1
|
Rosenbaek LL, Rizzo F, MacAulay N, Staub O, Fenton RA. Functional assessment of sodium chloride cotransporter NCC mutants in polarized mammalian epithelial cells. Am J Physiol Renal Physiol 2017; 313:F495-F504. [DOI: 10.1152/ajprenal.00088.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 12/21/2022] Open
Abstract
The thiazide-sensitive sodium chloride cotransporter NCC is important for maintaining serum sodium (Na+) and, indirectly, serum potassium (K+) levels. Functional studies on NCC have used cell lines with native NCC expression, transiently transfected nonpolarized cell lines, or Xenopus laevis oocytes. Here, we developed the use of polarized Madin-Darby canine kidney type I (MDCKI) mammalian epithelial cell lines with tetracycline-inducible human NCC expression to study NCC activity and membrane abundance in the same system. In radiotracer assays, induced cells grown on filters had robust thiazide-sensitive and chloride dependent sodium-22 (22Na) uptake from the apical side. To minimize cost and maximize throughput, assays were modified to use cells grown on plastic. On plastic, cells had similar thiazide-sensitive 22Na uptakes that increased following preincubation of cells in chloride-free solutions. NCC was detected in the plasma membrane, and both membrane abundance and phosphorylation of NCC were increased by incubation in chloride-free solutions. Furthermore, in cells exposed for 15 min to low or high extracellular K+, the levels of phosphorylated NCC increased and decreased, respectively. To demonstrate that the system allows rapid and systematic assessment of mutated NCC, three phosphorylation sites in NCC were mutated, and NCC activity was examined. 22Na fluxes in phosphorylation-deficient mutants were reduced to baseline levels, whereas phosphorylation-mimicking mutants were constitutively active, even without chloride-free stimulation. In conclusion, this system allows the activity, cellular localization, and abundance of wild-type or mutant NCC to be examined in the same polarized mammalian expression system in a rapid, easy, and low-cost fashion.
Collapse
Affiliation(s)
- Lena L. Rosenbaek
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Federica Rizzo
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
- National Centre of Competence in Research “Kidney.ch,” Lausanne, Switzerland
| | - Nanna MacAulay
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Olivier Staub
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
- National Centre of Competence in Research “Kidney.ch,” Lausanne, Switzerland
| | - Robert A. Fenton
- InterPrET Center, Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Functional Recovery of AQP2 Recessive Mutations Through Hetero-Oligomerization with Wild-Type Counterpart. Sci Rep 2016; 6:33298. [PMID: 27641679 PMCID: PMC5027563 DOI: 10.1038/srep33298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 07/25/2016] [Indexed: 12/15/2022] Open
Abstract
Aquaporin-2 (AQP2) is a homotetrameric water channel responsible for the final water reuptake in the kidney. Mutations in the protein induce nephrogenic diabetes insipidus (NDI), which challenges the water balance by producing large urinary volumes. Although recessive AQP2 mutations are believed to generate non-functional and monomeric proteins, the literature identifies several mild mutations which suggest the existence of mixed wt/mut tetramers likely to carry function in heterozygotes. Using Xenopus oocytes, we tested this hypothesis and found that mild mutants (V24A, D150E) can associate with wt-AQP2 in mixed heteromers, providing clear functional gain in the process (62 ± 17% and 63 ± 17% increases, respectively), conversely to the strong monomeric R187C mutant which fails to associate with wt-AQP2. In kidney cells, both V24A and D150E display restored targeting while R187C remains in intracellular stores. Using a collection of mutations to expand recovery analyses, we demonstrate that inter-unit contacts are central to this recovery process. These results not only present the ground data for the functional recovery of recessive AQP2 mutants through heteromerization, which prompt to revisit the accepted NDI model, but more importantly describe a general recovery process that could impact on all multimeric systems where recessive mutations are found.
Collapse
|
3
|
Hardege I, Xu S, Gordon RD, Thompson AJ, Figg N, Stowasser M, Murrell-Lagnado R, O'Shaughnessy KM. Novel Insertion Mutation in KCNJ5 Channel Produces Constitutive Aldosterone Release From H295R Cells. Mol Endocrinol 2015; 29:1522-30. [PMID: 26340408 DOI: 10.1210/me.2015-1195] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Primary aldosteronism accounts for 5%-10% of hypertension and in a third of cases is caused by autonomous aldosterone production by adenomas (APA). Somatic mutations in the potassium channel encoded by KCNJ5 have been detected in surgically removed APAs. To better understand the role of these mutations, we resequenced the KCNJ5 channel in a large Australian primary aldosteronism cohort. KCNJ5 mutations were detected in 37 APAs (45% of the cohort), including previously reported E145Q (n = 3), G151R (n = 20), and L168R (n = 13) mutations. In addition, we found a novel 12-bp in-frame insertion mutation (c.414-425dupGCTTTCCTGTTC, A139_F142dup) that duplicates the AFLF sequence in the pore helix upstream of the selectivity filter. Expressed in Xenopus oocytes, the A139_F142dup mutation depolarized the oocytes and produced a G-protein-sensitive Na(+) current with altered K(+) selectivity and loss of inward rectification but retained Ba(2+) sensitivity. Transfected into H295R cells, A139_F142dup increased basal aldosterone release 2.3-fold over the wild type. This was not increased further by incubation with angiotensin II. Although the A139_F142dup mutant trafficked to the plasma membrane of H295R cells, it showed reduced tetramer stability and surface expression compared with the wild-type channel. This study confirms the frequency of somatic KCNJ5 mutations in APAs and the novel mutation identified (A139_F142dup) extend the phenotypic range of the known KCNJ5 APA mutations. Being located in the pore helix, it is upstream of the previously reported mutations and shares some features in common with selectivity filter mutants but additionally demonstrates insensitivity to angiotensin II and decreased channel stability.
Collapse
Affiliation(s)
- Iris Hardege
- Divisions of Experimental Medicine and Immunotherapeutics (I.H., K.M.O.) and Cardiovascular Medicine (N.F.), Department of Medicine, and Department of Pharmacology (A.J.T., R.M.-L.), University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and Endocrine Hypertension Research Centre (S.X., R.D.G., M.S.), University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane 4072, Australia
| | - Shengxin Xu
- Divisions of Experimental Medicine and Immunotherapeutics (I.H., K.M.O.) and Cardiovascular Medicine (N.F.), Department of Medicine, and Department of Pharmacology (A.J.T., R.M.-L.), University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and Endocrine Hypertension Research Centre (S.X., R.D.G., M.S.), University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane 4072, Australia
| | - Richard D Gordon
- Divisions of Experimental Medicine and Immunotherapeutics (I.H., K.M.O.) and Cardiovascular Medicine (N.F.), Department of Medicine, and Department of Pharmacology (A.J.T., R.M.-L.), University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and Endocrine Hypertension Research Centre (S.X., R.D.G., M.S.), University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane 4072, Australia
| | - Andrew J Thompson
- Divisions of Experimental Medicine and Immunotherapeutics (I.H., K.M.O.) and Cardiovascular Medicine (N.F.), Department of Medicine, and Department of Pharmacology (A.J.T., R.M.-L.), University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and Endocrine Hypertension Research Centre (S.X., R.D.G., M.S.), University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane 4072, Australia
| | - Nichola Figg
- Divisions of Experimental Medicine and Immunotherapeutics (I.H., K.M.O.) and Cardiovascular Medicine (N.F.), Department of Medicine, and Department of Pharmacology (A.J.T., R.M.-L.), University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and Endocrine Hypertension Research Centre (S.X., R.D.G., M.S.), University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane 4072, Australia
| | - Michael Stowasser
- Divisions of Experimental Medicine and Immunotherapeutics (I.H., K.M.O.) and Cardiovascular Medicine (N.F.), Department of Medicine, and Department of Pharmacology (A.J.T., R.M.-L.), University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and Endocrine Hypertension Research Centre (S.X., R.D.G., M.S.), University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane 4072, Australia
| | - Ruth Murrell-Lagnado
- Divisions of Experimental Medicine and Immunotherapeutics (I.H., K.M.O.) and Cardiovascular Medicine (N.F.), Department of Medicine, and Department of Pharmacology (A.J.T., R.M.-L.), University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and Endocrine Hypertension Research Centre (S.X., R.D.G., M.S.), University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane 4072, Australia
| | - Kevin M O'Shaughnessy
- Divisions of Experimental Medicine and Immunotherapeutics (I.H., K.M.O.) and Cardiovascular Medicine (N.F.), Department of Medicine, and Department of Pharmacology (A.J.T., R.M.-L.), University of Cambridge, Cambridge CB2 2QQ, United Kingdom; and Endocrine Hypertension Research Centre (S.X., R.D.G., M.S.), University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane 4072, Australia
| |
Collapse
|
4
|
Reimold FR, Balasubramanian S, Doroquez DB, Shmukler BE, Zsengeller ZK, Saslowsky D, Thiagarajah JR, Stillman IE, Lencer WI, Wu BL, Villalpando-Carrion S, Alper SL. Congenital chloride-losing diarrhea in a Mexican child with the novel homozygous SLC26A3 mutation G393W. Front Physiol 2015; 6:179. [PMID: 26157392 PMCID: PMC4477073 DOI: 10.3389/fphys.2015.00179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 05/27/2015] [Indexed: 12/15/2022] Open
Abstract
Congenital chloride diarrhea is an autosomal recessive disease caused by mutations in the intestinal lumenal membrane Cl−/HCO−3 exchanger, SLC26A3. We report here the novel SLC26A3 mutation G393W in a Mexican child, the first such report in a patient from Central America. SLC26A3 G393W expression in Xenopus oocytes exhibits a mild hypomorphic phenotype, with normal surface expression and moderately reduced anion transport function. However, expression of HA-SLC26A3 in HEK-293 cells reveals intracellular retention and greatly decreased steady-state levels of the mutant polypeptide, in contrast to peripheral membrane expression of the wildtype protein. Whereas wildtype HA-SLC26A3 is apically localized in polarized monolayers of filter-grown MDCK cells and Caco2 cells, mutant HA-SLC26A3 G393W exhibits decreased total polypeptide abundance, with reduced or absent surface expression and sparse punctate (or absent) intracellular distribution. The WT protein is similarly localized in LLC-PK1 cells, but the mutant fails to accumulate to detectable levels. We conclude that the chloride-losing diarrhea phenotype associated with homozygous expression of SLC26A3 G393W likely reflects lack of apical surface expression in enterocytes, secondary to combined abnormalities in polypeptide trafficking and stability. Future progress in development of general or target-specific folding chaperonins and correctors may hold promise for pharmacological rescue of this and similar genetic defects in membrane protein targeting.
Collapse
Affiliation(s)
- Fabian R Reimold
- Renal Division, Beth Israel Deaconess Medical Center Boston, MA, USA
| | | | - David B Doroquez
- Renal Division, Beth Israel Deaconess Medical Center Boston, MA, USA
| | - Boris E Shmukler
- Renal Division, Beth Israel Deaconess Medical Center Boston, MA, USA
| | - Zsuzsanna K Zsengeller
- Department of Pathology, Beth Israel Deaconess Medical Center Boston, MA, USA ; Department of Pathology, Harvard Medical School Boston, MA, USA
| | - David Saslowsky
- Division of Pediatric Gastroenterology, Boston Children's Hospital Boston, MA, USA ; Department of Pediatrics, Harvard Medical School Boston, MA, USA ; Harvard Digestive Diseases Center, Harvard Medical School Boston, MA, USA
| | - Jay R Thiagarajah
- Division of Pediatric Gastroenterology, Boston Children's Hospital Boston, MA, USA ; Department of Pediatrics, Harvard Medical School Boston, MA, USA ; Harvard Digestive Diseases Center, Harvard Medical School Boston, MA, USA
| | - Isaac E Stillman
- Renal Division, Beth Israel Deaconess Medical Center Boston, MA, USA ; Department of Pathology, Beth Israel Deaconess Medical Center Boston, MA, USA ; Department of Pathology, Harvard Medical School Boston, MA, USA
| | - Wayne I Lencer
- Division of Pediatric Gastroenterology, Boston Children's Hospital Boston, MA, USA ; Department of Pediatrics, Harvard Medical School Boston, MA, USA ; Harvard Digestive Diseases Center, Harvard Medical School Boston, MA, USA
| | - Bai-Lin Wu
- Department of Pathology, Harvard Medical School Boston, MA, USA ; Genetics Diagnostic Laboratory and Claritas Genetics, Boston Children's Hospital Boston, MA, USA ; Children's Hospital and Institute of Biomedical Sciences of Fudan University Shanghai, China
| | - Salvador Villalpando-Carrion
- Department of Pediatric Gastroenterology and Nutrition, Hospital Infantil de Mexico Federico Gomez Mexico City, Mexico
| | - Seth L Alper
- Renal Division, Beth Israel Deaconess Medical Center Boston, MA, USA ; Harvard Digestive Diseases Center, Harvard Medical School Boston, MA, USA ; Department of Medicine, Harvard Medical School Boston, MA, USA
| |
Collapse
|