous female rodents. This is evidenced by studies showing that pharmacological blockade of GABAergic activity impairs maternal caregiving and postpartum affective behaviors. However, the influence of motherhood on the capacity for GABA synthesis or release in the medial prefrontal cortex (mPFC; brain region involved in many social and affective behaviors) is not well-understood. Western blotting was used to compare postpartum and nulliparous rats in protein levels of the 65-kD isoform of glutamic acid decarboxylase (GAD65; synthesizes most GABA released from terminals) and vesicular GABA transporter (vGAT; accumulates GABA into synaptic vesicles for release) in the mPFC. We found that postpartum mothers had higher GAD65 and vGAT compared to virgins, but such differences were not found between maternally sensitized and non-sensitized virgins, indicating that reproduction rather than just the display of maternal caregiving is required. To test whether GAD65 and vGAT levels in the mPFC were more specifically related to anxiety-related behavior within postpartum mothers, we selected 8 low-anxiety and 8 high-anxiety dams based on their time spent in the open arms of an elevated plus maze on postpartum day 7. There were no significant differences between the anxiety groups in either GAD65 or vGAT levels. These data further indicate that frontal cortical GABA is affected by female reproduction and more likely contributes to differences in the display of socioemotional behaviors across, but not within, female reproductive state.
Collapse
Affiliation(s)
- Christina M. Ragan
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- School of Biology and Undergraduate Neuroscience Program, Georgia Institute of Technology, Atlanta, GA, United States
| | - Eman I. Ahmed
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
| | - Erika M. Vitale
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
| | | | - Stephanie M. Miller-Smith
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Jamie Maguire
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, United States
| | - Joseph S. Lonstein
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Behavioral Neuroscience Program, Department of Psychology, Michigan State University, East Lansing, MI, United States
- *Correspondence: Joseph S. Lonstein
| |
Collapse
|
26
|
Calibration and recalibration of stress response systems across development: Implications for mental and physical health. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2022; 63:35-69. [DOI: 10.1016/bs.acdb.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Milbocker KA, Campbell TS, Collins N, Kim S, Smith IF, Roth TL, Klintsova AY. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Front Behav Neurosci 2021; 15:786234. [PMID: 34924972 PMCID: PMC8678604 DOI: 10.3389/fnbeh.2021.786234] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews. However, a comprehensive review of the mechanisms affecting adolescent neurodevelopment (i.e., synaptic pruning and myelination) is lacking. Synaptic pruning and myelination are glia-driven processes that are imperative for brain circuit refinement during the transition from adolescence to adulthood. Failure to optimize brain circuitry between key brain structures involved in learning and memory, such as the hippocampus and prefrontal cortex, leads to the emergence of maladaptive behaviors including increased anxiety or reduced executive function. As such, we review preclinical and clinical literature to explore the immediate and lasting effects of ELA on brain circuit development and refinement. Finally, we describe a number of therapeutic interventions best-suited to support adolescent neurodevelopment in children with a history of ELA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
28
|
Menon R, Süß T, Oliveira VEDM, Neumann ID, Bludau A. Neurobiology of the lateral septum: regulation of social behavior. Trends Neurosci 2021; 45:27-40. [PMID: 34810019 DOI: 10.1016/j.tins.2021.10.010] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Social interactions are essential for mammalian life and are regulated by evolutionary conserved neuronal mechanisms. An individual's internal state, experiences, and the nature of the social stimulus are critical for determining apt responses to social situations. The lateral septum (LS) - a structure of the basal forebrain - integrates abundant cortical and subcortical inputs, and projects to multiple downstream regions to generate appropriate behavioral responses. Although incoming cognitive information is indispensable for contextualizing a social stimulus, neuromodulatory information related to the internal state of the organism significantly influences the behavioral outcome as well. This review article provides an overview of the neuroanatomical properties of the LS, and examines its neurochemical (neuropeptidergic and hormonal) signaling, which provide the neuromodulatory information essential for fine-tuning social behavior across the lifespan.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Theresa Süß
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Vinícius Elias de Moura Oliveira
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany; Laboratory of Neuroendocrinology, GIGA Neurosciences, University of Liege, Liege, Belgium
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Anna Bludau
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
29
|
Ladyman SR, Carter KM, Gillett ML, Aung ZK, Grattan DR. A reduction in voluntary physical activity in early pregnancy in mice is mediated by prolactin. eLife 2021; 10:62260. [PMID: 34528511 PMCID: PMC8480982 DOI: 10.7554/elife.62260] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
As part of the maternal adaptations to pregnancy, mice show a rapid, profound reduction in voluntary running wheel activity (RWA) as soon as pregnancy is achieved. Here, we evaluate the hypothesis that prolactin, one of the first hormones to change secretion pattern following mating, is involved in driving this suppression of physical activity levels during pregnancy. We show that prolactin can acutely suppress RWA in non-pregnant female mice, and that conditional deletion of prolactin receptors (Prlr) from either most forebrain neurons or from GABA neurons prevented the early pregnancy-induced suppression of RWA. Deletion of Prlr specifically from the medial preoptic area, a brain region associated with multiple homeostatic and behavioral roles including parental behavior, completely abolished the early pregnancy-induced suppression of RWA. As pregnancy progresses, prolactin action continues to contribute to the further suppression of RWA, although it is not the only factor involved. Our data demonstrate a key role for prolactin in suppressing voluntary physical activity during early pregnancy, highlighting a novel biological basis for reduced physical activity in pregnancy.
Collapse
Affiliation(s)
- Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Kirsten M Carter
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Matt L Gillett
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Zin Khant Aung
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| |
Collapse
|
30
|
Demarchi L, Pawluski JL, Bosch OJ. The brain oxytocin and corticotropin-releasing factor systems in grieving mothers: What we know and what we need to learn. Peptides 2021; 143:170593. [PMID: 34091013 DOI: 10.1016/j.peptides.2021.170593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/17/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
The bond between a mother and her child is the strongest bond in nature. Consequently, the loss of a child is one of the most stressful and traumatic life events that causes Prolonged Grief Disorder in up to 94 % of bereaved parents. While both parents are affected, mothers are of higher risk to develop mental health complications; yet, very little research has been done to understand the impact of the loss of a child, stillbirth and pregnancy loss on key neurobiological systems. The emotional impact of losing a child, e.g., Prolonged Grief Disorder, is likely accompanied by dysregulations in neural systems important for mental health. Among those are the neuropeptides contributing to attachment and stress processing. In this review, we present evidence for the involvement of the brain oxytocin (OXT) and corticotropin-releasing factor (CRF) systems, which both play a role in maternal behavior and the stress response, in the neurobiology of grief in mothers from a behavioral and molecular point of view. We will draw conclusions from reviewing relevant animal and human studies. However, the paucity of research on the tragic end to an integral bond in a female's life calls for the need and responsibility to conduct further studies on mothers experiencing the loss of a child both in the clinic and in appropriate animal models.
Collapse
Affiliation(s)
- Luisa Demarchi
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany.
| | - Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S, 1085 Rennes, France.
| | - Oliver J Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
31
|
Grieb ZA, Ford EG, Yagan M, Lau BYB, Manfredsson FP, Krishnan K, Lonstein JS. Oxytocin receptors in the midbrain dorsal raphe are essential for postpartum maternal social and affective behaviors. Psychoneuroendocrinology 2021; 131:105332. [PMID: 34182251 PMCID: PMC8405581 DOI: 10.1016/j.psyneuen.2021.105332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 01/23/2023]
Abstract
Oxytocin receptors (OTRs) in the midbrain dorsal raphe (DR; the source of most forebrain serotonin) have recently been identified as a potential pharmacological target for treating numerous psychiatric disorders. However, almost all research on this topic has been conducted on males and the role of DR OTRs in female social and affective behaviors is mostly unknown. This may be particularly relevant during early motherhood, which is a time of high endogenous oxytocin signaling, but also a time of elevated risk for psychiatric dysfunction. To investigate whether OTRs in the DR are necessary for postpartum female social and affective behaviors, we constructed and then injected into the DR an adeno-associated virus permanently expressing an shRNA targeting OTR mRNA. We then observed a suite of social and affective behaviors postpartum. OTR knockdown in the maternal DR led to pup loss after parturition, decreased nursing, increased aggression, and increased behavioral despair. These effects of OTR knockdown in the DR may be due to disrupted neuroplasticity in the primary somatosensory cortex (S1), which mediates maternal sensitivity to the tactile cues from young, as we found significantly more plasticity-restricting perineuronal nets (PNNs) in the S1 rostral barrel field and fewer PNNs in the caudal barrel field of OTR-knockdown mothers. These results demonstrate that OTRs in the midbrain DR are essential for postpartum maternal social and affective behaviors, are involved in postpartum cortical plasticity, and suggest that pharmacotherapies targeting OTRs in the DR could be effective treatments for some peripartum affective disorders.
Collapse
Affiliation(s)
- Zachary A Grieb
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA.
| | - Emma G Ford
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| | - Mahircan Yagan
- Deparment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Billy Y B Lau
- Deparment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Fredric P Manfredsson
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, 400 Monroe Ave NW, Grand Rapids, MI 49503, USA
| | - Keerthi Krishnan
- Deparment of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, TN 37996, USA
| | - Joseph S Lonstein
- Neuroscience Program, Michigan State University, 108 Giltner Hall, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Abellán-Álvaro M, Ayala G, Barneo-Muñoz M, Martínez-García F, Agustín-Pavón C, Lanuza E. Motherhood-induced gene expression in the mouse medial amygdala: Changes induced by pregnancy and lactation but not by pup stimuli. FASEB J 2021; 35:e21806. [PMID: 34369605 DOI: 10.1096/fj.202100163rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/23/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022]
Abstract
During lactation, adult female mice display aggressive responses toward male intruders, triggered by male-derived chemosensory signals. This aggressive behavior is not shown by pup-sensitized virgin females sharing pup care with dams. The genetic mechanisms underlying the switch from attraction to aggression are unknown. In this work, we investigate the differential gene expression in lactating females expressing maternal aggression compared to pup-sensitized virgin females in the medial amygdala (Me), a key neural structure integrating chemosensory and hormonal information. The results showed 197 genes upregulated in dams, including genes encoding hormones such as prolactin, growth hormone, or follicle-stimulating hormone, neuropeptides such as galanin, oxytocin, and pro-opiomelanocortin, and genes related to catecholaminergic and cholinergic neurotransmission. In contrast, 99 genes were downregulated in dams, among which we find those encoding for inhibins and transcription factors of the Fos and early growth response families. The gene set analysis revealed numerous Gene Ontology functional groups with higher expression in dams than in pup-sensitized virgin females, including those related with the regulation of the Jak/Stat cascade. Of note, a number of olfactory and vomeronasal receptor genes was expressed in the Me, although without differences between dams and virgins. For prolactin and growth hormone, a qPCR experiment comparing dams, pup-sensitized, and pup-naïve virgin females showed that dams expressed higher levels of both hormones than pup-naïve virgins, with pup-sensitized virgins showing intermediate levels. Altogether, the results show important gene expression changes in the Me, which may underlie some of the behavioral responses characterizing maternal behavior.
Collapse
Affiliation(s)
- María Abellán-Álvaro
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Guillermo Ayala
- Department d'Estadística i Investigació Operativa, Facultat de Matemàtiques, Universitat de València, València, Spain
| | - Manuela Barneo-Muñoz
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Unitat Predepartamental de Medicina, Fac. Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Fernando Martínez-García
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Unitat Predepartamental de Medicina, Fac. Ciències de la Salut, Universitat Jaume I, Castelló de la Plana, Spain
| | - Carmen Agustín-Pavón
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| | - Enrique Lanuza
- Unitat mixta UV-UJI de Neuroanatomia Funcional Comparada, Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, València, Spain
| |
Collapse
|
33
|
Stead SM, Bădescu I, Boonstra R. Of mammals and milk: how maternal stress affects nursing offspring. Mamm Rev 2021. [DOI: 10.1111/mam.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha M. Stead
- Department of Anthropology University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| | - Iulia Bădescu
- Département d’Anthropologie Université de Montréal 3150 Rue Jean‐Brillant Montréal QCH3T 1N8Canada
| | - Rudy Boonstra
- Department of Biological Sciences University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| |
Collapse
|
34
|
Wagner BK, Relling AE, Kieffer JD, Parker AJ. Brief communication: Plasma cortisol concentration is affected by lactation, but not intra-nasal oxytocin treatment, in beef cows. PLoS One 2021; 16:e0249323. [PMID: 34329295 PMCID: PMC8323922 DOI: 10.1371/journal.pone.0249323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
In mammals, including sheep and mice, lactation attenuates the hypothalamo-pituitary-adrenal axis and plasma cortisol concentration. Oxytocin, one neuropeptide present in the blood during lactation, may contribute to such stress attenuation. Providing oxytocin intra-nasally increases plasma oxytocin concentration in cattle and can be used in non-lactating cows to mirror plasma oxytocin concentration of lactating cows. Therefore, our hypothesis was that there would be no difference in plasma cortisol between non-lactating beef cows intra-nasally administered oxytocin and lactating beef cows intra-nasally treated with saline. Twenty Bos taurus cows were randomly allocated by lactational status to one of four treatments, in a 2×2 factorial arrangement: 1) Non-lactating, saline (NL-S; n = 5); 2) Non-lactating, oxytocin (NL-OXT; n = 5); 3) Lactating, saline (L-S; n = 5); and 4) Lactating, oxytocin (L-OXT; n = 5). Two hours pre-treatment, cows were catheterized, moved to their appropriate chute and baseline blood samples were collected at -60, -45, -30, and 0 minutes before treatments were administered. Directly following the 0-minute sample, cows were administered their intra-nasal treatment via a mucosal atomization device. Subsequently, blood was collected at 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, and 120 minutes. Non-lactating cows had greater (P = 0.02) plasma cortisol concentration compared with lactating cows. There was no lactation by treatment interactions for either plasma cortisol (P = 0.55) or oxytocin (P = 0.89) concentration. Although a treatment by time interaction was identified for oxytocin (P < 0.0001), there was no main effect of lactation on plasma oxytocin concentration (P = 0.34). Similar oxytocin and dissimilar cortisol concentration in lactating and non-lactating cows indicate that oxytocin alone cannot be responsible for reduced plasma cortisol in lactating ruminants. Further investigations are needed to elucidate alternative mechanisms that may be involved in the stress hypo-responsive condition of lactating mammals.
Collapse
Affiliation(s)
- Brooklyn K. Wagner
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, United States of America
| | - Alejandro E. Relling
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, United States of America
| | - Justin D. Kieffer
- Department of Animal Sciences, The Ohio State University, Columbus, Ohio, United States of America
| | - Anthony J. Parker
- Department of Animal Sciences, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
35
|
Horrell ND, Acosta MC, Saltzman W. Plasticity of the paternal brain: Effects of fatherhood on neural structure and function. Dev Psychobiol 2021; 63:1499-1520. [PMID: 33480062 PMCID: PMC8295408 DOI: 10.1002/dev.22097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Care of infants is a hallmark of mammals. Whereas parental care by mothers is obligatory for offspring survival in virtually all mammals, fathers provide care for their offspring in only an estimated 5%-10% of genera. In these species, the transition into fatherhood is often accompanied by pronounced changes in males' behavioral responses to young, including a reduction in aggression toward infants and an increase in nurturant behavior. The onset of fatherhood can also be associated with sensory, affective, and cognitive changes. The neuroplasticity that mediates these changes is not well understood; however, fatherhood can alter the production and survival of new neurons; function and structure of existing neurons; morphology of brain structures; and neuroendocrine signaling systems. Although these changes are thought to promote infant care by fathers, very little evidence exists to support this hypothesis; in most cases, neither the mechanisms underlying neuroplasticity in fathers nor its functional significance is known. In this paper, we review the available data on the neuroplasticity that occurs during the transition into fatherhood. We highlight gaps in our knowledge and future directions that will provide key insights into how and why fatherhood alters the structure and functioning of the male brain.
Collapse
Affiliation(s)
| | - Melina C. Acosta
- Graduate Program in Neuroscience and Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA USA
| | - Wendy Saltzman
- Graduate Program in Neuroscience and Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA USA
| |
Collapse
|
36
|
Aberrant Early in Life Stimulation of the Stress-Response System Affects Emotional Contagion and Oxytocin Regulation in Adult Male Mice. Int J Mol Sci 2021; 22:ijms22095039. [PMID: 34068684 PMCID: PMC8126076 DOI: 10.3390/ijms22095039] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 02/07/2023] Open
Abstract
Results over the last decades have provided evidence suggesting that HPA axis dysfunction is a major risk factor predisposing to the development of psychopathological behaviour. This susceptibility can be programmed during developmental windows of marked neuroplasticity, allowing early-life adversity to convey vulnerability to mental illness later in life. Besides genetic predisposition, also environmental factors play a pivotal role in this process, through embodiment of the mother's emotions, or via nutrients and hormones transferred through the placenta and the maternal milk. The aim of the current translational study was to mimic a severe stress condition by exposing female CD-1 mouse dams to abnormal levels of corticosterone (80 µg/mL) in the drinking water either during the last week of pregnancy (PreCORT) or the first one of lactation (PostCORT), compared to an Animal Facility Rearing (AFR) control group. When tested as adults, male mice from PostCORT offspring and somewhat less the PreCORT mice exhibited a markedly increased corticosterone response to acute restraint stress, compared to perinatal AFR controls. Aberrant persistence of adolescence-typical increased interest towards novel social stimuli and somewhat deficient emotional contagion also characterised profiles in both perinatal-CORT groups. Intranasal oxytocin (0 or 20.0 µg/kg) generally managed to reduce the stress response and restore a regular behavioural phenotype. Alterations in density of glucocorticoid and mineralocorticoid receptors, oxytocin and µ- and κ-opioid receptors were found. Changes differed as a function of brain areas and the specific age window of perinatal aberrant stimulation of the HPA axis. Present results provided experimental evidence in a translational mouse model that precocious adversity represents a risk factor predisposing to the development of psychopathological behaviour.
Collapse
|
37
|
Gerasimenko M, Lopatina O, Munesue S, Harashima A, Yokoyama S, Yamamoto Y, Higashida H. Receptor for advanced glycation end-products (RAGE) plays a critical role in retrieval behavior of mother mice at early postpartum. Physiol Behav 2021; 235:113395. [PMID: 33757778 DOI: 10.1016/j.physbeh.2021.113395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/11/2022]
Abstract
Receptor for advanced glycation end-products (RAGE) is a pattern recognition molecule belonging to the immunoglobulin superfamily, and it plays a role in the remodeling of endothelial cells under pathological conditions. Recently, it was shown that RAGE is a binding protein for oxytocin (OT) and a transporter of OT to the brain on neurovascular endothelial cells via blood circulation. Deletion of the mouse RAGE gene, Ager (RAGE KO), induces hyperactivity in male mice. Impairment of pup care by mother RAGE KO mice after stress exposure results in the death of neonates 1-2 days after pup birth. Therefore, to understand the role of RAGE during the postpartum period, this study aims to examine parental behavior in female RAGE KO mice and ultrasonic vocalizations in pups. RAGE KO mothers without stress before delivery raised their pups and displayed hyperactivity at postpartum day (PPD) 3. KO dams showed impaired retrieval or interaction behavior after additional stress, such as body restraint stress or exposure to a novel environment, but such impaired behavior disappeared at PPD 7. Postnatal day 3 pups emitted ultrasonic vocalizations at >60 kHz as a part of the mother-pup relationship, but the number and category of calls by RAGE KO pups were significantly lower than wild-type pups. The results indicate that RAGE is important in the manifestation of normal parental behavior in dams and for receiving maternal care by mouse pups; moreover, brain OT recruited by RAGE plays a role in damping of signals of additional external stress and endogenous stress during the early postpartum period. Thus, RAGE-dependent OT may be critical for initiating and maintaining the normal mother-child relationship.
Collapse
Affiliation(s)
- Maria Gerasimenko
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan.
| | - Olga Lopatina
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russian Federation
| | - Seiichi Munesue
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Ai Harashima
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Shigeru Yokoyama
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan
| | - Yasuhiko Yamamoto
- Department of Biochemistry and Molecular Vascular Biology, Kanazawa University Graduate School of Medical Sciences, Kanazawa 920-8640, Japan
| | - Haruhiro Higashida
- Department of Basic Research on Social Recognition and Memory, Research Center for Child Mental Development, Kanazawa University, Kanazawa 920-8640, Japan; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, and Department of Biochemistry, Krasnoyarsk State Medical University named after Prof. V. F. Voino-Yasentsky, Krasnoyarsk 660022, Russian Federation.
| |
Collapse
|
38
|
A Scientometric Approach to Review the Role of the Medial Preoptic Area (MPOA) in Parental Behavior. Brain Sci 2021; 11:brainsci11030393. [PMID: 33804634 PMCID: PMC8003755 DOI: 10.3390/brainsci11030393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Research investigating the neural substrates underpinning parental behaviour has recently gained momentum. Particularly, the hypothalamic medial preoptic area (MPOA) has been identified as a crucial region for parenting. The current study conducted a scientometric analysis of publications from 1 January 1972 to 19 January 2021 using CiteSpace software to determine trends in the scientific literature exploring the relationship between MPOA and parental behaviour. In total, 677 scientific papers were analysed, producing a network of 1509 nodes and 5498 links. Four major clusters were identified: “C-Fos Expression”, “Lactating Rat”, “Medial Preoptic Area Interaction” and “Parental Behavior”. Their content suggests an initial trend in which the properties of the MPOA in response to parental behavior were studied, followed by a growing attention towards the presence of a brain network, including the reward circuits, regulating such behavior. Furthermore, while attention was initially directed uniquely to maternal behavior, it has recently been extended to the understanding of paternal behaviors as well. Finally, although the majority of the studies were conducted on rodents, recent publications broaden the implications of previous documents to human parental behavior, giving insight into the mechanisms underlying postpartum depression. Potential directions in future works were also discussed.
Collapse
|
39
|
Kim P. How stress can influence brain adaptations to motherhood. Front Neuroendocrinol 2021; 60:100875. [PMID: 33038383 PMCID: PMC7539902 DOI: 10.1016/j.yfrne.2020.100875] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Research shows that a woman's brain and body undergo drastic changes to support her transition to parenthood during the perinatal period. The presence of this plasticity suggests that mothers' brains may be changed by their experiences. Exposure to severe stress may disrupt adaptive changes in the maternal brain and further impact the neural circuits of stress regulation and maternal motivation. Emerging literature of human mothers provides evidence that stressful experience, whether from the past or present environment, is associated with altered responses to infant cues in brain circuits that support maternal motivation, emotion regulation, and empathy. Interventions that reduce stress levels in mothers may reverse the negative impact of stress exposure on the maternal brain. Finally, outstanding questions regarding the timing, chronicity, types, and severity of stress exposure, as well as study design to identify the causal impact of stress, and the role of race/ethnicity are discussed.
Collapse
Affiliation(s)
- Pilyoung Kim
- Department of Psychology, University of Denver, Denver, CO, United States.
| |
Collapse
|
40
|
Scarola S, Kent M, Neal S, Trejo JP, Bardi M, Lambert K. Postpartum environmental challenges alter maternal responsiveness and offspring development. Horm Behav 2020; 122:104761. [PMID: 32330549 DOI: 10.1016/j.yhbeh.2020.104761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/11/2020] [Accepted: 04/17/2020] [Indexed: 12/21/2022]
Abstract
Because many threats exist in an animal's natural habitat, it is important to understand the impact of environmental challenges on maternal-offspring interactions and outcomes. In the current study, a rodent model incorporating the presence of restricted resources and an environmental threat (e.g. predator-related odors and sounds) was investigated. Specifically, pregnant females were assigned to one of four treatments: standard resources, without threat (SR; n = 7); standard resources plus threat (SR-T; n = 8); restricted resources, without threat (RR; n = 7); and restricted resources plus threat (RR-T; n = 6). Maternal rats were moved into the assigned conditions on postnatal day 2 and remained until pups were weaned. Following a standard pup retrieval task on postnatal days 2 and 6, maternal rats were exposed to a retrieval challenge task on postnatal day 8 in which each rat had to traverse a novel barrier to retrieve pups. For neurobiological measures of stress/resilience responsiveness, fecal samples were collected for detection of corticosterone and DHEA metabolites; additionally, immunohistochemistry was conducted on the maternal brains to indicate the presence of Neuropeptide Y (NPY) and Brain Derived Neurotrophic Factor (BDNF) immunoreactivity in the hippocampus, amygdala and hypothalamus. Pup development measures, including body weight and tail length, were also collected. Results suggest that maternal rats with restricted resources exhibited diminished maternal responsiveness that resulted in altered pup development measures; further, restricted resource rats exhibited endocrine markers of compromised emotional resilience (lower DHEA) and decreased neural markers of neuroplasticity (BDNF) and emotional resilience (NPY). Interestingly, predator threat affected various aspects of maternal-pup interactions but had no effect on neurobiological variables, suggesting that restricted resources had a more negative impact on maternal-related outcomes than the presence of predator threat.
Collapse
Affiliation(s)
- Samantha Scarola
- Department of Psychology, Behavioral Neuroscience Program, Randolph Macon College, Ashland, VA 23005, USA
| | - Molly Kent
- Department of Biology, Virginia Military Institute, Lexington, VA 25440, USA
| | - Steven Neal
- Department of Psychology, Behavioral Neuroscience Program, Randolph Macon College, Ashland, VA 23005, USA
| | - Jose Perdomo Trejo
- Department of Psychology, Behavioral Neuroscience Program, Randolph Macon College, Ashland, VA 23005, USA
| | - Massimo Bardi
- Department of Psychology, Behavioral Neuroscience Program, Randolph Macon College, Ashland, VA 23005, USA
| | - Kelly Lambert
- Department of Psychology, University of Richmond, Richmond, VA 23173, USA.
| |
Collapse
|
41
|
Baracz SJ, Everett NA, Robinson KJ, Campbell GR, Cornish JL. Maternal separation changes maternal care, anxiety-like behaviour and expression of paraventricular oxytocin and corticotrophin-releasing factor immunoreactivity in lactating rats. J Neuroendocrinol 2020; 32:e12861. [PMID: 32490585 DOI: 10.1111/jne.12861] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/31/2020] [Accepted: 05/02/2020] [Indexed: 02/06/2023]
Abstract
The early postnatal period is a time of tremendous change for the dam and her offspring. During this time, environmental insults such as repeated stress exposure can have detrimental effects. In research that has focused on the effect of postnatal stress exposure on the dams, conflicting changes in maternal care and anxiety-like behaviour have been reported. Additionally, changes to hypothalamic neuropeptides that are crucially involved in the transition to motherhood and stress regulation, namely oxytocin and corticotrophin-releasing factor (CRF), have not been examined. Accordingly, the present study aimed to determine (i) whether repeated postpartum stress increases engagement in maternal care behaviours and anxiety-like behaviour and (ii) whether these behavioural changes correspond with changes to CRF- or oxytocin-immunoreactive (-IR) cells in the paraventricular nucleus (PVN) of the hypothalamus. A non-lactating group was also included to control for the effects of lactation on anxiety and the hypothalamic neuroendocrine system. Following the birth of their litters, Long-Evans dams were separated from their pups from postnatal day (PND) 1 to PND21 for either 15 minutes (maternal separation [MS]15) or 6 hours (MS360). Maternal behaviours were recorded for 30 minutes on select PNDs following the separation. On PND22, dams were exposed to the elevated plus maze, brains were collected, and immunofluorescence analysis of PVN oxytocin- and CRF-IR cells was conducted. Our findings demonstrate that prolonged maternal separation altered typical maternal behaviours and reduced anxiety relative to MS15 dams. At the cellular level, oxytocin-IR cells in the caudal PVN were reduced in MS360 dams to a level similar to that in non-lactating controls, and PVN CRF-IR cells were reduced relative to both MS15 and non-lactating controls. Taken together, these data reveal the behavioural and neuronal changes that occur in the mother dam following repeated postnatal stress exposure.
Collapse
Affiliation(s)
- Sarah J Baracz
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
- Centre for Emotional Health, Macquarie University, North Ryde, NSW, Australia
| | - Nicholas A Everett
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| | | | - Gemma R Campbell
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
| | - Jennifer L Cornish
- Department of Psychology, Macquarie University, North Ryde, NSW, Australia
- Centre for Emotional Health, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
42
|
Zeev-Wolf M, Levy J, Ebstein RP, Feldman R. Cumulative Risk on Oxytocin-Pathway Genes Impairs Default Mode Network Connectivity in Trauma-Exposed Youth. Front Endocrinol (Lausanne) 2020; 11:335. [PMID: 32528417 PMCID: PMC7256187 DOI: 10.3389/fendo.2020.00335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/29/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Although the default mode network (DMN) is a core network essential for brain functioning, little is known about its developmental trajectory, particularly on factors associated with its coherence into a functional network. In light of adult studies indicating DMN's susceptibility to stress-related conditions, we examined links between variability on oxytocin-pathway genes and DMN connectivity in youth exposed to chronic war-related trauma Methods: Following a cohort of war-exposed children from early childhood, we imaged the brains of 74 preadolescents (age 11-13 years; 39 war-exposed) during rest using magnetoencephalography (MEG). A cumulative risk index on oxytocin-pathway genes was constructed by combining single nucleotide polymorphisms on five genes previously linked with social deficits and psychopathology; OXTR rs1042778, OXTR rs2254298, OXTRrs53576, CD38 rs3796863, and AVPR1A RS3. Avoidant response to trauma reminders in early childhood and anxiety disorders in late childhood were assessed as predictors of disruptions to DMN theta connectivity. Results: Higher vulnerability on oxytocin-pathway genes predicted greater disruptions to DMN theta connectivity. Avoidant symptoms in early childhood and generalized anxiety disorder in later childhood were related to impaired DMN connectivity. In combination, stress exposure, oxytocin-pathway genes, and stress-related symptoms explained 24.6% of the variance in DMN connectivity, highlighting the significant effect of stress on the maturing brain. Conclusions: Findings are the first to link the oxytocin system and maturation of the DMN, a core system sustaining autobiographical memories, alteration of intrinsic and extrinsic attention, mentalization, and sense of self. Results suggest that oxytocin may buffer the effects of chronic early stress on the DMN, particularly theta rhythms that typify the developing brain.
Collapse
Affiliation(s)
- Maor Zeev-Wolf
- Department of Education, Zlotowski Center for Neuroscience, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Jonathan Levy
- Interdiscilinary Center Herzliya, Baruch Ivcher School of Psychology, Herzliya, Israel
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Richard P. Ebstein
- Department of Psychology, National University of Singapore, Singapore, Singapore
| | - Ruth Feldman
- Interdiscilinary Center Herzliya, Baruch Ivcher School of Psychology, Herzliya, Israel
- Child Study Center, Yale University, New Haven, CT, United States
| |
Collapse
|
43
|
Harris BN. Stress hypothesis overload: 131 hypotheses exploring the role of stress in tradeoffs, transitions, and health. Gen Comp Endocrinol 2020; 288:113355. [PMID: 31830473 DOI: 10.1016/j.ygcen.2019.113355] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Stress is ubiquitous and thus, not surprisingly, many hypotheses and models have been created to better study the role stress plays in life. Stress spans fields and is found in the literature of biology, psychology, psychophysiology, sociology, economics, and medicine, just to name a few. Stress, and the hypothalamic-pituitaryadrenal/interrenal (HPA/I) axis and sympathetic nervous system (SNS), are involved in a multitude of behaviors and physiological processes, including life-history and ecological tradeoffs, developmental transitions, health, and survival. The goal of this review is to highlight and summarize the large number of available hypotheses and models, to aid in comparative and interdisciplinary thinking, and to increase reproducibility by a) discouraging hypothesizing after results are known (HARKing) and b) encouraging a priori hypothesis testing. For this review I collected 214 published hypotheses or models dealing broadly with stress. In the main paper, I summarized and categorized 131 of those hypotheses and models which made direct connections among stress and/or HPA/I and SNS, tradeoffs, transitions, and health. Of those 131, the majority made predictions about reproduction (n = 43), the transition from health to disease (n = 38), development (n = 23), and stress coping (n = 18). Additional hypotheses were classified as stage-spanning or models (n = 37). The additional 83 hypotheses found during searches were tangentially related, or pertained to immune function or oxidative stress, and these are listed separately. Many of the hypotheses share underlying rationale and suggest similar, if not identical, predictions, and are thus not mutually exclusive; some hypotheses spanned classification categories. Some of the hypotheses have been tested multiple times, whereas others have only been examined a few times. It is the hope that multi-disciplinary stress researchers will begin to harmonize their naming of hypotheses in the literature so as to build a clearer picture of how stress impacts various outcomes across fields. The paper concludes with some considerations and recommendations for robust testing of stress hypotheses.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
44
|
Marefati N, Mokhtari-Zaer A, Roghani M, Karimian SM, Khamse S, Fatima S, Ebrahimnia P, Sadeghipour HR. Lactation ameliorates neurobehavioral outcomes in the ischemic rat dams. J Matern Fetal Neonatal Med 2020; 35:852-860. [PMID: 32102575 DOI: 10.1080/14767058.2020.1731796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Aims: Cardiac arrest and stroke as a life-threatening event that may occur in throughout the female life, especially during pregnancy or after delivery. Previous studies demonstrated that cerebral ischemia during pregnancy or the puerperium is a rare occurrence but is associated with significant mortality and high morbidity. This study was designed to assess the effects of pregnancy and lactation on behavioral deficits, neural density, and angiogenesis in rat dams undergoing global ischemia.Materials and methods: Thirty-two female Wistar rats were divided into four groups: virgin-Sham (Vir-Sham) group, virgin-ischemic (Vir-Isc) group, pregnancy-lactation-sham (P-L-Sham) group, and pregnancy-lactation-ischemic (P-L-Isc) group. Global brain ischemia was induced in ischemic groups by using the 2-vessel occlusion (2-VO) model at the end of lactation phase. Seven days after 2-VO, anxiety-like signals and passive avoidance memory tests were assessed in animals.Key findings: We found that the lactation significantly improved memory and reduced anxiety-like signals in P-L-Isc group as compared with Vir-Isc group. Moreover, angiogenesis and neural density significantly increased in the P-L-Isc group as compared with the Vir-Isc group.Significance: This finding for the first time indicated that lactation protects the maternal brain against ischemic insult partly through promoting angiogenesis and neurogenesis.
Collapse
Affiliation(s)
- Narges Marefati
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mokhtari-Zaer
- Department of Physiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Roghani
- Neurophysiology Research Center, Shahed University, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Safoura Khamse
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sulail Fatima
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Ebrahimnia
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Valdes V, Zorrilla CD, Gabard-Durnam L, Muler-Mendez N, Rahman ZI, Rivera D, Nelson CA. Cognitive Development of Infants Exposed to the Zika Virus in Puerto Rico. JAMA Netw Open 2019; 2:e1914061. [PMID: 31651970 PMCID: PMC6822087 DOI: 10.1001/jamanetworkopen.2019.14061] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Existing research has established a causal link between Zika virus (ZIKV) infection and severe birth defects or consequent health impairments; however, more subtle cognitive impairments have not been explored. OBJECTIVE To determine whether infants of mothers with at least 1 positive ZIKV test show differences in cognitive scores at ages 3 to 6 months and ages 9 to 12 months. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study recruited infants enrolled in existing ZIKV study cohorts associated with the Maternal-Infant Studies Center and the Puerto Rico Clinical and Translational Research Consortium at the University of Puerto Rico and from the broader San Juan metropolitan area. The study took place at the Puerto Rico Clinical and Translational Research Consortium at the University of Puerto Rico. Participants were recruited through convenience sampling if their mothers underwent ZIKV testing prenatally and were at the target ages during the study period. Infants who were born preterm (<36 weeks' gestational age), with low birth weight (<2500 g), or with a known genetic disorder were excluded. Infants were tested from ages 3 to 6 months or ages 9 to 12 months from May 2018 to April 2019. Data analysis was performed from March to April 2019. EXPOSURES Zika virus status was measured prenatally and in the early postnatal period using real-time polymerase chain reaction or a ZIKV IgM antibody capture enzyme-linked immunosorbent assay. MAIN OUTCOMES AND MEASURES The infants' development was assessed using the Mullen Scales of Early Learning (translated to Spanish and adapted for Puerto Rico), and assessors were blinded to each infant's ZIKV status. RESULTS A total of 65 study participants were included. The mean (SD) age of the infants at the time of cognitive testing was 8.98 (3.19) months. Most of the infants were white (55 [84.6%]) and Puerto Rican (64 [98.5%]); 38 of the infants were male (58.5%). General cognitive and domain-specific scores did not differ significantly between prenatally ZIKV-positive and ZIKV-negative infants except for receptive language score (mean difference = 5.52; t = 2.10; P = .04). Exposure to ZIKV (B = -5.69; β = -0.26 [95% CI -11.01 to -0.36]; P = .04) and a measure of Hurricane Maria exposure (time without water, B = -0.05; β = -0.27 [95% CI, -0.10 to -0.01]; P = .03) were both independently and significantly associated with receptive language scores after adjusting for key confounders. CONCLUSIONS AND RELEVANCE Although infants exposed to ZIKV prenatally showed unaffected motor and visually mediated cognitive development, they did show deficits in receptive language scores. Receptive language skills were also associated with the degree of exposure to Hurricane Maria, with those who spent more time without water after the hurricane having lower receptive language scores.
Collapse
Affiliation(s)
- Viviane Valdes
- Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Carmen D. Zorrilla
- Obstetrics and Gynecology, Maternal-Infant Studies Center, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Laurel Gabard-Durnam
- Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Natalia Muler-Mendez
- Obstetrics and Gynecology, Maternal-Infant Studies Center, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Zarin Ibnat Rahman
- Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diego Rivera
- Obstetrics and Gynecology, Maternal-Infant Studies Center, University of Puerto Rico School of Medicine, Medical Sciences Campus, San Juan, Puerto Rico
| | - Charles A. Nelson
- Laboratories of Cognitive Neuroscience, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Graduate School of Education, Cambridge, Massachusetts
| |
Collapse
|
46
|
Opala EA, Verlezza S, Long H, Rusu D, Woodside B, Walker CD. Experience of Adversity during a First Lactation Modifies Prefrontal Cortex Morphology in Primiparous Female Rats: Lack of Long Term Effects on a Subsequent Lactation. Neuroscience 2019; 417:95-106. [PMID: 31437474 DOI: 10.1016/j.neuroscience.2019.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
Reproductive experience is associated with morphological and functional plasticity in brain areas important for cognitive and emotional responses, including the infralimbic (IL) medial prefrontal cortex (mPFC). Here we examined whether suboptimal conditions during a first lactation could modify lactation-induced morphological IL mPFC changes, leading to alterations in stress responses and attention and whether any observed effects would persist into a second lactation. Reduced availability of bedding and nesting material (LB) was used to induce unfavorable conditions in primiparous (P) mothers. In normal bedding (NB) conditions, P mothers exhibited high spine number and density on postpartum day (PPD)10, which greatly decreased 2 weeks after weaning of their pups. In contrast, P-LB mothers had a lower spine number and density on PPD10, which markedly increased after weaning. LB exposure did not modify stress responsiveness to a ferret odor on PPD5 in primiparous or in multiparous (M) females. Number of errors and trials to criterion in the attention set shifting task were not modified by a history of adversity in multiparous females, although this group tended to exhibit higher attentional abilities than M-NB females. These results suggest that adversity acutely reduces morphological plasticity in the maternal mPFC during lactation, an effect that is not associated with significant changes in stress responses and/or glucocorticoid production. Medial PFC morphological changes induced by LB subside during a subsequent lactation as does the effect of maternity itself.
Collapse
Affiliation(s)
- Emily A Opala
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Silvanna Verlezza
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada
| | - Hong Long
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada
| | - Denisa Rusu
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada
| | - Barbara Woodside
- Center for Studies in Behavioral Neurobiology, Concordia University, 1455 de Maisonneuve Blvd W, Montreal, QC H3G 1M8, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute, 6875 Lasalle Blvd, Montreal, Quebec, QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Canada.
| |
Collapse
|
47
|
Dufford AJ, Erhart A, Kim P. Maternal brain resting-state connectivity in the postpartum period. J Neuroendocrinol 2019; 31:e12737. [PMID: 31106452 PMCID: PMC6874214 DOI: 10.1111/jne.12737] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 02/06/2023]
Abstract
In the postpartum period, the maternal brain experiences both structural and functional plasticity. Although we have a growing understanding of the responses of the human maternal brain to infant stimuli, little is known about the intrinsic connectivity among those regions during the postpartum months. Resting-state functional connectivity (rsFC) provides a measure of the functional architecture of the brain based upon intrinsic functional connectivity (ie, the temporal correlation in blood oxygenation level dependent signal when the brain is not engaged in a specific task). In the present study, we used resting-state functional magnetic resonance imaging to examine how later postpartum months are associated with rsFC and maternal behaviours. We recruited a sample of 47 socioeconomically diverse first-time mothers with singleton pregnancies. Because the amygdala has been shown to play a critical role in maternal behaviours in the postpartum period, this was chosen as the seed for a seed-based correlation analysis. For the left amygdala, later postpartum months were associated with greater connectivity with the anterior cingulate gyrus, left nucleus accumbens, right caudate and left cerebellum (P < 0.05, false discovery rate corrected). Furthermore, in an exploratory analysis, we observed indications that rsFC between the left amygdala and left nucleus accumbens was positively associated with maternal structuring during a mother child-interaction. In addition, later postpartum months were associated with greater connectivity between the right amygdala and the bilateral caudate and right putamen. Overall, we provide evidence of relationships between postpartum months and rsFC in the regions involved in salience detection and regions involved in maternal motivation. Greater connectivity between the amygdala and nucleus accumbens may play a role in positive maternal behaviours.
Collapse
Affiliation(s)
| | - Andrew Erhart
- Department of Psychology, University of Denver, Denver, CO, USA 80208
| | - Pilyoung Kim
- Department of Psychology, University of Denver, Denver, CO, USA 80208
| |
Collapse
|
48
|
Zhao M, Harris BN, Nguyen CTY, Saltzman W. Effects of single parenthood on mothers' behavior, morphology, and endocrine function in the biparental California mouse. Horm Behav 2019; 114:104536. [PMID: 31153926 DOI: 10.1016/j.yhbeh.2019.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/31/2019] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
Motherhood is energetically costly for mammals and is associated with pronounced changes in mothers' physiology, morphology and behavior. In ~5% of mammals, fathers assist their mates with rearing offspring and can enhance offspring survival and development. Although these beneficial consequences of paternal care can be mediated by direct effects on offspring, they might also be mediated indirectly, through beneficial effects on mothers. We tested the hypothesis that fathers in the monogamous, biparental California mouse (Peromyscus californicus) reduce the burden of parental care on their mates, and therefore, that females rearing offspring with and without assistance from their mates will show differences in endocrinology, morphology and behavior, as well as in the survival and development of their pups. We found that pups' survival and development in the lab did not differ between those raised by a single mother and those reared by both mother and father. Single mothers spent more time in feeding behaviors than paired mothers. Both single and paired mothers had higher lean mass and/or lower fat mass and showed more anxiety-like behavior in open-field tests and tail-suspension tests, compared to non-breeding females. Single mothers had higher body-mass-corrected liver and heart masses, but lower ovarian and uterine masses, than paired mothers and/or non-breeding females. Mass of the gastrointestinal tract did not differ between single and paired mothers, but single mothers had heavier gastrointestinal tract compared to non-breeding females. Single motherhood also induced a flattened diel corticosterone rhythm and a blunted corticosterone response to stress, compared to non-breeding conditions. These findings suggest that the absence of a mate induces morphological and endocrine changes in mothers, which might result from increased energetic demands of pup care and could potentially help maintain normal survival and development of pups.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States of America
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, United States of America
| | - Catherine T Y Nguyen
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States of America
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, United States of America.
| |
Collapse
|
49
|
Saboory E, Mohammadi S, Dindarian S, Mohammadi H. Prenatal stress and elevated seizure susceptibility: Molecular inheritable changes. Epilepsy Behav 2019; 96:122-131. [PMID: 31132613 DOI: 10.1016/j.yebeh.2019.04.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
Stressful episodes are common during early-life and may have a wide range of negative effects on both physical and mental status of the offspring. In addition to various neurobehavioral complications induced by prenatal stress (PS), seizure is a common complication with no fully explained cause. In this study, the association between PS and seizure susceptibility was reviewed focusing on sex differences and various underlying mechanisms. The role of drugs in the initiation of seizure and the effects of PS on the nervous system that prone the brain for seizure, especially the hypothalamic-pituitary-adrenal (HPA) axis, are also discussed in detail by reviewing the papers studying the effect of PS on glutamatergic, gamma-aminobutyric acid (GABA)ergic, and adrenergic systems in the context of seizure and epilepsy. Finally, epigenetic changes in epilepsy are described, and the underlying mechanisms of this change are expanded. As the effects of PS may be life-lasting, it is possible to prevent future psychiatric and behavioral disorders including epilepsy by preventing avoidable PS risk factors.
Collapse
Affiliation(s)
- Ehsan Saboory
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sedra Mohammadi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sina Dindarian
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hozan Mohammadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
50
|
Keller M, Vandenberg LN, Charlier TD. The parental brain and behavior: A target for endocrine disruption. Front Neuroendocrinol 2019; 54:100765. [PMID: 31112731 PMCID: PMC6708493 DOI: 10.1016/j.yfrne.2019.100765] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/15/2019] [Accepted: 05/17/2019] [Indexed: 12/25/2022]
Abstract
During pregnancy, the sequential release of progesterone, 17β-estradiol, prolactin, oxytocin and placental lactogens reorganize the female brain. Brain structures such as the medial preoptic area, the bed nucleus of the stria terminalis and the motivation network including the ventral tegmental area and the nucleus accumbens are reorganized by this specific hormonal schedule such that the future mother will be ready to provide appropriate care for her offspring right at parturition. Any disruption to this hormone pattern, notably by exposures to endocrine disrupting chemicals (EDC), is therefore likely to affect the maternal brain and result in maladaptive maternal behavior. Development effects of EDCs have been the focus of intense study, but relatively little is known about how the maternal brain and behavior are affected by EDCs. We encourage further research to better understand how the physiological hormone sequence prepares the mother's brain and how EDC exposure could disturb this reorganization.
Collapse
Affiliation(s)
- Matthieu Keller
- Laboratoire de Physiologie de la Reproduction & des Comportements, UMR 7247 INRA/CNRS/Université de Tours/IFCE, Nouzilly, France
| | - Laura N Vandenberg
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|