1
|
Carlson BM, Mitchell BA, Dougherty K, Westerberg JA, Cox MA, Maier A. Does V1 response suppression initiate binocular rivalry? iScience 2023; 26:107359. [PMID: 37520732 PMCID: PMC10382945 DOI: 10.1016/j.isci.2023.107359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/02/2023] [Accepted: 07/07/2023] [Indexed: 08/01/2023] Open
Abstract
During binocular rivalry (BR) only one eye's view is perceived. Neural underpinnings of BR are debated. Recent studies suggest that primary visual cortex (V1) initiates BR. One trigger might be response suppression across most V1 neurons at the onset of BR. Here, we utilize a variant of BR called binocular rivalry flash suppression (BRFS) to test this hypothesis. BRFS is identical to BR, except stimuli are shown with a ∼1s delay. If V1 response suppression was required to initiate BR, it should occur during BRFS as well. To test this, we compared V1 spiking in two macaques observing BRFS. We found that BRFS resulted in response facilitation rather than response suppression across V1 neurons. However, BRFS still reduces responses in a subset of V1 neurons due to the adaptive effects of asynchronous stimulus presentation. We argue that this selective response suppression could serve as an alternate initiator of BR.
Collapse
Affiliation(s)
- Brock M. Carlson
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Blake A. Mitchell
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| | - Kacie Dougherty
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08540, USA
| | - Jacob A. Westerberg
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, the Netherlands
| | - Michele A. Cox
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
- Center for Visual Science, University of Rochester, Rochester, NY 14627, USA
| | - Alexander Maier
- Department of Psychology, College of Arts and Science, Vanderbilt Vision Research Center, Center for Integrative and Cognitive Neuroscience, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
2
|
Mechanisms of Surround Suppression Effect on the Contrast Sensitivity of V1 Neurons in Cats. Neural Plast 2022; 2022:5677655. [PMID: 35299618 PMCID: PMC8923783 DOI: 10.1155/2022/5677655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/30/2022] [Accepted: 02/19/2022] [Indexed: 12/14/2022] Open
Abstract
Surround suppression (SS) is a phenomenon that a neuron’s response to visual stimuli within the classical receptive field (cRF) is suppressed by a concurrent stimulation in the surrounding receptive field (sRF) beyond the cRF. Studies show that SS affects neuronal response contrast sensitivity in the primary visual cortex (V1). However, the underlying mechanisms remain unclear. Here, we examined SS effect on the contrast sensitivity of cats’ V1 neurons with different preferred SFs using external noise-masked visual stimuli and perceptual template model (PTM) analysis at the system level. The contrast sensitivity was evaluated by the inverted threshold contrast of neurons in response to circular gratings of different contrasts in the cRF with or without an annular grating in the sRF. Our results showed that SS significantly reduced the contrast sensitivity of cats’ V1 neurons. The SS-induced reduction of contrast sensitivity was not correlated with SS strength but was dependent on neuron’s preferred SF, with a larger reduction for neurons with low preferred SFs than those with high preferred SFs. PTM analysis of threshold versus external noise contrast (TvC) functions indicated that SS decreased contrast sensitivity by increasing both the internal additive noise and impact of external noise for neurons with low preferred SFs, but improving only internal additive noise for neurons with high preferred SFs. Furthermore, the SS effect on the contrast-response function of low- and high-SF neurons also exhibited different mechanisms in contrast gain and response gain. Collectively, these results suggest that the mechanisms of SS effect on neuronal contrast sensitivity may depend on neuronal populations with different SFs.
Collapse
|
3
|
Freeman RD, Li B. Neural-metabolic coupling in the central visual pathway. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0357. [PMID: 27574310 DOI: 10.1098/rstb.2015.0357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 01/19/2023] Open
Abstract
Studies are described which are intended to improve our understanding of the primary measurements made in non-invasive neural imaging. The blood oxygenation level-dependent signal used in functional magnetic resonance imaging (fMRI) reflects changes in deoxygenated haemoglobin. Tissue oxygen concentration, along with blood flow, changes during neural activation. Therefore, measurements of tissue oxygen together with the use of a neural sensor can provide direct estimates of neural-metabolic interactions. We have used this relationship in a series of studies in which a neural microelectrode is combined with an oxygen micro-sensor to make simultaneous co-localized measurements in the central visual pathway. Oxygen responses are typically biphasic with small initial dips followed by large secondary peaks during neural activation. By the use of established visual response characteristics, we have determined that the oxygen initial dip provides a better estimate of local neural function than the positive peak. This contrasts sharply with fMRI for which the initial dip is unreliable. To extend these studies, we have examined the relationship between the primary metabolic agents, glucose and lactate, and associated neural activity. For this work, we also use a Doppler technique to measure cerebral blood flow (CBF) together with neural activity. Results show consistent synchronously timed changes such that increases in neural activity are accompanied by decreases in glucose and simultaneous increases in lactate. Measurements of CBF show clear delays with respect to neural response. This is consistent with a slight delay in blood flow with respect to oxygen delivery during neural activation.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.
Collapse
Affiliation(s)
- Ralph D Freeman
- Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA
| | - Baowang Li
- Group in Vision Science, School of Optometry, Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720-2020, USA
| |
Collapse
|
4
|
Li P, Jin CH, Jiang S, Li MM, Wang ZL, Zhu H, Chen CY, Hua TM. Effects of surround suppression on response adaptation of V1 neurons to visual stimuli. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:411-9. [PMID: 25297081 DOI: 10.13918/j.issn.2095-8137.2014.5.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The influence of intracortical inhibition on the response adaptation of visual cortical neurons remains in debate. To clarify this issue, in the present study the influence of surround suppression evoked through the local inhibitory interneurons on the adaptation effects of neurons in the primary visual cortex (V1) were observed. Moreover, the adaptations of V1 neurons to both the high-contrast visual stimuli presented in the classical receptive field (CRF) and to the costimulation presented in the CRF and the surrounding nonclassical receptive field (nCRF) were compared. The intensities of surround suppression were modulated with different sized grating stimuli. The results showed that the response adaptation of V1 neurons decreased significantly with the increase of surround suppression and this adaptation decrease was due to the reduction of the initial response of V1 neurons to visual stimuli. However, the plateau response during adaptation showed no significant changes. These findings indicate that the adaptation effects of V1 neurons may not be directly affected by surround suppression, but may be dynamically regulated by a negative feedback network and be finely adjusted by its initial spiking response to stimulus. This adaptive regulation is not only energy efficient for the central nervous system, but also beneficially acts to maintain the homeostasis of neuronal response to long-presenting visual signals.
Collapse
Affiliation(s)
- Peng Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Cai-Hong Jin
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - San Jiang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Miao-Miao Li
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Zi-Lu Wang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Hui Zhu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Cui-Yun Chen
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Tian-Miao Hua
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
5
|
Binocular activation elicits differences in neurometabolic coupling in visual cortex. Neuroscience 2013; 248:529-40. [PMID: 23811395 DOI: 10.1016/j.neuroscience.2013.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/12/2013] [Accepted: 06/18/2013] [Indexed: 11/22/2022]
Abstract
Non-invasive brain imaging requires comprehensive interpretation of hemodynamic signals. In functional magnetic resonance imaging, blood oxygen level dependent (BOLD) signals are used to infer neural processes. This necessitates a clear understanding of how BOLD signals and neural activity are related. One fundamental question concerns the relative importance of synaptic activity and spiking discharge. Although these two components are related, most previous work shows that synaptic activity is better reflected in the BOLD signal. However, the mechanisms of this relationship are not clear. The BOLD signal depends on relative changes in cerebral blood flow and cerebral metabolic rate of oxygen. Oxygen metabolism changes are difficult to measure with current imaging techniques, but it is possible to obtain direct quantitative simultaneous in vivo measurement of tissue oxygen and co-localized underlying neural activity. Here, we use this approach with a specific binocular stimulus protocol in order to activate inhibitory and excitatory neuronal pathways in the visual cortex. During excitatory binocular interaction, we find that metabolic, spiking, and local field potential responses are correlated. However, during suppressive binocular interaction, spiking activity and local field potentials (LFP) are dissociated while only the latter is coupled with metabolic response. These results suggest that inhibitory connections may be a key factor in the dissociation between LFP and spiking activity, which may contribute substantially to the close coupling between the BOLD signal and synchronized synaptic activity in the brain.
Collapse
|
6
|
Goense J, Merkle H, Logothetis NK. High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron 2013; 76:629-39. [PMID: 23141073 DOI: 10.1016/j.neuron.2012.09.019] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2012] [Indexed: 11/29/2022]
Abstract
The six cortical layers have distinct anatomical and physiological properties, like different energy use and different feedforward and feedback connectivity. It is not known if and how layer-specific neural processes are reflected in the fMRI signal. To address this question we used high-resolution fMRI to measure BOLD, CBV, and CBF responses to stimuli that elicit positive and negative BOLD signals in macaque primary visual cortex. We found that regions with positive BOLD responses had parallel increases in CBV and CBF, whereas areas with negative BOLD responses showed a decrease in CBF but an increase in CBV. For positive BOLD responses, CBF and CBV increased in the center of the cortex, but for negative BOLD responses, CBF decreased superficially while CBV increased in the center. Our findings suggest different mechanisms for neurovascular coupling for BOLD increases and decreases, as well as laminar differences in neurovascular coupling.
Collapse
Affiliation(s)
- Jozien Goense
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
7
|
Li B, Freeman RD. Spatial summation of neurometabolic coupling in the central visual pathway. Neuroscience 2012; 213:112-21. [PMID: 22522465 DOI: 10.1016/j.neuroscience.2012.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/31/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
Abstract
Noninvasive neural imaging has become an important tool in both applied and theoretical applications. The hemodynamic properties that are measured in functional magnetic resonance imaging (fMRI), for example, are generally used to infer neuronal characteristics. In an attempt to provide empirical data to connect the hemodynamic measurements with neural function, we have conducted previous studies in which neural activity and tissue oxygen metabolic functions are determined together in co-localized regions of the central visual pathway. A basic question in this procedure is whether oxygen responses are coupled linearly in space and time with neural activity. We have previously examined temporal factors, and in the current study, spatial characteristics are addressed. We have recorded from neurons in the lateral geniculate nucleus (LGN) and striate cortex in anesthetized cats. In both structures, there is a classical receptive field (CRF) within which a neuron can be activated. There is also a region outside the CRF from which stimulation cannot activate the cell directly but can influence the response elicited from the CRF. In this investigation we have used several specific spatial stimulus patterns presented to either the CRF or the surrounding region or to both areas together in order to determine spatial response patterns. Within the CRF, we find that neural and metabolic responses sum in a nonlinear fashion but changes in these two measurements are closely coupled. For stimuli that extend beyond the CRF, neural activity is generally reduced while oxygen response exhibits uncoupled changes.
Collapse
Affiliation(s)
- B Li
- Group in Vision Science, School of Optometry, Helen Wills Neurosciences Institute, University of California, Berkeley, CA 94720-2020, USA
| | | |
Collapse
|
8
|
Volgushev M. Local action for global vision. J Physiol 2011; 589:3419-20. [DOI: 10.1113/jphysiol.2011.212670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|