1
|
Wit AL. Afterdepolarizations and triggered activity as a mechanism for clinical arrhythmias. Pacing Clin Electrophysiol 2018; 41:883-896. [PMID: 29920724 DOI: 10.1111/pace.13419] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023]
Abstract
Afterdepolarizations cause triggered arrhythmias. One kind occurs after repolarization is complete, delayed afterdepolarizations (DADs). Another occurs as an interruption in repolarization, early afterdepolarizations (EADs). Afterdepolarizations initiate arrhythmias when they depolarize membrane potential to threshold potential for triggering action potentials. DADs usually occur mostly when Ca2+ in the sarcoplasmic reticulum (SR) is elevated. The SR leaks some of the Ca2+ into the myoplasm through Ca2+ release channels controlled by ryanodine receptors (RyR2) during diastole. The Na+ -Ca2+ exchanger extrudes elevated diastolic Ca2+ from the cell in exchange for Na+ (1 Ca2+ for 3 Na+ ) generating inward current causing DADs. DAD amplitude increases with decreasing cycle length, causing triggered activity during an increase in heart rate or during programmed electrical stimulation (PES). Coupling interval of the first triggered impulse is directly related to initiating cycle length. EADs are associated with an increased action potential duration (APD) causing long QT (LQT). EADs are caused by net inward currents (ICaL , INCX ) as a consequence. Hundreds of mutations can cause congenital LQT by altering repolarizing ion channels. Acquired LQT results from drug interaction with repolarizing ion channels. EAD-triggered ventricular tachycardia is polymorphic and called "torsade de pointes." Effects of PES on EAD-triggered activity is related to effects of cycle length on APD. Shortening cycle length prevents EADs by accelerating repolarization. Typical PES protocols inhibit formation of EADs which can be therapeutic.
Collapse
Affiliation(s)
- Andrew L Wit
- Department of Pharmacology, College of Physicians and Surgeons of Columbia University, New York City, NY, USA
| |
Collapse
|
2
|
Farghaly HSM, Ashry IESM, Hareedy MS. High doses of digoxin increase the myocardial nuclear factor-kB and CaV1.2 channels in healthy mice. A possible mechanism of digitalis toxicity. Biomed Pharmacother 2018; 105:533-539. [PMID: 29885637 DOI: 10.1016/j.biopha.2018.05.137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Toxic effects of digoxin may occur with normal therapeutic serum level. However, the underlying mechanisms are not fully understood. Nuclear factor kappa-B (NF-kB) is an important transcription factor in most organ systems and is often implicated in the harmful effects of cardiac injury. NF-kB promotes inflammatory responses, mediates adverse cardiac remodeling and has a function correlation with calcium. The voltage-gated L-type calcium channel CaV1.2 mediates the influx of Ca+2 into the cell in response to membrane depolarization. Our aim was to characterize the role of NF-kB during digoxin toxicity and to assess its correlation with Cav 1.2 in healthy mice in vivo. METHODS To address these questions, digoxin was administered in doses of 0.1, 1 or 5 mg/kg orally daily for seven days to the animals. Serum digoxin, serum calcium, atrial and ventricular calcium levels were measured. We, also, looked for NF-kB and CaV1.2 channel expression in cardiac muscle of mice. RESULTS Digoxin at a dose of 0.1 mg/kg did not enhance serum, atrial, and ventricular Ca+2 levels, but were increased when digoxin dose of 1 and 5 mg/kg were administered. Histologically, myocardial necrosis and cellular infiltration on day 7 were significantly more severe in the 5 mg/kg/day digoxin group. Immunohistochemical studies showed more expression of both NF-kB and CaV1.2 in 1 and 5 mg/kg/day digoxin groups. CONCLUSIONS These data suggest that NF-kB may be responsible for digoxin toxicity, at least partially via modulation of CaV1.2 and intracellular calcium homeostasis in the myocardium.
Collapse
|
3
|
Sirenko SG, Maltsev VA, Yaniv Y, Bychkov R, Yaeger D, Vinogradova T, Spurgeon HA, Lakatta EG. Electrochemical Na+ and Ca2+ gradients drive coupled-clock regulation of automaticity of isolated rabbit sinoatrial nodal pacemaker cells. Am J Physiol Heart Circ Physiol 2016; 311:H251-67. [PMID: 27208164 DOI: 10.1152/ajpheart.00667.2015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 05/11/2016] [Indexed: 11/22/2022]
Abstract
Coupling of an intracellular Ca(2+) clock to surface membrane ion channels, i.e., a "membrane clock, " via coupling of electrochemical Na(+) and Ca(2+) gradients (ENa and ECa, respectively) has been theorized to regulate sinoatrial nodal cell (SANC) normal automaticity. To test this hypothesis, we measured responses of [Na(+)]i, [Ca(2+)]i, membrane potential, action potential cycle length (APCL), and rhythm in rabbit SANCs to Na(+)/K(+) pump inhibition by the digitalis glycoside, digoxigenin (DG, 10-20 μmol/l). Initial small but significant increases in [Na(+)]i and [Ca(2+)]i and reductions in ENa and ECa in response to DG led to a small reduction in maximum diastolic potential (MDP), significantly enhanced local diastolic Ca(2+) releases (LCRs), and reduced the average APCL. As [Na(+)]i and [Ca(2+)]i continued to increase at longer times following DG exposure, further significant reductions in MDP, ENa, and ECa occurred; LCRs became significantly reduced, and APCL became progressively and significantly prolonged. This was accompanied by increased APCL variability. We also employed a coupled-clock numerical model to simulate changes in ENa and ECa simultaneously with ion currents not measured experimentally. Numerical modeling predicted that, as the ENa and ECa monotonically reduced over time in response to DG, ion currents (ICaL, ICaT, If, IKr, and IbNa) monotonically decreased. In parallel with the biphasic APCL, diastolic INCX manifested biphasic changes; initial INCX increase attributable to enhanced LCR ensemble Ca(2+) signal was followed by INCX reduction as ENCX (ENCX = 3ENa - 2ECa) decreased. Thus SANC automaticity is tightly regulated by ENa, ECa, and ENCX via a complex interplay of numerous key clock components that regulate SANC clock coupling.
Collapse
Affiliation(s)
- Syevda G Sirenko
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Victor A Maltsev
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Yael Yaniv
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland; Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Rostislav Bychkov
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland; Universidad Central del Caribe, Santa Juanita, Bayamon Puerto Rico
| | - Daniel Yaeger
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Tatiana Vinogradova
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Harold A Spurgeon
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institutes of Health, National Institute on Aging, Intramural Research Program, Baltimore, Maryland;
| |
Collapse
|