1
|
Babou Kammoe RB, Sévigny J. Extracellular nucleotides in smooth muscle contraction. Biochem Pharmacol 2024; 220:116005. [PMID: 38142836 DOI: 10.1016/j.bcp.2023.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Extracellular nucleotides and nucleosides are crucial signalling molecules, eliciting diverse biological responses in almost all organs and tissues. These molecules exert their effects by activating specific nucleotide receptors, which are finely regulated by ectonucleotidases that break down their ligands. In this comprehensive review, we aim to elucidate the relevance of extracellular nucleotides as signalling molecules in the context of smooth muscle contraction, considering the modulatory influence of ectonucleotidases on this intricate process. Specifically, we provide a detailed examination of the involvement of extracellular nucleotides in the contraction of non-vascular smooth muscles, including those found in the urinary bladder, the airways, the reproductive system, and the gastrointestinal tract. Furthermore, we present a broader overview of the role of extracellular nucleotides in vascular smooth muscle contraction.
Collapse
Affiliation(s)
- Romuald Brice Babou Kammoe
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, QC G1V 4G2, Canada; Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada.
| |
Collapse
|
2
|
Lee KY, Sung TS, Koh BH, Ryoo SB, Chun JN, Kim SH, Park KJ, So I. Distribution and Function of Platelet-derived Growth Factor Receptor Alpha-positive Cells and Purinergic Neurotransmission in the Human Colon: Is It Different Between the Right and Left Colon? J Neurogastroenterol Motil 2022; 28:678-692. [PMID: 36250374 PMCID: PMC9577575 DOI: 10.5056/jnm21117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Background/Aims Platelet-derived growth factor receptor alpha-positive (PDGFRα+) cells function in the purinergic regulation of gastrointestinal motility, and purines are reportedly inhibitory neurotransmitters in the enteric nervous system. We explore the distribution and function of PDGFRα+ cells related to purinergic inhibitory neurotransmission in human right and left colons. Methods Human colonic segments were prepared with mucosa and submucosa intact, and the circular muscle tension and longitudinal muscle tension were recorded. Purinergic neurotransmitters were administered after recording the regular contractions. Immunohistochemistry was performed on the circular muscle layers. Intracellular recording was performed on the colonic muscular layer. SK3, P2RY1, and PDGFR-α mRNA expression was tested by quantitative real-time polymerase chain reaction (qPCR). Results Adenosine triphosphate (ATP) treatment significantly decreased the frequency and area under the curve (AUC) of the segmental contraction in right and left colons. Beta-nicotinamide adenine dinucleotide (β-NAD) decreased the frequency in the right colon and the amplitude, frequency and AUC in the left colon. Apamin significantly increased frequency and AUC in the left colon, and after apamin pretreatment, ATP and β-NAD did not change segmental contractility. Through intracellular recordings, a resting membrane potential decrease occurred after ATP administration; however, the degree of decrease between the right and left colon was not different. PDGFRα+ cells were distributed evenly in the circular muscle layers of right and left colons. SK3, P2RY1, and PDGFRα expression was not different between the right and left colon. Conclusion Purines reduce right and left colon contractility similarly, and purinergic inhibitory neurotransmission can be regulated by PDGFRα+ cells in the human colon.
Collapse
Affiliation(s)
- Kil-Yong Lee
- Department of Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu-si, Gyeonggi-do, Korea
| | - Tae Sik Sung
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea.,Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, USA
| | - Byoung H Koh
- Department of Physiology and Cell Biology, University of Nevada Reno School of Medicine, Reno, NV, USA
| | - Seung-Bum Ryoo
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Shin-Hye Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu Joo Park
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Insuk So
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
3
|
King BF. Purinergic signalling in the enteric nervous system (An overview of current perspectives). Auton Neurosci 2015; 191:141-7. [PMID: 26049261 DOI: 10.1016/j.autneu.2015.05.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Purinergic Signalling in the Enteric Nervous System involves the regulated release of ATP (or a structurally-related nucleotide) which activates an extensive suite of membrane-inserted receptors (P2X and P2Y subtypes) on a variety of cell types in the gastrointestinal tract. P2X receptors are gated ion-channels permeable to sodium, potassium and calcium. They depolarise cells, act as a pathway for calcium influx to activate calcium-dependent processes and initiate gene transcription, interact at a molecular level as a form of self-regulation with lipids within the cell wall (e.g. PIP2) and cross-react with other membrane-inserted receptors to regulate their activity (e.g. nAChRs). P2Y receptors are metabotropic receptors that couple to G-proteins. They may release calcium ions from intracellular stores to activate calcium-dependent processes, but also may activate calcium-independent signalling pathways and influence gene transcription. Originally ATP was a candidate only for NANC neurotransmission, for inhibitory motoneurons supplying the muscularis externa of the gastrointestinal tract and bringing about the fast IJP. Purinergic signalling later included neuron-neuron signalling in the ENS, via the production of either fast or slow EPSPs. Later still, purinergic signalling included the neuro-epithelial synapse-for efferent signalling to epithelia cells participating in secretion and absorption, and afferent signalling for chemoreception and mechanoreception at the surface of the mucosa. Many aspects of purinergic signalling have since been addressed in a series of highly-focussed and authoritative reviews. In this overview however, the current focus is on key aspects of purinergic signalling where there remains uncertainty and ambiguity, with the view to stimulating further research in these areas.
Collapse
Affiliation(s)
- Brian F King
- University College London (UCL), Department of Neuroscience, Physiology and Pharmacology (NPP), Royal Free Campus, Rowland Hill Street, Hampstead, London NW3 2PF, United Kingdom.
| |
Collapse
|
4
|
Mañé N, Gil V, Martínez-Cutillas M, Clavé P, Gallego D, Jiménez M. Differential functional role of purinergic and nitrergic inhibitory cotransmitters in human colonic relaxation. Acta Physiol (Oxf) 2014; 212:293-305. [PMID: 25327170 DOI: 10.1111/apha.12408] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/23/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022]
Abstract
AIM ATP and nitric oxide (NO) are released from enteric inhibitory motor neurones and are responsible for colonic smooth muscle relaxation. However, how frequency of neural stimulation affects this cotransmission process and the post-junctional responses has not been systematically characterized in the human colon. METHODS The dynamics of inhibitory cotransmission were studied using different protocols of electrical field stimulation (EFS) to characterize the inhibitory junction potentials (IJP) and the corresponding relaxation in colonic strips obtained from 36 patients. RESULTS Single pulses elicited a fast IJP (IJPf(MAX) = -27.6 ± 1.6 mV), sensitive to the P2Y1 antagonist MRS2500 1 μm, that ran down with frequency increase leaving a residual hyperpolarization at high frequencies (IJPf∞ = -3.7 ± 0.6 mV). Accordingly, low frequencies of EFS caused purinergic transient relaxations that cannot be maintained at high frequencies. Addition of the P2Y1 agonist MRS2365 10 μm during the purinergic rundown did not cause any hyperpolarization. Protein kinase C (PKC), a putative P2Y1 desensitizator, was able to reduce the amplitude of the IJPf when activated, but the rundown was not modified by PKC inhibitors. Frequencies higher than 0.60 ± 0.15 Hz were needed to evoke a sustained nitrergic hyperpolarization that progressively increased reaching IJPs∞ = -13 ± 0.4 mV at high frequencies and leading to a sustained inhibition of spontaneous motility. CONCLUSION Changes in frequency of stimulation possibly mimicking neuronal firing will post-junctionally determine purinergic vs. nitrergic responses underlying different functional roles. NO will be responsible for sustained relaxations needed in physiological processes such as storage, while purinergic neurotransmission evoking sharp transient relaxations will be dominant in processes such as propulsion.
Collapse
Affiliation(s)
- N. Mañé
- Department of Cell Biology, Physiology and Immunology and Neuroscience Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - V. Gil
- Department of Cell Biology, Physiology and Immunology and Neuroscience Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - M. Martínez-Cutillas
- Department of Cell Biology, Physiology and Immunology and Neuroscience Institute; Universitat Autònoma de Barcelona; Barcelona Spain
| | - P. Clavé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Instituto de Salud Carlos III; Barcelona Spain
| | - D. Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Instituto de Salud Carlos III; Barcelona Spain
| | - M. Jiménez
- Department of Cell Biology, Physiology and Immunology and Neuroscience Institute; Universitat Autònoma de Barcelona; Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Instituto de Salud Carlos III; Barcelona Spain
| |
Collapse
|
5
|
Jiménez M, Clavé P, Accarino A, Gallego D. Purinergic neuromuscular transmission in the gastrointestinal tract; functional basis for future clinical and pharmacological studies. Br J Pharmacol 2014; 171:4360-75. [PMID: 24910216 DOI: 10.1111/bph.12802] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/14/2014] [Accepted: 05/24/2014] [Indexed: 12/13/2022] Open
Abstract
Nerve-mediated relaxation is necessary for the correct accomplishment of gastrointestinal (GI) motility. In the GI tract, NO and a purine are probably released by the same inhibitory motor neuron as inhibitory co-transmitters. The P2Y1 receptor has been recently identified as the receptor responsible for purinergic smooth muscle hyperpolarization and relaxation in the human gut. This finding has been confirmed in P2Y1 -deficient mice where purinergic neurotransmission is absent and transit time impaired. However, the mechanisms responsible for nerve-mediated relaxation, including the identification of the purinergic neurotransmitter(s) itself, are still debatable. Possibly different mechanisms of nerve-mediated relaxation are present in the GI tract. Functional demonstration of purinergic neuromuscular transmission has not been correlated with structural studies. Labelling of purinergic neurons is still experimental and is not performed in routine pathology studies from human samples, even when possible neuromuscular impairment is suspected. Accordingly, the contribution of purinergic neurotransmission in neuromuscular diseases affecting GI motility is not known. In this review, we have focused on the physiological mechanisms responsible for nerve-mediated purinergic relaxation providing the functional basis for possible future clinical and pharmacological studies on GI motility targeting purine receptors.
Collapse
Affiliation(s)
- Marcel Jiménez
- Department of Cell Biology, Physiology and Immunology, Neurosciences Institute, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | | | | | | |
Collapse
|
6
|
Martínez-Cutillas M, Gil V, Gallego D, Mañé N, Clavé P, Martín MT, Jiménez M. α,β-meATP mimics the effects of the purinergic neurotransmitter in the human and rat colon. Eur J Pharmacol 2014; 740:442-54. [PMID: 24998877 DOI: 10.1016/j.ejphar.2014.06.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 02/05/2023]
Abstract
The purine receptor involved in inhibitory responses in the gastrointestinal tract has been recently identified. P2Y1 receptor activation mediates the fast component of the inhibitory junction potential (IJPf) and the non-nitrergic relaxation. The aim of the present work has been to investigate which purinergic agonist better mimics endogenous responses. We used different agonist and antagonist of P2 receptors. Contractility and microelectrode experiments were used to compare the effects of exogenously added purines and electrical field stimulation (EFS)-induced nerve mediated effects in rat and human colonic strips. In rat colon, the IJPf and EFS-induced inhibition of contractions were concentration-dependently inhibited by the P2Y1 antagonist MRS2500 but not by iso-PPADS or NF023 (P2X antagonists) up to 1 μM. In samples from human colon, EFS-induced inhibition of contractions was inhibited by either MRS2500 or apamin (1 μM) but not by iso-PPADS. In both species, α,β-meATP, a stable analog of ATP, caused inhibition of spontaneous contractions. α,β-meATP effect was concentration-dependent (EC50: 2.7 μM rat, 4.4 μM human) and was antagonized by either MRS2500 or apamin but unaffected by P2X antagonists. ATP, ADP, β-NAD and ADP-ribose inhibited spontaneous contractions but did not show the same sensitivity profile to purine receptor antagonists as EFS-induced inhibition of contractions. The effect of α,β-meATP is due to P2Y1 receptor activation leading the opening of sKca channels. Accordingly, α,β-meATP mimics the endogenous purinergic mediator. In contrast, exogenously added putative neurotransmitters do not exactly mimic the endogenous mediator. Quick degradation by ecto-nuclease or different distribution of receptors (junctionally vs extrajunctionally) might explain these results.
Collapse
Affiliation(s)
- Míriam Martínez-Cutillas
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Víctor Gil
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Diana Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Noemí Mañé
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Clavé
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain; Fundació de Gastroenterologia Dr Vilardell and Department of Surgery, Hospital de Mataró, Mataró, Barcelona, Spain
| | - María Teresa Martín
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain
| | - Marcel Jiménez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
7
|
Gallego D, Malagelada C, Accarino A, De Giorgio R, Malagelada JR, Azpiroz F, Jimenez M. Nitrergic and purinergic mechanisms evoke inhibitory neuromuscular transmission in the human small intestine. Neurogastroenterol Motil 2014; 26:419-29. [PMID: 24372768 DOI: 10.1111/nmo.12293] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/22/2013] [Indexed: 02/08/2023]
Abstract
BACKGROUND Inhibitory neuromuscular transmission in the human colon is due to nitrergic and purinergic (P2Y1 -mediated) inputs. The aim of this study was to determine the mechanisms of neuromuscular transmission in different regions of the human small intestine. METHODS Ileal (n = 6) and jejunal (n = 6) samples underwent histological examination and were studied using sharp microelectrodes in smooth muscle cells and conventional muscle bath techniques. Electrical field stimulation (EFS) was used to stimulate inhibitory neurons. KEY RESULTS No histological abnormalities were found. Resting membrane potential was -39.7 ± 1.5 and -45.5 ± 2.1 mV in the jejunum and ileum, respectively. Slow waves and spontaneous contractions were recorded at a frequency of about 8-9 and 6-7 cpm in the jejunum and ileum, respectively. In non-adrenergic, non-cholinergic conditions, EFS caused an inhibitory junction potential and mechanical relaxation. Both responses were blocked by tissue incubation with the nitric oxide synthase inhibitor (Nω-nitro-l-arginine 1 mM) and the P2Y1 receptor blocker 2'-deoxy-N(6) -methyladenosine 3',5'-bisphosphate tetrasodium salt (MRS2179; 10 μM). Both exogenous addition of sodium nitroprusside (1 μM) and the preferential P2Y1 receptor agonist ADPβS (1 μM) hyperpolarized and relaxed smooth muscle cells. MRS2179 (10 μM) blocked ADPβS-induced responses. CONCLUSIONS & INFERENCES Similar to colon, inhibitory neurotransmission in the human small intestine is mainly mediated by purinergic (via P2Y1 receptors) and nitrergic inhibitory neurotransmission. Similar mechanisms of inhibitory neurotransmission are present in different regions of the human intestine.
Collapse
Affiliation(s)
- D Gallego
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Barcelona, Spain; Department of Cell Biology, Physiology and Immunology and Neurosciences Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Gil V, Martínez-Cutillas M, Mañé N, Martín MT, Jiménez M, Gallego D. P2Y(1) knockout mice lack purinergic neuromuscular transmission in the antrum and cecum. Neurogastroenterol Motil 2013; 25:e170-82. [PMID: 23323764 DOI: 10.1111/nmo.12060] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Pharmacological studies using selective P2Y(1) antagonists, such as MRS2500, and studies with P2Y(1)(-/-) knockout mice have demonstrated that purinergic neuromuscular transmission is mediated by P2Y(1) receptors in the colon. The aim of the present study was to test whether P2Y(1) receptors are involved in purinergic neurotransmission in the antrum and cecum. METHODS Microelectrode recordings were performed on strips from the antrum and cecum of wild type animals (WT) and P2Y(1)(-/-) mice. KEY RESULTS In the antrum, no differences in resting membrane potential and slow wave activity were observed between groups. In WT animals, electrical field stimulation elicited a MRS2500-sensitive inhibitory junction potential (IJP). In P2Y(1)(-/-) mice, a nitrergic IJP (N(ω) -nitro-l-arginine-sensitive), but not a purinergic IJP was recorded. This IJP was equivalent to the response obtained in strips from WT animals previously incubated with MRS2500. Similar results were obtained in the cecum: 1- the purinergic IJP (MRS2500-sensitive) recorded in WT animals was absent in P2Y(1)(-/-) mice 2- nitrergic neurotransmission was preserved in both groups. Moreover, 1- spontaneous IJP (MRS2500-sensitive) could be recorded in WT, but not in P2Y(1)(-/-) mice 2- MRS2365 a P2Y(1) agonist caused smooth muscle hyperpolarization in WT, but not in P2Y(1) (-/-) animals, and 3- β-NAD caused smooth muscle hyperpolarization both in WT and P2Y(1)(-/-) animals. CONCLUSIONS & INFERENCES 1- P2Y(1) receptor is the general mechanism of purinergic inhibition in the gastrointestinal tract, 2- P2Y(1)(-/-) mouse is a useful animal model to study selective impairment of purinergic neurotransmission and 3- P2Y(1)(-/-) mouse might help in the identification of purinergic neurotransmitter(s).
Collapse
Affiliation(s)
- V Gil
- Department of Cell Biology, Physiology and Immunology and Neuroscience Institute, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Goyal RK, Sullivan MP, Chaudhury A. Progress in understanding of inhibitory purinergic neuromuscular transmission in the gut. Neurogastroenterol Motil 2013; 25:203-7. [PMID: 23414428 PMCID: PMC8630810 DOI: 10.1111/nmo.12090] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 01/05/2013] [Indexed: 02/08/2023]
Abstract
Recent studies with genetic deletion of P2Y1 receptor (P2Y1-/-) have clinched its role in enteric purinergic inhibitory neurotransmission and suggested that β-NAD may be the purinergic inhibitory neurotransmitter in the colon. In this issue of the Journal, Gil and colleagues extend their earlier observations to the cecum and gastric antrum, showing that P2Y1 receptor mediated purinergic inhibition may be a general phenomenon in the gut. However, the authors made an unexpected observation in contrast with their earlier findings in the colon that neither the selective P2Y1 receptor antagonist MRS2500, nor P2Y1 receptor deletion, blocked the hyperpolarizing action of β-NAD in the cecum. These observations suggest that β-NAD may be the purinergic inhibitory neurotransmitter in the colon, but not in the cecum. This group had previously reported that the selective P2Y1 receptor antagonist MRS 2179 suppressed the hyperpolarizing action of ATP or ADP. Further studies are now needed to determine whether the hyperpolarizing actions of ATP and ADP are suppressed by the more potent P2Y1 antagonist MRS2500, and in P2Y1-/- mutants to test the intriguing possibility that different purines serve as purinergic inhibitory neurotransmitters in the colon and cecum and perhaps in different parts of the gut. Studies in P2Y1-/- mice will resolve other issues in purinergic neurotransmission including cellular localization of the β-NAD or ATP-activated P2Y1 receptors on either smooth muscle cells or PDGFRα+ fibroblast-like cells, relationship of purinergic to nitrergic neurotransmission and understanding the physiological and clinical importance of purinergic transmission in gastrointestinal motility and its disorders.
Collapse
Affiliation(s)
- R. K. Goyal
- VA Boston HealthCare System and Harvard Medical School; Boston; MA; USA
| | - M. P. Sullivan
- VA Boston HealthCare System and Harvard Medical School; Boston; MA; USA
| | - Arun Chaudhury
- VA Boston HealthCare System and Harvard Medical School; Boston; MA; USA
| |
Collapse
|