1
|
Ding L, Hao J, Luo X, Zhu W, Wu Z, Qian Y, Hu F, Liu T, Ruan X, Li S, Li J, Chen Z. The Kv1.3 channel-inhibitory toxin BF9 also displays anticoagulant activity via inhibition of factor XIa. Toxicon 2018; 152:9-15. [PMID: 30012473 DOI: 10.1016/j.toxicon.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 01/13/2023]
Abstract
The Kv1.3 channel plays potential roles in immune, inflammation and coagulation system. Many studies showed that Kv1.3 channel inhibitors have immunosuppressive and anti-inflammatory activities, but no Kv1.3 channel inhibitors have been found to have anticoagulation activities. Here, based on our previous work about Kv1.3 channel toxin peptide inhibitors, we first attempt to test anticoagulation activities of four known venom-derived Kv1.3 channel inhibitors with different structural folds: BmKTX with CSα/β structural fold, OmTx3 with CSα/α structural fold, BF9 with Kuntz-type structural fold, and SjAPI-2 with Ascaris-type structural fold. Our results showed that BmKTX and OmTx3 have no activities towards both intrinsic and extrinsic coagulation pathway, SjAPI-2 just has weak activity towards intrinsic coagulation pathway, and BF9 has potent activity towards intrinsic coagulation pathway with no apparent effect on extrinsic coagulation pathway. Enzyme and inhibitor reaction kinetics experiments further showed that BF9 inhibited intrinsic coagulation pathway-associated coagulation factor XIa, but have no apparent effects on common coagulation pathway coagulation factor IIa. Structure-activity relationship showed that Gly14, Asn17, Ala18 and Ile20 of BF9 are main residues involved in the inhibiting effect on factor XIa. To the best of our knowledge, BF9 is the first anticoagulant with Kv1.3 channel inhibitory activity. Together, our present studies found the first dual functional peptides with Kv1.3 channel and coagulation factor XIa inhibitory activities, and provided a new molecular template for the lead drug discovery towards immune and thrombosis-associated human diseases.
Collapse
Affiliation(s)
- Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China; Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Hubei, China
| | - Jinbo Hao
- Department of Clinical Laboratory, Shiyan Occupational Disease Hospital, Hubei, China
| | - Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Zheng Wu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Yi Qian
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Fangfang Hu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Tianli Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Xuzhi Ruan
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Shan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Jian Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Hubei, China.
| |
Collapse
|
2
|
Wu J, Zhong D, Wu X, Sha M, Kang L, Ding Z. Voltage-gated potassium channel Kv1.3 is highly expressed in human osteosarcoma and promotes osteosarcoma growth. Int J Mol Sci 2013; 14:19245-56. [PMID: 24065104 PMCID: PMC3794831 DOI: 10.3390/ijms140919245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/22/2013] [Accepted: 09/10/2013] [Indexed: 01/28/2023] Open
Abstract
Deregulation of voltage-gated potassium channel subunit Kv1.3 has been reported in many tumors. Kv1.3 promotes tumorigenesis by enhancing cell proliferation while suppressing apoptosis. However, the expression and function of Kv1.3 in osteosarcoma are unknown. In the present study, we detected the expression of Kv1.3 in human osteosarcoma cells and tissues by RT-PCR, Western blot and immunohistochemistry. We further examined cell proliferation and apoptosis in osteosarcoma MG-63 cells and xenografts following knockdown of Kv1.3 by short hairpin RNA (shRNA). We found that Kv1.3 was upregulated in human osteosarcoma. Knockdown of Kv1.3 significantly suppressed cell proliferation and increased apoptosis as demonstrated by enhanced cleavage of poly (ADP-ribose) polymerase (PARP) and the activation of Caspase-3/7. Furthermore, adenovirus delivered shRNA targeting Kv1.3 significantly inhibited the growth of MG-63 xenografts. Taken together, our results suggest that Kv1.3 is a novel molecular target for osterosarcoma therapy.
Collapse
Affiliation(s)
- Jin Wu
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mails: (J.W.); (M.S.)
| | - Daixing Zhong
- Department of Thoracic Surgery, the Affiliated Tangdu Hospital of Fourth Military Medical University, Xi’an 710038, China; E-Mail:
| | - Xinyu Wu
- Department of Neurology, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mail:
| | - Mo Sha
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mails: (J.W.); (M.S.)
| | - Liangqi Kang
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mails: (J.W.); (M.S.)
- Authors to whom correspondence should be addressed: E-Mails: (L.K.); (Z.D.); Tel./Fax: +86-596-2931538 (L.K. & Z.D.)
| | - Zhenqi Ding
- Department of Orthopaedics, the Affiliated Southeast Hospital of Xiamen University, Zhangzhou 363000, China; E-Mails: (J.W.); (M.S.)
- Authors to whom correspondence should be addressed: E-Mails: (L.K.); (Z.D.); Tel./Fax: +86-596-2931538 (L.K. & Z.D.)
| |
Collapse
|