1
|
Bolaños P, Calderón JC. Excitation-contraction coupling in mammalian skeletal muscle: Blending old and last-decade research. Front Physiol 2022; 13:989796. [PMID: 36117698 PMCID: PMC9478590 DOI: 10.3389/fphys.2022.989796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The excitation–contraction coupling (ECC) in skeletal muscle refers to the Ca2+-mediated link between the membrane excitation and the mechanical contraction. The initiation and propagation of an action potential through the membranous system of the sarcolemma and the tubular network lead to the activation of the Ca2+-release units (CRU): tightly coupled dihydropyridine and ryanodine (RyR) receptors. The RyR gating allows a rapid, massive, and highly regulated release of Ca2+ from the sarcoplasmic reticulum (SR). The release from triadic places generates a sarcomeric gradient of Ca2+ concentrations ([Ca2+]) depending on the distance of a subcellular region from the CRU. Upon release, the diffusing Ca2+ has multiple fates: binds to troponin C thus activating the contractile machinery, binds to classical sarcoplasmic Ca2+ buffers such as parvalbumin, adenosine triphosphate and, experimentally, fluorescent dyes, enters the mitochondria and the SR, or is recycled through the Na+/Ca2+ exchanger and store-operated Ca2+ entry (SOCE) mechanisms. To commemorate the 7th decade after being coined, we comprehensively and critically reviewed “old”, historical landmarks and well-established concepts, and blended them with recent advances to have a complete, quantitative-focused landscape of the ECC. We discuss the: 1) elucidation of the CRU structures at near-atomic resolution and its implications for functional coupling; 2) reliable quantification of peak sarcoplasmic [Ca2+] using fast, low affinity Ca2+ dyes and the relative contributions of the Ca2+-binding mechanisms to the whole concert of Ca2+ fluxes inside the fibre; 3) articulation of this novel quantitative information with the unveiled structural details of the molecular machinery involved in mitochondrial Ca2+ handing to understand how and how much Ca2+ enters the mitochondria; 4) presence of the SOCE machinery and its different modes of activation, which awaits understanding of its magnitude and relevance in situ; 5) pharmacology of the ECC, and 6) emerging topics such as the use and potential applications of super-resolution and induced pluripotent stem cells (iPSC) in ECC. Blending the old with the new works better!
Collapse
Affiliation(s)
- Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Juan C. Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellín, Colombia
- *Correspondence: Juan C. Calderón,
| |
Collapse
|
2
|
Chan S, Kueh SLL, Morley JW, Head SI. Sarcoplasmic reticulum calcium handling in unbranched, immediately post-necrotic fast-twitch mdx fibres is similar to wild-type littermates. Exp Physiol 2022; 107:601-614. [PMID: 35471703 DOI: 10.1113/ep090057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/19/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS Central question: What are the early effects of dystrophin deficiency on SR Ca2+ handling in the mdx mouse? MAIN FINDING In the mdx mouse, Ca2+ handling by the SR is little affected by the absence of dystrophin when looking at fibres without branches that have just regenerated following massive myonecrosis. This has important implications for our understanding of Ca2+ pathology in the mdx mouse. ABSTRACT There is a variety of results in the literature regarding the effects of dystrophin deficiency on the Ca2+ -handling properties of the SR in mdx mice, an animal model of Duchenne muscular dystrophy. One possible source of variation is the presence of branched fibres. Fibre branching, a consequence of degenerative-regenerative processes such as muscular dystrophy, has in itself a significant influence on the function of the SR. In our present study we attempt to detect early effects of dystrophin deficiency on SR Ca2+ handling by using unbranched fibres from the immediate post-necrotic stage in mdx mice (just regenerated following massive necrosis). Using kinetically-corrected Fura-2 fluorescence signals measured during twitch and tetanus, we analysed the amplitude, rise time and decay time of Δ[Ca2+ ]i in unfatigued and fatigued fibres. Decay was also resolved into SR pump and SR leak components. Fibres from mdx mice were similar in all respects to fibres from wt littermates apart from: (i) a smaller amplitude of the initial spike of Δ[Ca2+ ]i during a tetanus; and (ii) a mitigation of the fall in Δ[Ca2+ ]i amplitude during the course of fatigue. Our findings suggest that the early effects of a loss of dystrophin on SR Ca2+ handling in mdx mice are subtle, and emphasise the importance of distinguishing between Ca2+ pathology that is due to lack of dystrophin and Ca2+ pathology that is due to muscle degeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Stephen Chan
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia.,Department of Physiology, Faculty of Science, Mahidol University, Ratchatewi, Bangkok, Thailand
| | - Sindy L L Kueh
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Stewart I Head
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| |
Collapse
|
3
|
Milán AF, Rincón OA, Arango LB, Reutovich AA, Smith GL, Giraldo MA, Bou-Abdallah F, Calderón JC. Calibration of mammalian skeletal muscle Ca 2+ transients recorded with the fast Ca 2+ dye Mag-Fluo-4. Biochim Biophys Acta Gen Subj 2021; 1865:129939. [PMID: 34082059 DOI: 10.1016/j.bbagen.2021.129939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/12/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Mag-Fluo-4 is increasingly employed for studying Ca2+ signaling in skeletal muscle; however, the lack of information on the Ca2+-Mag-Fluo-4 reaction limits its wider usage. METHODS Fluorescence and isothermal titration calorimetry (ITC) experiments were performed to determine the binding stoichiometry (n) and thermodynamics (enthalpy (ΔH) and entropy (ΔS) changes), as well as the in vitro and in situ Kd of the Ca2+-Mag-Fluo-4 reaction. Rate constants (kon, koff), fluorescence maximum (Fmax), minimum (Fmin), and the dye compartmentalization were also estimated. Experiments in cells used enzymatically dissociated flexor digitorum brevis fibres of C57BL6, adult mice, loaded at room temperature for 8 min, with 6 μM Mag-Fluo-4, AM, and permeabilized with saponin or ionomycin. All measurements were done at 20 °C. RESULTS The in vitro fluorescence assays showed a binding stoichiometry of 0.5 for the Ca2+/Mag-Fluo-4 (n = 5) reaction. ITC results (n = 3) provided ΔH and ΔS values of 2.3 (0.7) kJ/mol and 97.8 (5.9) J/mol.K, respectively. The in situ Kd was 1.652 × 105μM2(n = 58 fibres, R2 = 0.99). With an Fmax of 150.9 (8.8) A.U. (n = 8), Fmin of 0.14 (0.1) A.U. (n = 10), and ΔF of Ca2+ transients of 8.4 (2.5) A.U. (n = 10), the sarcoplasmic [Ca2+]peak reached 22.5 (7.8) μM. Compartmentalized dye amounted to only 1.1 (0.7)% (n = 10). CONCLUSIONS Two Mag-Fluo-4 molecules coalesce around one Ca2+ ion, in an entropy-driven, very low in situ affinity reaction, making it suitable to reliably track the kinetics of rapid muscle Ca2+ transients. GENERAL SIGNIFICANCE Our results may be relevant to the quantitative study of Ca2+ kinetics in many other cell types.
Collapse
Affiliation(s)
- Andrés F Milán
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Oscar A Rincón
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
| | - Leidy B Arango
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Aliaksandra A Reutovich
- Department of Chemistry, The State University of New York at Potsdam (SUNY Potsdam), New York, NY, USA
| | - Gideon L Smith
- Department of Chemistry, The State University of New York at Potsdam (SUNY Potsdam), New York, NY, USA
| | - Marco A Giraldo
- Biophysics Group, Institute of Physics, University of Antioquia, Medellin, Colombia
| | - Fadi Bou-Abdallah
- Department of Chemistry, The State University of New York at Potsdam (SUNY Potsdam), New York, NY, USA.
| | - Juan C Calderón
- Physiology and Biochemistry Research Group-PHYSIS, Faculty of Medicine, University of Antioquia, Medellin, Colombia.
| |
Collapse
|
4
|
Bakker AJ, Cully TR, Wingate CD, Barclay CJ, Launikonis BS. Doublet stimulation increases Ca 2+ binding to troponin C to ensure rapid force development in skeletal muscle. J Gen Physiol 2017; 149:323-334. [PMID: 28209802 PMCID: PMC5339514 DOI: 10.1085/jgp.201611727] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 01/24/2023] Open
Abstract
Fast-twitch skeletal muscle fibers are often exposed to motor neuron double discharges (≥200 Hz), which markedly increase both the rate of contraction and the magnitude of the resulting force responses. However, the mechanism responsible for these effects is poorly understood, likely because of technical limitations in previous studies. In this study, we measured cytosolic Ca2+ during doublet activation using the low-affinity indicator Mag-Fluo-4 at high temporal resolution and modeled the effects of doublet stimulation on sarcoplasmic reticulum (SR) Ca2+ release, binding of Ca2+ to cytosolic buffers, and force enhancement in fast-twitch fibers. Single isolated fibers respond to doublet pulses with two clear Ca2+ spikes, at doublet frequencies up to 1 KHz. A 200-Hz doublet at the start of a tetanic stimulation train (70 Hz) decreases the drop in free Ca2+ between the first three Ca2+ spikes of the transient, maintaining a higher overall free Ca2+ level during first 20-30 ms of the response. Doublet stimulation also increased the rate of force development in isolated fast-twitch muscles. We also modeled SR Ca2+ release rates during doublet stimulation and showed that Ca2+-dependent inactivation of ryanodine receptor activity is rapid, occurring ≤1ms after initial release. Furthermore, we modeled Ca2+ binding to the main intracellular Ca2+ buffers of troponin C (TnC), parvalbumin, and the SR Ca2+ pump during Ca2+ release and found that the main effect of the second response in the doublet is to more rapidly increase the occupation of the second Ca2+-binding site on TnC (TnC2), resulting in earlier activation of force. We conclude that doublet stimulation maintains high cytosolic Ca2+ levels for longer in the early phase of the Ca2+ response, resulting in faster saturation of TnC2 with Ca2+, faster initiation of cross-bridge cycling, and more rapid force development.
Collapse
Affiliation(s)
- Anthony J Bakker
- School of Anatomy, Physiology, and Human Biology, University of Western Australia, Perth, WA 6009, Australia
| | - Tanya R Cully
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Catherine D Wingate
- School of Anatomy, Physiology, and Human Biology, University of Western Australia, Perth, WA 6009, Australia
| | - Christopher J Barclay
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Bradley S Launikonis
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
5
|
Hernández-Ochoa EO, Vanegas C, Iyer SR, Lovering RM, Schneider MF. Alternating bipolar field stimulation identifies muscle fibers with defective excitability but maintained local Ca(2+) signals and contraction. Skelet Muscle 2016; 6:6. [PMID: 26855765 PMCID: PMC4743112 DOI: 10.1186/s13395-016-0076-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/05/2016] [Indexed: 11/25/2022] Open
Abstract
Background Most cultured enzymatically dissociated adult myofibers exhibit spatially uniform (UNI) contractile responses and Ca2+ transients over the entire myofiber in response to electric field stimuli of either polarity applied via bipolar electrodes. However, some myofibers only exhibit contraction and Ca2+ transients at alternating (ALT) ends in response to alternating polarity field stimulation. Here, we present for the first time the methodology for identification of ALT myofibers in primary cultures and isolated muscles, as well as a study of their electrophysiological properties. Results We used high-speed confocal microscopic Ca2+ imaging, electric field stimulation, microelectrode recordings, immunostaining, and confocal microscopy to characterize the properties of action potential-induced Ca2+ transients, contractility, resting membrane potential, and staining of T-tubule voltage-gated Na+ channel distribution applied to cultured adult myofibers. Here, we show for the first time, with high temporal and spatial resolution, that normal control myofibers with UNI responses can be converted to ALT response myofibers by TTX addition or by removal of Na+ from the bathing medium, with reappearance of the UNI response on return of Na+. Our results suggest disrupted excitability as the cause of ALT behavior and indicate that the ALT response is due to local depolarization-induced Ca2+ release, whereas the UNI response is triggered by action potential propagation over the entire myofiber. Consistent with this interpretation, local depolarizing monopolar stimuli give uniform (propagated) responses in UNI myofibers, but only local responses at the electrode in ALT myofibers. The ALT responses in electrically inexcitable myofibers are consistent with expectations of current spread between bipolar stimulating electrodes, entering (hyperpolarizing) one end of a myofiber and leaving (depolarizing) the other end of the myofiber. ALT responses were also detected in some myofibers within intact isolated whole muscles from wild-type and MDX mice, demonstrating that ALT responses can be present before enzymatic dissociation. Conclusions We suggest that checking for ALT myofiber responsiveness by looking at the end of a myofiber during alternating polarity stimuli provides a test for compromised excitability of myofibers, and could be used to identify inexcitable, damaged or diseased myofibers by ALT behavior in healthy and diseased muscle. Electronic supplementary material The online version of this article (doi:10.1186/s13395-016-0076-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, 108 N. Greene Street, Baltimore, MD 21201 USA
| | - Camilo Vanegas
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, 108 N. Greene Street, Baltimore, MD 21201 USA
| | - Shama R Iyer
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Richard M Lovering
- Department of Orthopaedics, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, 108 N. Greene Street, Baltimore, MD 21201 USA
| |
Collapse
|
6
|
Dibaj P, Schomburg ED, Steffens H. Contractile characteristics of gastrocnemius-soleus muscle in the SOD1G93A ALS mouse model. Neurol Res 2015; 37:693-702. [DOI: 10.1179/1743132815y.0000000039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Barrientos G, Llanos P, Hidalgo J, Bolaños P, Caputo C, Riquelme A, Sánchez G, Quest AFG, Hidalgo C. Cholesterol removal from adult skeletal muscle impairs excitation-contraction coupling and aging reduces caveolin-3 and alters the expression of other triadic proteins. Front Physiol 2015; 6:105. [PMID: 25914646 PMCID: PMC4392612 DOI: 10.3389/fphys.2015.00105] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022] Open
Abstract
Cholesterol and caveolin are integral membrane components that modulate the function/location of many cellular proteins. Skeletal muscle fibers, which have unusually high cholesterol levels in transverse tubules, express the caveolin-3 isoform but its association with transverse tubules remains contentious. Cholesterol removal impairs excitation–contraction (E–C) coupling in amphibian and mammalian fetal skeletal muscle fibers. Here, we show that treating single muscle fibers from adult mice with the cholesterol removing agent methyl-β-cyclodextrin decreased fiber cholesterol by 26%, altered the location pattern of caveolin-3 and of the voltage dependent calcium channel Cav1.1, and suppressed or reduced electrically evoked Ca2+ transients without affecting membrane integrity or causing sarcoplasmic reticulum (SR) calcium depletion. We found that transverse tubules from adult muscle and triad fractions that contain ~10% attached transverse tubules, but not SR membranes, contained caveolin-3 and Cav1.1; both proteins partitioned into detergent-resistant membrane fractions highly enriched in cholesterol. Aging entails significant deterioration of skeletal muscle function. We found that triad fractions from aged rats had similar cholesterol and RyR1 protein levels compared to triads from young rats, but had lower caveolin-3 and glyceraldehyde 3-phosphate dehydrogenase and increased Na+/K+-ATPase protein levels. Both triad fractions had comparable NADPH oxidase (NOX) activity and protein content of NOX2 subunits (p47phox and gp91phox), implying that NOX activity does not increase during aging. These findings show that partial cholesterol removal impairs E–C coupling and alters caveolin-3 and Cav1.1 location pattern, and that aging reduces caveolin-3 protein content and modifies the expression of other triadic proteins. We discuss the possible implications of these findings for skeletal muscle function in young and aged animals.
Collapse
Affiliation(s)
- Genaro Barrientos
- Physiology and Biophysics Program, Institute of Biomedical Sciences, School of Medicine, University of Chile Santiago, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Faculty of Dentistry, University of Chile Santiago, Chile
| | - Jorge Hidalgo
- Physiology and Biophysics Program, Institute of Biomedical Sciences, School of Medicine, University of Chile Santiago, Chile
| | - Pura Bolaños
- Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research Caracas, Venezuela
| | - Carlo Caputo
- Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research Caracas, Venezuela
| | - Alexander Riquelme
- Biomedical Neuroscience Institute, School of Medicine, University of Chile Santiago, Chile
| | - Gina Sánchez
- Biomedical Neuroscience Institute, School of Medicine, University of Chile Santiago, Chile ; Pathophysiology Program, Institute of Biomedical Sciences, School of Medicine, University of Chile Santiago, Chile ; Center for Molecular Studies of the Cell, School of Medicine, University of Chile Santiago, Chile
| | - Andrew F G Quest
- Center for Molecular Studies of the Cell, School of Medicine, University of Chile Santiago, Chile ; Laboratory of Cell Communication, Program in Cell and Molecular Biology, Institute of Biomedical Sciences, School of Medicine, University of Chile Santiago, Chile ; Advanced Center for Chronic Diseases and Network for Metabolic Stress Signaling, University of Chile Santiago, Chile
| | - Cecilia Hidalgo
- Physiology and Biophysics Program, Institute of Biomedical Sciences, School of Medicine, University of Chile Santiago, Chile ; Biomedical Neuroscience Institute, School of Medicine, University of Chile Santiago, Chile ; Center for Molecular Studies of the Cell, School of Medicine, University of Chile Santiago, Chile
| |
Collapse
|
8
|
Calderón JC, Bolaños P, Caputo C. Tetanic Ca2+ transient differences between slow- and fast-twitch mouse skeletal muscle fibres: a comprehensive experimental approach. J Muscle Res Cell Motil 2014; 35:279-93. [DOI: 10.1007/s10974-014-9388-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/03/2014] [Indexed: 12/17/2022]
|
9
|
Calderón JC, Bolaños P, Caputo C. The excitation-contraction coupling mechanism in skeletal muscle. Biophys Rev 2014; 6:133-160. [PMID: 28509964 PMCID: PMC5425715 DOI: 10.1007/s12551-013-0135-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/06/2013] [Indexed: 12/27/2022] Open
Abstract
First coined by Alexander Sandow in 1952, the term excitation-contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.
Collapse
Affiliation(s)
- Juan C Calderón
- Physiology and Biochemistry Research Group-Physis, Department of Physiology and Biochemistry, Faculty of Medicine, University of Antioquia UdeA, Calle 70 No 52-21, Medellín, Colombia.
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela.
- Departamento de Fisiología y Bioquímica, Grupo de Investigación en Fisiología y Bioquímica-Physis, Facultad de Medicina, Universidad de Antioquia, Calle 70 No 52-21, Medellín, Colombia.
| | - Pura Bolaños
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Carlo Caputo
- Laboratory of Cellular Physiology, Centre of Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| |
Collapse
|
10
|
Establishment of a human skeletal muscle-derived cell line: biochemical, cellular and electrophysiological characterization. Biochem J 2013; 455:169-77. [PMID: 23905709 DOI: 10.1042/bj20130698] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Excitation-contraction coupling is the physiological mechanism occurring in muscle cells whereby an electrical signal sensed by the dihydropyridine receptor located on the transverse tubules is transformed into a chemical gradient (Ca2+ increase) by activation of the ryanodine receptor located on the sarcoplasmic reticulum membrane. In the present study, we characterized for the first time the excitation-contraction coupling machinery of an immortalized human skeletal muscle cell line. Intracellular Ca2+ measurements showed a normal response to pharmacological activation of the ryanodine receptor, whereas 3D-SIM (super-resolution structured illumination microscopy) revealed a low level of structural organization of ryanodine receptors and dihydropyridine receptors. Interestingly, the expression levels of several transcripts of proteins involved in Ca2+ homoeostasis and differentiation indicate that the cell line has a phenotype closer to that of slow-twitch than fast-twitch muscles. These results point to the potential application of such human muscle-derived cell lines to the study of neuromuscular disorders; in addition, they may serve as a platform for the development of therapeutic strategies aimed at correcting defects in Ca2+ homoeostasis due to mutations in genes involved in Ca2+ regulation.
Collapse
|