1
|
Strocchi M, Longobardi S, Augustin CM, Gsell MAF, Petras A, Rinaldi CA, Vigmond EJ, Plank G, Oates CJ, Wilkinson RD, Niederer SA. Cell to whole organ global sensitivity analysis on a four-chamber heart electromechanics model using Gaussian processes emulators. PLoS Comput Biol 2023; 19:e1011257. [PMID: 37363928 DOI: 10.1371/journal.pcbi.1011257] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
Cardiac pump function arises from a series of highly orchestrated events across multiple scales. Computational electromechanics can encode these events in physics-constrained models. However, the large number of parameters in these models has made the systematic study of the link between cellular, tissue, and organ scale parameters to whole heart physiology challenging. A patient-specific anatomical heart model, or digital twin, was created. Cellular ionic dynamics and contraction were simulated with the Courtemanche-Land and the ToR-ORd-Land models for the atria and the ventricles, respectively. Whole heart contraction was coupled with the circulatory system, simulated with CircAdapt, while accounting for the effect of the pericardium on cardiac motion. The four-chamber electromechanics framework resulted in 117 parameters of interest. The model was broken into five hierarchical sub-models: tissue electrophysiology, ToR-ORd-Land model, Courtemanche-Land model, passive mechanics and CircAdapt. For each sub-model, we trained Gaussian processes emulators (GPEs) that were then used to perform a global sensitivity analysis (GSA) to retain parameters explaining 90% of the total sensitivity for subsequent analysis. We identified 45 out of 117 parameters that were important for whole heart function. We performed a GSA over these 45 parameters and identified the systemic and pulmonary peripheral resistance as being critical parameters for a wide range of volumetric and hemodynamic cardiac indexes across all four chambers. We have shown that GPEs provide a robust method for mapping between cellular properties and clinical measurements. This could be applied to identify parameters that can be calibrated in patient-specific models or digital twins, and to link cellular function to clinical indexes.
Collapse
Affiliation(s)
- Marina Strocchi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stefano Longobardi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | | | | - Argyrios Petras
- Johann Radon Institute for Computational and Applied Mathematics (RICAM), Linz, Austria
| | - Christopher A Rinaldi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Edward J Vigmond
- University of Bordeaux, CNRS, Bordeaux, Talence, France
- IHU Liryc, Bordeaux, Talence, France
| | - Gernot Plank
- Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Chris J Oates
- Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Steven A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Alan Turing Institute, London, United Kingdom
| |
Collapse
|
2
|
Neelakantan S, Kumar M, Mendiola EA, Phelan H, Serpooshan V, Sadayappan S, Avazmohammadi R. Multiscale characterization of left ventricle active behavior in the mouse. Acta Biomater 2023; 162:240-253. [PMID: 36963596 PMCID: PMC10416730 DOI: 10.1016/j.actbio.2023.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023]
Abstract
The myocardium possesses an intricately designed microarchitecture to produce an optimal cardiac contraction. The contractile behavior of the heart is generated at the sarcomere level and travels across several length scales to manifest as the systolic function at the organ level. While passive myocardial behavior has been studied extensively, the translation of active tension produced at the fiber level to the organ-level function is not well understood. Alterations in cardiac systolic function are often key sequelae in structural heart diseases, such as myocardial infarction and systolic heart failure; thus, characterization of the contractile behavior of the heart across multiple length scales is essential to improve our understanding of mechanisms collectively leading to depressed systolic function. In this study, we present a methodology to characterize the active behavior of left ventricle free wall (LVFW) myocardial tissues in mice. Combined with active tests in papillary muscle fibers and conventional in vivo contractility measurement at the organ level in an animal-specific manner, we establish a multiscale active characterization of the heart from fiber to organ. In addition, we quantified myocardial architecture from histology to shed light on the directionality of the contractility at the tissue level. The LVFW tissue activation-relaxation behavior under isometric conditions was qualitatively similar to that of the papillary muscle fiber bundle. However, the maximum stress developed in the LVFW tissue was an order of magnitude lower than that developed by a fiber bundle, and the time taken for active forces to plateau was 2-3 orders of magnitude longer. Although the LVFW tissue exhibited a slightly stiffer passive response in the circumferential direction, the tissues produced significantly larger active stresses in the longitudinal direction during active testing. Also, contrary to passive viscoelastic stress relaxation, active stresses relaxed faster in the direction with larger peak stresses. The multiscale experimental pipeline presented in this work is expected to provide crucial insight into the contractile adaptation mechanisms of the heart with impaired systolic function. STATEMENT OF SIGNIFICANCE: Heart failure cause significant alterations to the contractile-relaxation behavior of the yocardium. Multiscale characterization of the contractile behavior of the myocardium is essential to advance our understanding of how contractility translates from fiber to organ and to identify the multiscale mechanisms leading to impaired cardiac function. While passive myocardial behavior has been studied extensively, the investigation of tissue-level contractile behavior remains critically scarce in the literature. To the best of our knowledge, our study here is the first to investigate the contractile behavior of the left ventricle at multiple length scales in small animals. Our results indicate that the active myocardial wall is a function of transmural depth and relaxes faster in the direction with larger peak stresses.
Collapse
Affiliation(s)
- Sunder Neelakantan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Mohit Kumar
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Emilio A Mendiola
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Haley Phelan
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Reza Avazmohammadi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, USA.
| |
Collapse
|
3
|
Longobardi S, Sher A, Niederer SA. Quantitative mapping of force-pCa curves to whole heart contraction and relaxation. J Physiol 2022; 600:3497-3516. [PMID: 35737959 PMCID: PMC9540007 DOI: 10.1113/jp283352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Abstract The force–pCa (F–pCa) curve is used to characterize steady‐state contractile properties of cardiac muscle cells in different physiological, pathological and pharmacological conditions. This provides a reduced preparation in which to isolate sarcomere mechanisms. However, it is unclear how changes in the F–pCa curve impact emergent whole‐heart mechanics quantitatively. We study the link between sarcomere and whole‐heart function using a multiscale mathematical model of rat biventricular mechanics that describes sarcomere, tissue, anatomy, preload and afterload properties quantitatively. We first map individual cell‐level changes in sarcomere‐regulating parameters to organ‐level changes in the left ventricular function described by pressure–volume loop characteristics (e.g. end‐diastolic and end‐systolic volumes, ejection fraction and isovolumetric relaxation time). We next map changes in the sarcomere‐regulating parameters to changes in the F–pCa curve. We demonstrate that a change in the F–pCa curve can be caused by multiple different changes in sarcomere properties. We demonstrate that changes in sarcomere properties cause non‐linear and, importantly, non‐monotonic changes in left ventricular function. As a result, a change in sarcomere properties yielding changes in the F–pCa curve that improve contractility does not guarantee an improvement in whole‐heart function. Likewise, a desired change in whole‐heart function (i.e. ejection fraction or relaxation time) is not caused by a unique shift in the F–pCa curve. Changes in the F–pCa curve alone cannot be used to predict the impact of a compound on whole‐heart function.
![]() Key points
The force–pCa (F–pCa) curve is used to assess myofilament calcium sensitivity after pharmacological modulation and to infer pharmacological effects on whole‐heart function. We demonstrate that there is a non‐unique mapping from changes in F–pCa curves to changes in left ventricular (LV) function. The effect of changes in F–pCa on LV function depend on the state of the heart and could be different for different pathological conditions. Screening of compounds to impact whole‐heart function by F–pCa should be combined with active tension and calcium transient measurements to predict better how changes in muscle function will impact whole‐heart physiology.
Collapse
Affiliation(s)
- Stefano Longobardi
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Anna Sher
- Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Steven A Niederer
- Cardiac Electromechanics Research Group, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
4
|
Karabelas E, Gsell MA, Haase G, Plank G, Augustin CM. An accurate, robust, and efficient finite element framework with applications to anisotropic, nearly and fully incompressible elasticity. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 394:114887. [PMID: 35432634 PMCID: PMC7612621 DOI: 10.1016/j.cma.2022.114887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fiber-reinforced soft biological tissues are typically modeled as hyperelastic, anisotropic, and nearly incompressible materials. To enforce incompressibility a multiplicative split of the deformation gradient into a volumetric and an isochoric part is a very common approach. However, the finite element analysis of such problems often suffers from severe volumetric locking effects and numerical instabilities. In this paper, we present novel methods to overcome volumetric locking phenomena for using stabilized P1-P1 elements. We introduce different stabilization techniques and demonstrate the high robustness and computational efficiency of the chosen methods. In two benchmark problems from the literature as well as an advanced application to cardiac electromechanics, we compare the approach to standard linear elements and show the accuracy and versatility of the methods to simulate anisotropic, nearly and fully incompressible materials. We demonstrate the potential of this numerical framework to accelerate accurate simulations of biological tissues to the extent of enabling patient-specific parameterization studies, where numerous forward simulations are required.
Collapse
Affiliation(s)
- Elias Karabelas
- Institute for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Matthias A.F. Gsell
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
| | - Gundolf Haase
- Institute for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Christoph M. Augustin
- Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Correspondence to: Gottfried Schatz Research Center: Division of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse 6/IV, Graz 8010, Austria. (C.M. Augustin)
| |
Collapse
|
5
|
Jung A, Gsell MAF, Augustin CM, Plank G. An Integrated Workflow for Building Digital Twins of Cardiac Electromechanics-A Multi-Fidelity Approach for Personalising Active Mechanics. MATHEMATICS (BASEL, SWITZERLAND) 2022; 10:823. [PMID: 35295404 PMCID: PMC7612499 DOI: 10.3390/math10050823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Personalised computer models of cardiac function, referred to as cardiac digital twins, are envisioned to play an important role in clinical precision therapies of cardiovascular diseases. A major obstacle hampering clinical translation involves the significant computational costs involved in the personalisation of biophysically detailed mechanistic models that require the identification of high-dimensional parameter vectors. An important aspect to identify in electromechanics (EM) models are active mechanics parameters that govern cardiac contraction and relaxation. In this study, we present a novel, fully automated, and efficient approach for personalising biophysically detailed active mechanics models using a two-step multi-fidelity solution. In the first step, active mechanical behaviour in a given 3D EM model is represented by a purely phenomenological, low-fidelity model, which is personalised at the organ scale by calibration to clinical cavity pressure data. Then, in the second step, median traces of nodal cellular active stress, intracellular calcium concentration, and fibre stretch are generated and utilised to personalise the desired high-fidelity model at the cellular scale using a 0D model of cardiac EM. Our novel approach was tested on a cohort of seven human left ventricular (LV) EM models, created from patients treated for aortic coarctation (CoA). Goodness of fit, computational cost, and robustness of the algorithm against uncertainty in the clinical data and variations of initial guesses were evaluated. We demonstrate that our multi-fidelity approach facilitates the personalisation of a biophysically detailed active stress model within only a few (2 to 4) expensive 3D organ-scale simulations-a computational effort compatible with clinical model applications.
Collapse
Affiliation(s)
- Alexander Jung
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging—Division of Biophysics, Medical University Graz, 8010 Graz, Austria
| | - Matthias A. F. Gsell
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging—Division of Biophysics, Medical University Graz, 8010 Graz, Austria
- NAWI Graz, Institute of Mathematics and Scientific Computing, University of Graz, 8010 Graz, Austria
| | - Christoph M. Augustin
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging—Division of Biophysics, Medical University Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Gernot Plank
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging—Division of Biophysics, Medical University Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
6
|
Pargaei M, Kumar BVR, Pavarino LF, Scacchi S. Cardiac electro-mechanical activity in a deforming human cardiac tissue: modeling, existence-uniqueness, finite element computation and application to multiple ischemic disease. J Math Biol 2022; 84:17. [PMID: 35142929 DOI: 10.1007/s00285-022-01717-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/11/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022]
Abstract
In this study, the cardiac electro-mechanical model in a deforming domain is taken with the addition of mechanical feedback and stretch-activated channel current coupled with the ten Tusscher human ventricular cell level model that results in a coupled PDE-ODE system. The existence and uniqueness of such a coupled system in a deforming domain is proved. At first, the existence of a solution is proved in the deformed domain. The local existence of the solution is proved using the regularization and the Faedo-Galerkin technique. Then, the global existence is proved using the energy estimates in appropriate Banach spaces, Gronwall lemma, and the compactness procedure. The existence of the solution in an undeformed domain is proved using the lower semi-continuity of the norms. Uniqueness is proved using Young's inequality, Gronwall lemma, and the Cauchy-Schwartz inequality. For the application purpose, this model is applied to understand the electro-mechanical activity in ischemic cardiac tissue. It also takes care of the development of active tension, conductive, convective, and ionic feedback. The Second Piola-Kirchoff stress tensor arising in Lagrangian mapping between reference and moving frames is taken as a combination of active, passive, and volumetric components. We investigated the effect of varying strength of hyperkalemia and hypoxia, in the ischemic subregions of human cardiac tissue with local multiple ischemic subregions, on the electro-mechanical activity of healthy and ischemic zones. This system is solved numerically using the [Formula: see text] finite element method in space and the implicit-explicit Euler method in time. Discontinuities arising with the modeled multiple ischemic regions are treated to the desired order of accuracy by a simple regularization technique using the interpolating polynomials. We examined the cardiac electro-mechanical activity for several cases in multiple hyperkalemic and hypoxic human cardiac tissue. We concluded that local multiple ischemic subregions severely affect the cardiac electro-mechanical activity more, in terms of action potential (v) and mechanical parameters, intracellular calcium ion concentration [Formula: see text], active tension ([Formula: see text]), stretch ([Formula: see text]) and stretch rate ([Formula: see text]), of a healthy cell in its vicinity, compared to a single Hyperkalemic or Hypoxic subregion. The four moderate hypoxically generated ischemic subregions affect the waveform of the stretch along the fiber and the stretch rate more than a single severe ischemic subregion.
Collapse
Affiliation(s)
- Meena Pargaei
- Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India.,Govt. Post Graduate College, Champawat, Uttarakhand, India
| | - B V Rathish Kumar
- Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur, India
| | - Luca F Pavarino
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - Simone Scacchi
- Department of Mathematics, University of Milan, Milan, Italy
| |
Collapse
|
7
|
In silico identification of potential calcium dynamics and sarcomere targets for recovering left ventricular function in rat heart failure with preserved ejection fraction. PLoS Comput Biol 2021; 17:e1009646. [PMID: 34871310 PMCID: PMC8675924 DOI: 10.1371/journal.pcbi.1009646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/16/2021] [Accepted: 11/16/2021] [Indexed: 01/28/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex disease associated with multiple co-morbidities, where impaired cardiac mechanics are often the end effect. At the cellular level, cardiac mechanics can be pharmacologically manipulated by altering calcium signalling and the sarcomere. However, the link between cellular level modulations and whole organ pump function is incompletely understood. Our goal is to develop and use a multi-scale computational cardiac mechanics model of the obese ZSF1 HFpEF rat to identify important biomechanical mechanisms that underpin impaired cardiac function and to predict how whole-heart mechanical function can be recovered through altering cellular calcium dynamics and/or cellular contraction. The rat heart was modelled using a 3D biventricular biomechanics model. Biomechanics were described by 16 parameters, corresponding to intracellular calcium transient, sarcomere dynamics, cardiac tissue and hemodynamics properties. The model simulated left ventricular (LV) pressure-volume loops that were described by 14 scalar features. We trained a Gaussian process emulator to map the 16 input parameters to each of the 14 outputs. A global sensitivity analysis was performed, and identified calcium dynamics and thin and thick filament kinetics as key determinants of the organ scale pump function. We employed Bayesian history matching to build a model of the ZSF1 rat heart. Next, we recovered the LV function, described by ejection fraction, peak pressure, maximum rate of pressure rise and isovolumetric relaxation time constant. We found that by manipulating calcium, thin and thick filament properties we can recover 34%, 28% and 24% of the LV function in the ZSF1 rat heart, respectively, and 39% if we manipulate all of them together. We demonstrated how a combination of biophysically based models and their derived emulators can be used to identify potential pharmacological targets. We predicted that cardiac function can be best recovered in ZSF1 rats by desensitising the myofilament and reducing the affinity to intracellular calcium concentration and overall prolonging the sarcomere staying in the active force generating state. We developed a computational model of the ZSF1 rat model of heart failure with preserved ejection fraction. We validated that the model can link simulated pharmacological interventions from cellular to whole heart pump function. Our computational model identified calcium dynamics as the main determinant of left ventricular contractile behaviour. We demonstrated that the highest degree of LV function recovery could be achieved when calcium dynamics is manipulated in conjunction with both thin and thick filament kinetics.
Collapse
|
8
|
Colli Franzone P, Pavarino LF, Scacchi S. Numerical evaluation of cardiac mechanical markers as estimators of the electrical activation time. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2021; 37:e3285. [PMID: 31808301 DOI: 10.1002/cnm.3285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 10/11/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Recent advances in the development of noninvasive cardiac imaging technologies have made it possible to measure longitudinal and circumferential strains at a high spatial resolution also at intramural level. Local mechanical activation times derived from these strains can be used as noninvasive estimates of electrical activation, in order to determine, eg, the origin of premature ectopic beats during focal arrhythmias or the pathway of reentrant circuits. The aim of this work is to assess the reliability of mechanical activation time markers derived from longitudinal and circumferential strains, denoted by ATell and ATecc , respectively, by means of three-dimensional cardiac electromechanical simulations. These markers are compared against the electrical activation time (ATv ), computed from the action potential waveform, and the reference mechanical activation markers derived from the active tension and fiber strain waveforms, denoted by ATta and ATeff , respectively. Our numerical simulations are based on a strongly coupled electromechanical model, including bidomain representation of the cardiac tissue, mechanoelectric (ie, stretch-activated channels) and geometric feedbacks, transversely isotropic strain energy function for the description of passive mechanics and detailed membrane and excitation-contraction coupling models. The results have shown that, during endocardial and epicardial ectopic stimulations, all the mechanical markers considered are highly correlated with ATv , exhibiting correlation coefficients larger than 0.8. However, during multiple endocardial stimulations, mimicking the ventricular sinus rhythm, the mechanical markers are less correlated with the electrical activation time, because of the more complex resulting excitation sequence. Moreover, the inspection of the endocardial and epicardial isochrones has shown that the ATell and ATecc mechanical activation sequences reproduce only some qualitative features of the electrical activation sequence, such as the areas of early and late activation, but in some cases, they might yield wrong excitation sources and significantly different isochrones patterns.
Collapse
Affiliation(s)
| | - Luca F Pavarino
- Dipartimento di Matematica, Università di Milano, Milano, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università di Milano, Milano, Italy
| |
Collapse
|
9
|
Forouzandehmehr M, Koivumäki JT, Hyttinen J, Paci M. A mathematical model of hiPSC cardiomyocytes electromechanics. Physiol Rep 2021; 9:e15124. [PMID: 34825519 PMCID: PMC8617339 DOI: 10.14814/phy2.15124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/18/2021] [Accepted: 11/02/2021] [Indexed: 01/21/2023] Open
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are becoming instrumental in cardiac research, human-based cell level cardiotoxicity tests, and developing patient-specific care. As one of the principal functional readouts is contractility, we propose a novel electromechanical hiPSC-CM computational model named the hiPSC-CM-CE. This model comprises a reparametrized version of contractile element (CE) by Rice et al., 2008, with a new passive force formulation, integrated into a hiPSC-CM electrophysiology formalism by Paci et al. in 2020. Our simulated results were validated against in vitro data reported for hiPSC-CMs at matching conditions from different labs. Specifically, key action potential (AP) and calcium transient (CaT) biomarkers simulated by the hiPSC-CM-CE model were within the experimental ranges. On the mechanical side, simulated cell shortening, contraction-relaxation kinetic indices (RT50 and RT25 ), and the amplitude of tension fell within the experimental intervals. Markedly, as an inter-scale analysis, correct classification of the inotropic effects due to non-cardiomyocytes in hiPSC-CM tissues was predicted on account of the passive force expression introduced to the CE. Finally, the physiological inotropic effects caused by Verapamil and Bay-K 8644 and the aftercontractions due to the early afterdepolarizations (EADs) were simulated and validated against experimental data. In the future, the presented model can be readily expanded to take in pharmacological trials and genetic mutations, such as those involved in hypertrophic cardiomyopathy, and study arrhythmia trigger mechanisms.
Collapse
Affiliation(s)
| | - Jussi T. Koivumäki
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Jari Hyttinen
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| | - Michelangelo Paci
- Faculty of Medicine and Health TechnologyTampere UniversityTampereFinland
| |
Collapse
|
10
|
Dell'Era G, Gravellone M, Scacchi S, Franzone PC, Pavarino LF, Boggio E, Prenna E, De Vecchi F, Occhetta E, Devecchi C, Patti G. A clinical-in silico study on the effectiveness of multipoint bicathodic and cathodic-anodal pacing in cardiac resynchronization therapy. Comput Biol Med 2021; 136:104661. [PMID: 34332350 DOI: 10.1016/j.compbiomed.2021.104661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 11/18/2022]
Abstract
Up to one-third of patients undergoing cardiac resynchronization therapy (CRT) are nonresponders. Multipoint bicathodic and cathodic-anodal left ventricle (LV) stimulations could overcome this clinical challenge, but their effectiveness remains controversial. Here we evaluate the performance of such stimulations through both in vivo and in silico experiments, the latter based on computer electromechanical modeling. Seven patients, all candidates for CRT, received a quadripolar LV lead. Four stimulations were tested: right ventricular (RVS); conventional single point biventricular (S-BS); multipoint biventricular bicathodic (CC-BS) and multipoint biventricular cathodic-anodal (CA-BS). The following parameters were processed: QRS duration; maximal time derivative of arterial pressure (dPdtmax); systolic arterial pressure (Psys); and stroke volume (SV). Echocardiographic data of each patient were then obtained to create an LV geometric model. Numerical simulations were based on a strongly coupled Bidomain electromechanical coupling model. Considering the in vivo parameters, when comparing S-BS to RVS, there was no significant decrease in SV (from 45 ± 11 to 44 ± 20 ml) and 6% and 4% increases of dPdtmax and Psys, respectively. Focusing on in silico parameters, with respect to RVS, S-BS exhibited a significant increase of SV, dPdtmax and Psys. Neither the in vivo nor in silico results showed any significant hemodynamic and electrical difference among S-BS, CC-BS and CA-BS configurations. These results show that CC-BS and CA-BS yield a comparable CRT performance, but they do not always yield improvement in terms of hemodynamic parameters with respect to S-BS. The computational results confirmed the in vivo observations, thus providing theoretical support to the clinical experiments.
Collapse
Affiliation(s)
- G Dell'Era
- Cardiologia 1, Azienda Ospedaliera Universitaria "Maggiore Della Carità", Novara, Italy
| | - M Gravellone
- Divisione di Cardiologia, Ospedale Degli Infermi, Biella, Italy
| | - S Scacchi
- Dipartimento di Matematica, Università Degli Studi di Milano, Via Saldini 50, 20133, Milano, Italy.
| | - P Colli Franzone
- Dipartimento di Matematica, Università Degli Studi di Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - L F Pavarino
- Dipartimento di Matematica, Università Degli Studi di Pavia, Via Ferrata 1, 27100, Pavia, Italy
| | - E Boggio
- Divisione di Cardiologia, Ospedale Degli Infermi, Biella, Italy
| | - E Prenna
- Cardiologia 1, Azienda Ospedaliera Universitaria "Maggiore Della Carità", Novara, Italy
| | - F De Vecchi
- Divisione di Cardiologia, Ospedale Sant'Andrea, Vercelli, Italy
| | - E Occhetta
- Divisione di Cardiologia, Ospedale Sant'Andrea, Vercelli, Italy
| | - C Devecchi
- Divisione di Cardiologia, Ospedale Sant'Andrea, Vercelli, Italy
| | - G Patti
- Cardiologia 1, Azienda Ospedaliera Universitaria "Maggiore Della Carità", Novara, Italy; Dipartimento di Medicina Traslazionale, Università Del Piemonte Orientale, Novara, Italy
| |
Collapse
|
11
|
Regazzoni F, Dedè L, Quarteroni A. Biophysically detailed mathematical models of multiscale cardiac active mechanics. PLoS Comput Biol 2020; 16:e1008294. [PMID: 33027247 PMCID: PMC7571720 DOI: 10.1371/journal.pcbi.1008294] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/19/2020] [Accepted: 08/27/2020] [Indexed: 11/19/2022] Open
Abstract
We propose four novel mathematical models, describing the microscopic mechanisms of force generation in the cardiac muscle tissue, which are suitable for multiscale numerical simulations of cardiac electromechanics. Such models are based on a biophysically accurate representation of the regulatory and contractile proteins in the sarcomeres. Our models, unlike most of the sarcomere dynamics models that are available in the literature and that feature a comparable richness of detail, do not require the time-consuming Monte Carlo method for their numerical approximation. Conversely, the models that we propose only require the solution of a system of PDEs and/or ODEs (the most reduced of the four only involving 20 ODEs), thus entailing a significant computational efficiency. By focusing on the two models that feature the best trade-off between detail of description and identifiability of parameters, we propose a pipeline to calibrate such parameters starting from experimental measurements available in literature. Thanks to this pipeline, we calibrate these models for room-temperature rat and for body-temperature human cells. We show, by means of numerical simulations, that the proposed models correctly predict the main features of force generation, including the steady-state force-calcium and force-length relationships, the length-dependent prolongation of twitches and increase of peak force, the force-velocity relationship. Moreover, they correctly reproduce the Frank-Starling effect, when employed in multiscale 3D numerical simulation of cardiac electromechanics.
Collapse
Affiliation(s)
- Francesco Regazzoni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Dedè
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alfio Quarteroni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
- Mathematics Institute, École Polytechnique Fédérale de Lausanne, Av. Piccard, CH-1015 Lausanne, Switzerland (Professor Emeritus)
| |
Collapse
|
12
|
Regazzoni F, Dedè L, Quarteroni A. Active Force Generation in Cardiac Muscle Cells: Mathematical Modeling and Numerical Simulation of the Actin-Myosin Interaction. VIETNAM JOURNAL OF MATHEMATICS 2020; 49:87-118. [PMID: 34722731 PMCID: PMC8549950 DOI: 10.1007/s10013-020-00433-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/21/2020] [Indexed: 06/13/2023]
Abstract
Cardiac in silico numerical simulations are based on mathematical models describing the physical processes involved in the heart function. In this review paper, we critically survey biophysically-detailed mathematical models describing the subcellular mechanisms behind the generation of active force, that is the process by which the chemical energy of ATP (adenosine triphosphate) is transformed into mechanical work, thus making the muscle tissue contract. While presenting these models, that feature different levels of biophysical detail, we analyze the trade-off between the accuracy in the description of the subcellular mechanisms and the number of parameters that need to be estimated from experiments. Then, we focus on a generalized version of the classic Huxley model, built on the basis of models available in the literature, that is able to reproduce the main experimental characterizations associated to the time scales typical of a heartbeat-such as the force-velocity relationship and the tissue stiffness in response to small steps-featuring only four independent parameters. Finally, we show how those parameters can be calibrated starting from macroscopic measurements available from experiments.
Collapse
Affiliation(s)
- Francesco Regazzoni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Luca Dedè
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Alfio Quarteroni
- MOX - Dipartimento di Matematica, Politecnico di Milano, P.zza Leonardo da Vinci 32, 20133 Milano, Italy
- Mathematics Institute, École Polytechnique Fédérale de Lausanne (EPFL), Av. Piccard, CH-1015 Lausanne, Switzerland
| |
Collapse
|
13
|
In-silico human electro-mechanical ventricular modelling and simulation for drug-induced pro-arrhythmia and inotropic risk assessment. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:58-74. [PMID: 32710902 PMCID: PMC7848595 DOI: 10.1016/j.pbiomolbio.2020.06.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/08/2020] [Accepted: 06/28/2020] [Indexed: 12/28/2022]
Abstract
Human-based computational modelling and simulation are powerful tools to accelerate the mechanistic understanding of cardiac patho-physiology, and to develop and evaluate therapeutic interventions. The aim of this study is to calibrate and evaluate human ventricular electro-mechanical models for investigations on the effect of the electro-mechanical coupling and pharmacological action on human ventricular electrophysiology, calcium dynamics, and active contraction. The most recent models of human ventricular electrophysiology, excitation-contraction coupling, and active contraction were integrated, and the coupled models were calibrated using human experimental data. Simulations were then conducted using the coupled models to quantify the effects of electro-mechanical coupling and drug exposure on electrophysiology and force generation in virtual human ventricular cardiomyocytes and tissue. The resulting calibrated human electro-mechanical models yielded active tension, action potential, and calcium transient metrics that are in agreement with experiments for endocardial, epicardial, and mid-myocardial human samples. Simulation results correctly predicted the inotropic response of different multichannel action reference compounds and demonstrated that the electro-mechanical coupling improves the robustness of repolarisation under drug exposure compared to electrophysiology-only models. They also generated additional evidence to explain the partial mismatch between in-silico and in-vitro experiments on drug-induced electrophysiology changes. The human calibrated and evaluated modelling and simulation framework constructed in this study opens new avenues for future investigations into the complex interplay between the electrical and mechanical cardiac substrates, its modulation by pharmacological action, and its translation to tissue and organ models of cardiac patho-physiology.
Collapse
|
14
|
Longobardi S, Lewalle A, Coveney S, Sjaastad I, Espe EKS, Louch WE, Musante CJ, Sher A, Niederer SA. Predicting left ventricular contractile function via Gaussian process emulation in aortic-banded rats. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190334. [PMID: 32448071 PMCID: PMC7287330 DOI: 10.1098/rsta.2019.0334] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Cardiac contraction is the result of integrated cellular, tissue and organ function. Biophysical in silico cardiac models offer a systematic approach for studying these multi-scale interactions. The computational cost of such models is high, due to their multi-parametric and nonlinear nature. This has so far made it difficult to perform model fitting and prevented global sensitivity analysis (GSA) studies. We propose a machine learning approach based on Gaussian process emulation of model simulations using probabilistic surrogate models, which enables model parameter inference via a Bayesian history matching (HM) technique and GSA on whole-organ mechanics. This framework is applied to model healthy and aortic-banded hypertensive rats, a commonly used animal model of heart failure disease. The obtained probabilistic surrogate models accurately predicted the left ventricular pump function (R2 = 0.92 for ejection fraction). The HM technique allowed us to fit both the control and diseased virtual bi-ventricular rat heart models to magnetic resonance imaging and literature data, with model outputs from the constrained parameter space falling within 2 SD of the respective experimental values. The GSA identified Troponin C and cross-bridge kinetics as key parameters in determining both systolic and diastolic ventricular function. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.
Collapse
Affiliation(s)
- S Longobardi
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - A Lewalle
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - S Coveney
- Insigneo Institute for in-silico Medicine and Department of Computer Science, University of Sheffield, Sheffield, UK
| | - I Sjaastad
- Institute for Experimental Medical Research and KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - E K S Espe
- Institute for Experimental Medical Research and KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - W E Louch
- Institute for Experimental Medical Research and KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - C J Musante
- Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - A Sher
- Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - S A Niederer
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
15
|
Mullins PD, Bondarenko VE. Mathematical model for β1-adrenergic regulation of the mouse ventricular myocyte contraction. Am J Physiol Heart Circ Physiol 2020; 318:H264-H282. [DOI: 10.1152/ajpheart.00492.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The β1-adrenergic regulation of cardiac myocyte contraction plays an important role in regulating heart function. Activation of this system leads to an increased heart rate and stronger myocyte contraction. However, chronic stimulation of the β1-adrenergic signaling system can lead to cardiac hypertrophy and heart failure. To understand the mechanisms of action of β1-adrenoceptors, a mathematical model of cardiac myocyte contraction that includes the β1-adrenergic system was developed and studied. The model was able to simulate major experimental protocols for measurements of steady-state force-calcium relationships, cross-bridge release rate and force development rate, force-velocity relationship, and force redevelopment rate. It also reproduced quite well frequency and isoproterenol dependencies for intracellular Ca2+ concentration ([Ca2+]i) transients, total contraction force, and sarcomere shortening. The mathematical model suggested the mechanisms of increased contraction force and myocyte shortening on stimulation of β1-adrenergic receptors is due to phosphorylation of troponin I and myosin-binding protein C and increased [Ca2+]i transient resulting from activation of the β1-adrenergic signaling system. The model was used to simulate work-loop contractions and estimate the power during the cardiac cycle as well as the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The developed mathematical model can be used further for simulations of contraction of ventricular myocytes from genetically modified mice and myocytes from mice with chronic cardiac diseases. NEW & NOTEWORTHY A new mathematical model of mouse ventricular myocyte contraction that includes the β1-adrenergic system was developed. The model simulated major experimental protocols for myocyte contraction and predicted the effects of 4-aminopyridine and tedisamil on the myocyte contraction. The model also allowed for simulations of work-loop contractions and estimation of the power during the cardiac cycle.
Collapse
Affiliation(s)
- Paula D. Mullins
- Department of Mathematics, University of North Georgia, Blue Ridge, Georgia
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Vladimir E. Bondarenko
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
16
|
Lewalle A, Land S, Merken JJ, Raafs A, Sepúlveda P, Heymans S, Kleinjans J, Niederer SA. Balance of Active, Passive, and Anatomical Cardiac Properties in Doxorubicin-Induced Heart Failure. Biophys J 2019; 117:2337-2348. [PMID: 31447110 PMCID: PMC6990149 DOI: 10.1016/j.bpj.2019.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 01/31/2023] Open
Abstract
Late-onset heart failure (HF) is a known side effect of doxorubicin chemotherapy. Typically, patients are diagnosed when already at an irreversible stage of HF, which allows few or no treatment options. Identifying the causes of compromised cardiac function in this patient group may improve early patient diagnosis and support treatment selection. To link doxorubicin-induced changes in cardiac cellular and tissue mechanical properties to overall cardiac function, we apply a multiscale biophysical biomechanics model of the heart to measure the plausibility of changes in model parameters representing the passive, active, or anatomical properties of the left ventricle for reproducing measured patient phenotypes. We create representative models of healthy controls (N = 10) and patients with HF induced by (N = 22) or unrelated to (N = 25) doxorubicin therapy. The model predicts that HF in the absence of doxorubicin is characterized by a 2- to 3-fold stiffness increase, decreased tension (0–20%), and ventricular dilation (of order 10–30%). HF due to doxorubicin was similar but showed stronger bias toward reduced active contraction (10–30%) and less dilation (0–20%). We find that changes in active, passive, and anatomical properties all play a role in doxorubicin-induced cardiotoxicity phenotypes. Differences in parameter changes between patient groups are consistent with doxorubicin cardiotoxicity having a greater dependence on reduced cellular contraction and less anatomical remodeling than HF not caused by doxorubicin.
Collapse
Affiliation(s)
- Alexandre Lewalle
- Department of Biomedical Engineering, St Thomas's Hospital, King's College London, London, United Kingdom
| | - Sander Land
- Department of Biomedical Engineering, St Thomas's Hospital, King's College London, London, United Kingdom
| | - Jort J Merken
- Department of Cardiology, Maastricht University, Maastricht, the Netherlands
| | - Anne Raafs
- Department of Cardiology, Maastricht University, Maastricht, the Netherlands
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Stéphane Heymans
- Department of Cardiology, Maastricht University, Maastricht, the Netherlands
| | - Jos Kleinjans
- Department of Toxicogenomics, Maastricht University, Maastricht, the Netherlands
| | - Steven A Niederer
- Department of Biomedical Engineering, St Thomas's Hospital, King's College London, London, United Kingdom.
| |
Collapse
|
17
|
Kallhovd S, Sundnes J, Wall ST. Sensitivity of stress and strain calculations to passive material parameters in cardiac mechanical models using unloaded geometries. Comput Methods Biomech Biomed Engin 2019; 22:664-675. [DOI: 10.1080/10255842.2019.1579312] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - J. Sundnes
- Simula Research Laboratory, Lysaker, Norway
| | - S. T. Wall
- Simula Research Laboratory, Lysaker, Norway
| |
Collapse
|
18
|
Niederer SA, Campbell KS, Campbell SG. A short history of the development of mathematical models of cardiac mechanics. J Mol Cell Cardiol 2019; 127:11-19. [PMID: 30503754 PMCID: PMC6525149 DOI: 10.1016/j.yjmcc.2018.11.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/02/2018] [Accepted: 11/21/2018] [Indexed: 11/15/2022]
Abstract
Cardiac mechanics plays a crucial role in atrial and ventricular function, in the regulation of growth and remodelling, in the progression of disease, and the response to treatment. The spatial scale of the critical mechanisms ranges from nm (molecules) to cm (hearts) with the fastest events occurring in milliseconds (molecular events) and the slowest requiring months (growth and remodelling). Due to its complexity and importance, cardiac mechanics has been studied extensively both experimentally and through mathematical models and simulation. Models of cardiac mechanics evolved from seminal studies in skeletal muscle, and developed into cardiac specific, species specific, human specific and finally patient specific calculations. These models provide a formal framework to link multiple experimental assays recorded over nearly 100 years into a single unified representation of cardiac function. This review first provides a summary of the proteins, physiology and anatomy involved in the generation of cardiac pump function. We then describe the evolution of models of cardiac mechanics starting with the early theoretical frameworks describing the link between sarcomeres and muscle contraction, transitioning through myosin-level models to calcium-driven systems, and ending with whole heart patient-specific models.
Collapse
Affiliation(s)
| | - Kenneth S Campbell
- Department of Physiology and Division of Cardiovascular Medicine, University of Kentucky, Lexington, USA
| | - Stuart G Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, USA
| |
Collapse
|
19
|
Electromechanical effects of concentric hypertrophy on the left ventricle: A simulation study. Comput Biol Med 2018; 99:236-256. [DOI: 10.1016/j.compbiomed.2018.06.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/19/2022]
|
20
|
Zhang X, Liu ZQ, Campbell KS, Wenk JF. Evaluation of a Novel Finite Element Model of Active Contraction in the Heart. Front Physiol 2018; 9:425. [PMID: 29740338 PMCID: PMC5924776 DOI: 10.3389/fphys.2018.00425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 12/22/2022] Open
Abstract
Finite element (FE) modeling is becoming a widely used approach for the investigation of global heart function. In the present study, a novel model of cellular-level systolic contraction, which includes both length- and velocity-dependence, was implemented into a 3D non-linear FE code. To validate this new FE implementation, an optimization procedure was used to determine the contractile parameters, associated with sarcomeric function, by comparing FE-predicted pressure and strain to experimental measures collected with magnetic resonance imaging and catheterization in the ventricles of five healthy rats. The pressure-volume relationship generated by the FE models matched well with the experimental data. Additionally, the regional distribution of end-systolic strains and circumferential-longitudinal shear angle exhibited good agreement with experimental results overall, with the main deviation occurring in the septal region. Moreover, the FE model predicted a heterogeneous distribution of sarcomere re-lengthening after ventricular ejection, which is consistent with previous in vivo studies. In conclusion, the new FE active contraction model was able to predict the global performance and regional mechanical behaviors of the LV during the entire cardiac cycle. By including more accurate cellular-level mechanisms, this model could provide a better representation of the LV and enhance cardiac research related to both systolic and diastolic dysfunction.
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States
| | - Zhan-Qiu Liu
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States
| | - Kenneth S Campbell
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | - Jonathan F Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY, United States.,Department of Surgery, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
21
|
Colli Franzone P, Pavarino LF, Scacchi S. A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures. Front Physiol 2018; 9:268. [PMID: 29674971 PMCID: PMC5895745 DOI: 10.3389/fphys.2018.00268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing) architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1) the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2) the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3) the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4) the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks.
Collapse
Affiliation(s)
| | - Luca F Pavarino
- Department of Mathematics, University of Pavia, Pavia, Italy
| | - Simone Scacchi
- Department of Mathematics, University of Milano, Milan, Italy
| |
Collapse
|
22
|
Lewalle A, Land S, Carruth E, Frank LR, Lamata P, Omens JH, McCulloch AD, Niederer SA, Smith NP. Decreasing Compensatory Ability of Concentric Ventricular Hypertrophy in Aortic-Banded Rat Hearts. Front Physiol 2018; 9:37. [PMID: 29527171 PMCID: PMC5829063 DOI: 10.3389/fphys.2018.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/10/2018] [Indexed: 11/28/2022] Open
Abstract
The cardiac system compensates for variations in physiological and pathophysiological conditions through a dynamic remodeling at the organ, tissue, and intracellular levels in order to maintain function. However, on longer time scales following the onset of ventricular pressure overload, such remodeling may begin to inhibit physiological function and ultimately lead to heart failure. This progression from compensatory to decompensatory behavior is poorly understood, in particular owing to the absence of a unified perspective of the concomitantly remodeling subsystems. To address this issue, the present study investigates the evolution of compensatory mechanisms, in response to overload, by integrating diffusion-tensor MRI, echocardiography, and intracellular and hemodynamic measurements within consistent computational simulations of aortic-banded rat hearts. This approach allows a comparison of the relative leverage of different cardiac properties (geometry, passive mechanical stiffness, fiber configuration, diastolic and peak calcium concentrations, calcium-binding affinity, and aortic impedance) to affect cardiac contraction. Measurements indicate that, following aortic banding, an ejection fraction (EF) of 75% was maintained, relative to control rats, despite significant remodeling of the left-ventricular wall thickness (increasing by ~90% over 4 weeks). Applying our framework, we identified the left-ventricular wall thickness (concentric hypertrophy) and the intracellular calcium dynamics as playing the dominant roles in preserving EF acutely, whereas the significance of hypertrophy decreased subsequently. This trend suggests an increasing reliance on intracellular mechanisms (average increase ~50%), rather than on anatomical features (average decrease ~60%), to achieve compensation of pump function in the early phase of heart failure.
Collapse
Affiliation(s)
- Alexandre Lewalle
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Sander Land
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Eric Carruth
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Lawrence R. Frank
- Radiology Department, University of California, San Diego, San Diego, CA, United States
| | - Pablo Lamata
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Jeffrey H. Omens
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Andrew D. McCulloch
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Steven A. Niederer
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
| | - Nicolas P. Smith
- Department of Biomedical Engineering, King's College London, St. Thomas's Hospital, London, United Kingdom
- Faculty of Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Colli Franzone P, Pavarino LF, Scacchi S. Effects of mechanical feedback on the stability of cardiac scroll waves: A bidomain electro-mechanical simulation study. CHAOS (WOODBURY, N.Y.) 2017; 27:093905. [PMID: 28964121 DOI: 10.1063/1.4999465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work, we investigate the influence of cardiac tissue deformation on re-entrant wave dynamics. We have developed a 3D strongly coupled electro-mechanical Bidomain model posed on an ideal monoventricular geometry, including fiber direction anisotropy and stretch-activated currents (SACs). The cardiac mechanical deformation influences the bioelectrical activity with two main mechanical feedback: (a) the geometric feedback (GEF) due to the presence of the deformation gradient in the diffusion coefficients and in a convective term depending on the deformation rate and (b) the mechano-electric feedback (MEF) due to SACs. Here, we investigate the relative contribution of these two factors with respect to scroll wave stability. We extend the previous works [Keldermann et al., Am. J. Physiol. Heart Circ. Physiol. 299, H134-H143 (2010) and Hu et al., PLoS One 8(4), e60287 (2013)] that were based on the Monodomain model and a simple non-selective linear SAC, while here we consider the full Bidomain model and both selective and non-selective components of SACs. Our simulation results show that the stability of cardiac scroll waves is influenced by MEF, which in case of low reversal potential of non-selective SACs might be responsible for the onset of ventricular fibrillation; GEF increases the scroll wave meandering but does not determine the scroll wave stability.
Collapse
Affiliation(s)
- P Colli Franzone
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - L F Pavarino
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - S Scacchi
- Dipartimento di Matematica, Università di Milano, Via Saldini 50, 20133 Milano, Italy
| |
Collapse
|
24
|
Fassina L, Rozzi G, Rossi S, Scacchi S, Galetti M, Lo Muzio FP, Del Bianco F, Colli Franzone P, Petrilli G, Faggian G, Miragoli M. Cardiac kinematic parameters computed from video of in situ beating heart. Sci Rep 2017; 7:46143. [PMID: 28397830 PMCID: PMC5387404 DOI: 10.1038/srep46143,10.1038/srep46143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/13/2017] [Indexed: 04/01/2024] Open
Abstract
Mechanical function of the heart during open-chest cardiac surgery is exclusively monitored by echocardiographic techniques. However, little is known about local kinematics, particularly for the reperfused regions after ischemic events. We report a novel imaging modality, which extracts local and global kinematic parameters from videos of in situ beating hearts, displaying live video cardiograms of the contraction events. A custom algorithm tracked the movement of a video marker positioned ad hoc onto a selected area and analyzed, during the entire recording, the contraction trajectory, displacement, velocity, acceleration, kinetic energy and force. Moreover, global epicardial velocity and vorticity were analyzed by means of Particle Image Velocimetry tool. We validated our new technique by i) computational modeling of cardiac ischemia, ii) video recordings of ischemic/reperfused rat hearts, iii) videos of beating human hearts before and after coronary artery bypass graft, and iv) local Frank-Starling effect. In rats, we observed a decrement of kinematic parameters during acute ischemia and a significant increment in the same region after reperfusion. We detected similar behavior in operated patients. This modality adds important functional values on cardiac outcomes and supports the intervention in a contact-free and non-invasive mode. Moreover, it does not require particular operator-dependent skills.
Collapse
Affiliation(s)
- Lorenzo Fassina
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
- Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giacomo Rozzi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Maricla Galetti
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Francesco Paolo Lo Muzio
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Fabrizio Del Bianco
- Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
- Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Piero Colli Franzone
- Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giuseppe Petrilli
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Giuseppe Faggian
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
- Humanitas Clinical and Research Center, Via Manzoni 56, 20090 Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Via Manzoni 56, 20090 Rozzano, Italy
| |
Collapse
|
25
|
Fassina L, Rozzi G, Rossi S, Scacchi S, Galetti M, Lo Muzio FP, Del Bianco F, Colli Franzone P, Petrilli G, Faggian G, Miragoli M. Cardiac kinematic parameters computed from video of in situ beating heart. Sci Rep 2017; 7:46143. [PMID: 28397830 PMCID: PMC5387404 DOI: 10.1038/srep46143] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/13/2017] [Indexed: 12/21/2022] Open
Abstract
Mechanical function of the heart during open-chest cardiac surgery is exclusively monitored by echocardiographic techniques. However, little is known about local kinematics, particularly for the reperfused regions after ischemic events. We report a novel imaging modality, which extracts local and global kinematic parameters from videos of in situ beating hearts, displaying live video cardiograms of the contraction events. A custom algorithm tracked the movement of a video marker positioned ad hoc onto a selected area and analyzed, during the entire recording, the contraction trajectory, displacement, velocity, acceleration, kinetic energy and force. Moreover, global epicardial velocity and vorticity were analyzed by means of Particle Image Velocimetry tool. We validated our new technique by i) computational modeling of cardiac ischemia, ii) video recordings of ischemic/reperfused rat hearts, iii) videos of beating human hearts before and after coronary artery bypass graft, and iv) local Frank-Starling effect. In rats, we observed a decrement of kinematic parameters during acute ischemia and a significant increment in the same region after reperfusion. We detected similar behavior in operated patients. This modality adds important functional values on cardiac outcomes and supports the intervention in a contact-free and non-invasive mode. Moreover, it does not require particular operator-dependent skills.
Collapse
Affiliation(s)
- Lorenzo Fassina
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy.,Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giacomo Rozzi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Stefano Rossi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Simone Scacchi
- Dipartimento di Matematica, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy
| | - Maricla Galetti
- CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Francesco Paolo Lo Muzio
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy
| | - Fabrizio Del Bianco
- Dipartimento di Ingegneria Industriale e dell'Informazione, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy.,Centre for Health Technologies (C.H.T.), Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Piero Colli Franzone
- Dipartimento di Matematica, Università degli Studi di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | - Giuseppe Petrilli
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Giuseppe Faggian
- Dipartimento di Cardiochirurgia, Università degli Studi di Verona, Ospedale Borgo Trento, P.le Stefani 1, 37126 Verona, Italy
| | - Michele Miragoli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,CERT, Centro di Eccellenza per la Ricerca Tossicologica, INAIL-exISPESL, Università degli Studi di Parma, Via Gramsci 14, 43124 Parma, Italy.,Humanitas Clinical and Research Center, Via Manzoni 56, 20090 Rozzano, Italy.,Institute of Genetic and Biomedical Research, National Research Council, Via Manzoni 56, 20090 Rozzano, Italy
| |
Collapse
|
26
|
Land S, Park-Holohan SJ, Smith NP, Dos Remedios CG, Kentish JC, Niederer SA. A model of cardiac contraction based on novel measurements of tension development in human cardiomyocytes. J Mol Cell Cardiol 2017; 106:68-83. [PMID: 28392437 DOI: 10.1016/j.yjmcc.2017.03.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/12/2017] [Accepted: 03/31/2017] [Indexed: 11/18/2022]
Abstract
Experimental data from human cardiac myocytes at body temperature is crucial for a quantitative understanding of clinically relevant cardiac function and development of whole-organ computational models. However, such experimental data is currently very limited. Specifically, important measurements to characterize changes in tension development in human cardiomyocytes that occur with perturbations in cell length are not available. To address this deficiency, in this study we present an experimental data set collected from skinned human cardiac myocytes, including the passive and viscoelastic properties of isolated myocytes, the steady-state force calcium relationship at different sarcomere lengths, and changes in tension following a rapid increase or decrease in length, and after constant velocity shortening. This data set is, to our knowledge, the first characterization of length and velocity-dependence of tension generation in human skinned cardiac myocytes at body temperature. We use this data to develop a computational model of contraction and passive viscoelasticity in human myocytes. Our model includes troponin C kinetics, tropomyosin kinetics, a three-state crossbridge model that accounts for the distortion of crossbridges, and the cellular viscoelastic response. Each component is parametrized using our experimental data collected in human cardiomyocytes at body temperature. Furthermore we are able to confirm that properties of length-dependent activation at 37°C are similar to other species, with a shift in calcium sensitivity and increase in maximum tension. We revise our model of tension generation in the skinned isolated myocyte to replicate reported tension traces generated in intact muscle during isometric tension, to provide a model of human tension generation for multi-scale simulations. This process requires changes to calcium sensitivity, cooperativity, and crossbridge transition rates. We apply this model within multi-scale simulations of biventricular cardiac function and further refine the parametrization within the whole organ context, based on obtaining a healthy ejection fraction. This process reveals that crossbridge cycling rates differ between skinned myocytes and intact myocytes.
Collapse
Affiliation(s)
- Sander Land
- Department of Biomedical Engineering, King's College London, UK.
| | - So-Jin Park-Holohan
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, UK
| | - Nicolas P Smith
- Department of Engineering Science, University of Auckland, New Zealand
| | | | - Jonathan C Kentish
- Cardiovascular Division, King's College London British Heart Foundation Centre of Research Excellence, UK
| | | |
Collapse
|
27
|
Nasopoulou A, Shetty A, Lee J, Nordsletten D, Rinaldi CA, Lamata P, Niederer S. Improved identifiability of myocardial material parameters by an energy-based cost function. Biomech Model Mechanobiol 2017. [PMID: 28188386 DOI: 10.1007/s10237‐016‐0865‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were [Formula: see text] and [Formula: see text] ([Formula: see text], [Formula: see text], [Formula: see text]) for the HF cases and [Formula: see text] and [Formula: see text] ([Formula: see text], [Formula: see text], [Formula: see text]) for the healthy case.
Collapse
Affiliation(s)
- Anastasia Nasopoulou
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Anoop Shetty
- Cardiovascular Department, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jack Lee
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - David Nordsletten
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - C Aldo Rinaldi
- Cardiovascular Department, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Pablo Lamata
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - Steven Niederer
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
28
|
Nasopoulou A, Shetty A, Lee J, Nordsletten D, Rinaldi CA, Lamata P, Niederer S. Improved identifiability of myocardial material parameters by an energy-based cost function. Biomech Model Mechanobiol 2017; 16:971-988. [PMID: 28188386 PMCID: PMC5480093 DOI: 10.1007/s10237-016-0865-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 12/09/2016] [Indexed: 12/16/2022]
Abstract
Myocardial stiffness is a valuable clinical biomarker for the monitoring and stratification of heart failure (HF). Cardiac finite element models provide a biomechanical framework for the assessment of stiffness through the determination of the myocardial constitutive model parameters. The reported parameter intercorrelations in popular constitutive relations, however, obstruct the unique estimation of material parameters and limit the reliable translation of this stiffness metric to clinical practice. Focusing on the role of the cost function (CF) in parameter identifiability, we investigate the performance of a set of geometric indices (based on displacements, strains, cavity volume, wall thickness and apicobasal dimension of the ventricle) and a novel CF derived from energy conservation. Our results, with a commonly used transversely isotropic material model (proposed by Guccione et al.), demonstrate that a single geometry-based CF is unable to uniquely constrain the parameter space. The energy-based CF, conversely, isolates one of the parameters and in conjunction with one of the geometric metrics provides a unique estimation of the parameter set. This gives rise to a new methodology for estimating myocardial material parameters based on the combination of deformation and energetics analysis. The accuracy of the pipeline is demonstrated in silico, and its robustness in vivo, in a total of 8 clinical data sets (7 HF and one control). The mean identified parameters of the Guccione material law were [Formula: see text] and [Formula: see text] ([Formula: see text], [Formula: see text], [Formula: see text]) for the HF cases and [Formula: see text] and [Formula: see text] ([Formula: see text], [Formula: see text], [Formula: see text]) for the healthy case.
Collapse
Affiliation(s)
- Anastasia Nasopoulou
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - Anoop Shetty
- Cardiovascular Department, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jack Lee
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - David Nordsletten
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| | - C Aldo Rinaldi
- Cardiovascular Department, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Pablo Lamata
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| | - Steven Niederer
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, London, UK.
| |
Collapse
|
29
|
Aronsen JM, Espe EKS, Skårdal K, Hasic A, Zhang L, Sjaastad I. Noninvasive stratification of postinfarction rats based on the degree of cardiac dysfunction using magnetic resonance imaging and echocardiography. Am J Physiol Heart Circ Physiol 2017; 312:H932-H942. [PMID: 28188213 DOI: 10.1152/ajpheart.00668.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 11/22/2022]
Abstract
The myocardial infarction (MI) rat model plays a crucial role in modern cardiovascular research, but the inherent heterogeneity of this model represents a challenge. We sought to identify subgroups among the post-MI rats and establish simple noninvasive stratification protocols for such subgroups. Six weeks after induction of MI, 49 rats underwent noninvasive examinations using magnetic resonance imaging (MRI) and echocardiography. Twelve sham-operated rats served as controls. Increased end-diastolic left ventricular (LV) pressure and lung weight served as indicators for congestive heart failure (CHF). A clustering algorithm using 13 noninvasive and invasive parameters was used to identify distinct groups among the animals. The cluster analysis revealed four distinct post-MI phenotypes; two without congestion but with different degree of LV dilatation, and two with different degree of congestion and right ventricular (RV) affection. Among the MRI parameters, RV mass emerged as robust noninvasive marker of CHF with 100% specificity/sensitivity. Moreover, LV infarct size and RV ejection fraction further predicted subgroup among the non-CHF and CHF rats with excellent specificity/sensitivity. Of the echocardiography parameters, left atrial diameter predicted CHF. Moreover, LV end-diastolic diameter predicted the subgroups among the non-CHF rats. We propose two simple noninvasive schemes to stratify post-MI rats, based on the degree of heart failure; one for MRI and one for echocardiography.NEW & NOTEWORTHY In vivo phenotyping of rats is essential for robust and reliable data. Here, we present two simple noninvasive schemes for the stratification of postinfarction rats based on the degree of heart failure: one using magnetic resonance imaging and one based on echocardiography.
Collapse
Affiliation(s)
- Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and .,Bjørknes College, Oslo, Norway
| | - Emil Knut Stenersen Espe
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Kristine Skårdal
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Lili Zhang
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway; and
| |
Collapse
|
30
|
Colli Franzone P, Pavarino LF, Scacchi S. Joint influence of transmural heterogeneities and wall deformation on cardiac bioelectrical activity: A simulation study. Math Biosci 2016; 280:71-86. [PMID: 27545966 DOI: 10.1016/j.mbs.2016.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/25/2016] [Accepted: 08/04/2016] [Indexed: 10/21/2022]
Abstract
The aim of this work is to investigate, by means of numerical simulations, the influence of myocardial deformation due to muscle contraction and relaxation on the cardiac repolarization process in presence of transmural intrinsic action potential duration (APD) heterogeneities. The three-dimensional electromechanical model considered consists of the following four coupled components: the quasi-static transversely isotropic finite elasticity equations for the deformation of the cardiac tissue; the active tension model for the intracellular calcium dynamics and cross-bridge binding; the anisotropic Bidomain model for the electrical current flow through the deforming cardiac tissue; the membrane model of ventricular myocytes, including stretch-activated channels. The numerical simulations are based on our finite element parallel solver, which employs Multilevel Additive Schwarz preconditioners for the solution of the discretized Bidomain equations and Newton-Krylov methods for the solution of the discretized non-linear finite elasticity equations. Our findings show that: (i) the presence of intrinsic transmural cellular APD heterogeneities is not fully masked by electrotonic current flow or by the presence of the mechanical deformation; (ii) despite the presence of transmural APD heterogeneities, the recovery process follows the activation sequence and there is no significant transmural repolarization gradient; (iii) with or without transmural APD heterogeneities, epicardial electrograms always display the same wave shape and discordance between the polarity of QRS complex and T-wave; (iv) the main effects of the mechanical deformation are an increase of the dispersion of repolarization time and APD, when computed over the total cardiac domain and over the endo- and epicardial surfaces, while there is a slight decrease along the transmural direction.
Collapse
Affiliation(s)
- P Colli Franzone
- Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, Pavia 27100, Italy.
| | - L F Pavarino
- Dipartimento di Matematica, Università di Milano, Via Saldini 50, Milano 20133, Italy.
| | - S Scacchi
- Dipartimento di Matematica, Università di Milano, Via Saldini 50, Milano 20133, Italy.
| |
Collapse
|
31
|
Del Bianco F, Franzone PC, Scacchi S, Fassina L. Simulating the effects of growth and fiber dispersion on the electromechanical response of a cardiac ventricular wedge affected from concentric hypertrophy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:5579-5582. [PMID: 28269519 DOI: 10.1109/embc.2016.7591991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this paper, we analyze the epicardial electromechanical response of an in silico cardiac ventricular wedge under both healthy and concentric hypertrophic conditions. This is achieved by taking into account the growth of the wedge thickness and the fiber dispersion that may follow. The electromechanical response is described in terms of some macroscopic measures, i.e. the action potential duration, the conduction velocity, the contractility and the contraction force. Our results suggest that growth reduces the action potential duration and conduction velocity, whilst it increases the contractility and contraction force, yielding an overall negative effect. In presence of fiber dispersion, the action potential duration and conduction velocity are not affected further, whilst the effect on the contractility and contraction force is enhanced.
Collapse
|
32
|
Wescott AP, Jafri MS, Lederer WJ, Williams GSB. Ryanodine receptor sensitivity governs the stability and synchrony of local calcium release during cardiac excitation-contraction coupling. J Mol Cell Cardiol 2016; 92:82-92. [PMID: 26827896 PMCID: PMC4807626 DOI: 10.1016/j.yjmcc.2016.01.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 11/27/2022]
Abstract
Calcium-induced calcium release is the principal mechanism that triggers the cell-wide [Ca(2+)]i transient that activates muscle contraction during cardiac excitation-contraction coupling (ECC). Here, we characterize this process in mouse cardiac myocytes with a novel mathematical action potential (AP) model that incorporates realistic stochastic gating of voltage-dependent L-type calcium (Ca(2+)) channels (LCCs) and sarcoplasmic reticulum (SR) Ca(2+) release channels (the ryanodine receptors, RyR2s). Depolarization of the sarcolemma during an AP stochastically activates the LCCs elevating subspace [Ca(2+)] within each of the cell's 20,000 independent calcium release units (CRUs) to trigger local RyR2 opening and initiate Ca(2+) sparks, the fundamental unit of triggered Ca(2+) release. Synchronization of Ca(2+) sparks during systole depends on the nearly uniform cellular activation of LCCs and the likelihood of local LCC openings triggering local Ca(2+) sparks (ECC fidelity). The detailed design and true SR Ca(2+) pump/leak balance displayed by our model permits investigation of ECC fidelity and Ca(2+) spark fidelity, the balance between visible (Ca(2+) spark) and invisible (Ca(2+) quark/sub-spark) SR Ca(2+) release events. Excess SR Ca(2+) leak is examined as a disease mechanism in the context of "catecholaminergic polymorphic ventricular tachycardia (CPVT)", a Ca(2+)-dependent arrhythmia. We find that that RyR2s (and therefore Ca(2+) sparks) are relatively insensitive to LCC openings across a wide range of membrane potentials; and that key differences exist between Ca(2+) sparks evoked during quiescence, diastole, and systole. The enhanced RyR2 [Ca(2+)]i sensitivity during CPVT leads to increased Ca(2+) spark fidelity resulting in asynchronous systolic Ca(2+) spark activity. It also produces increased diastolic SR Ca(2+) leak with some prolonged Ca(2+) sparks that at times become "metastable" and fail to efficiently terminate. There is a huge margin of safety for stable Ca(2+) handling within the cell and this novel mechanistic model provides insight into the molecular signaling characteristics that help maintain overall Ca(2+) stability even under the conditions of high SR Ca(2+) leak during CPVT. Finally, this model should provide tools for investigators to examine normal and pathological Ca(2+) signaling characteristics in the heart.
Collapse
Affiliation(s)
- Andrew P Wescott
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - M Saleet Jafri
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States; Molecular Neuroscience Department, George Mason University, Fairfax, VA, United States
| | - W J Lederer
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States
| | - George S B Williams
- Center for Biomedical Engineering and Technology & Department of Physiology, University of Maryland, Baltimore, Baltimore, MD, United States.
| |
Collapse
|
33
|
Augustin CM, Neic A, Liebmann M, Prassl AJ, Niederer SA, Haase G, Plank G. Anatomically accurate high resolution modeling of human whole heart electromechanics: A strongly scalable algebraic multigrid solver method for nonlinear deformation. JOURNAL OF COMPUTATIONAL PHYSICS 2016; 305:622-646. [PMID: 26819483 PMCID: PMC4724941 DOI: 10.1016/j.jcp.2015.10.045] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Electromechanical (EM) models of the heart have been used successfully to study fundamental mechanisms underlying a heart beat in health and disease. However, in all modeling studies reported so far numerous simplifications were made in terms of representing biophysical details of cellular function and its heterogeneity, gross anatomy and tissue microstructure, as well as the bidirectional coupling between electrophysiology (EP) and tissue distension. One limiting factor is the employed spatial discretization methods which are not sufficiently flexible to accommodate complex geometries or resolve heterogeneities, but, even more importantly, the limited efficiency of the prevailing solver techniques which are not sufficiently scalable to deal with the incurring increase in degrees of freedom (DOF) when modeling cardiac electromechanics at high spatio-temporal resolution. This study reports on the development of a novel methodology for solving the nonlinear equation of finite elasticity using human whole organ models of cardiac electromechanics, discretized at a high para-cellular resolution. Three patient-specific, anatomically accurate, whole heart EM models were reconstructed from magnetic resonance (MR) scans at resolutions of 220 μm, 440 μm and 880 μm, yielding meshes of approximately 184.6, 24.4 and 3.7 million tetrahedral elements and 95.9, 13.2 and 2.1 million displacement DOF, respectively. The same mesh was used for discretizing the governing equations of both electrophysiology (EP) and nonlinear elasticity. A novel algebraic multigrid (AMG) preconditioner for an iterative Krylov solver was developed to deal with the resulting computational load. The AMG preconditioner was designed under the primary objective of achieving favorable strong scaling characteristics for both setup and solution runtimes, as this is key for exploiting current high performance computing hardware. Benchmark results using the 220 μm, 440 μm and 880 μm meshes demonstrate efficient scaling up to 1024, 4096 and 8192 compute cores which allowed the simulation of a single heart beat in 44.3, 87.8 and 235.3 minutes, respectively. The efficiency of the method allows fast simulation cycles without compromising anatomical or biophysical detail.
Collapse
Affiliation(s)
| | - Aurel Neic
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Manfred Liebmann
- Institute for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria
| | - Anton J. Prassl
- Institute of Biophysics, Medical University of Graz, Graz, Austria
| | - Steven A. Niederer
- Dept. Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King’s College of London, London, United Kingdom
| | - Gundolf Haase
- Institute for Mathematics and Scientific Computing, Karl-Franzens-University Graz, Graz, Austria
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz, Graz, Austria
- Corresponding author (Gernot Plank)
| |
Collapse
|
34
|
Del Bianco F, Colli Franzone P, Scacchi S, Fassina L. Modelling the effect of thickness on the electromechanical properties of in vitro cardiac cultures: A simulation study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:29-33. [PMID: 26736193 DOI: 10.1109/embc.2015.7318293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nowadays, in vitro cardiac cultures offer a valid tool to study the bioelectrical activity and the biomechanics of the heart tissue. Modelling their properties could be helpful for researchers involved in this field. In this paper, we develop a three-dimensional electromechanical model to study how thickness affects the bioelectrical and biomechanical performances of an in vitro culture made of ventricular cells. In particular, by our in silico simulations we want to verify if thickness variations can be a key factor in modifying the response of the whole culture when this one is grown to become a cardiac patch. Therefore, for this parameter we choose three increasing values while keeping a fiber architecture among layers that is similar to the one of the in vivo heart but it is randomly stated at the beginning of each simulation. We prove that, independently from the selected architectures, the more thickness increases the more mechanical improvements are attained, but the more electrical problems may arise too.
Collapse
|
35
|
Del Bianco F, Colli Franzone P, Scacchi S, Fassina L. In silico modelling and analysis of the electrical and mechanical properties of in vitro cardiac cultures with different fiber architectures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:38-42. [PMID: 26736195 DOI: 10.1109/embc.2015.7318295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Today, in vitro cardiac cultures are widely exploited to investigate several aspects of the electromechanical behavior of the cardiac tissue. Thus, new forecasts may derive from modelling their properties. In particular, in this paper, we focus on the fiber architecture of cultures, i.e. on the way cellular sarcomeres are locally oriented, when they are designed to be cardiac patches. We employ a three-dimensional model to simulate the bioelectrical activity and the biomechanics of a multilayered culture made of ventricular cells and with four possible architectures consisting of: i) random fibers in all cells; ii) randomly rotating fibers among layers; iii) structurally rotating fibers from the bottom layer to the top one; iv) parallel fibers among layers. Our results suggest that the best configuration for a patch may be the architecture with structurally rotating fibers, which is the one that most approaches the anisotropic structure of the in vivo heart, thanks to its better electrical and mechanical performances.
Collapse
|
36
|
Crozier A, Augustin CM, Neic A, Prassl AJ, Holler M, Fastl TE, Hennemuth A, Bredies K, Kuehne T, Bishop MJ, Niederer SA, Plank G. Image-Based Personalization of Cardiac Anatomy for Coupled Electromechanical Modeling. Ann Biomed Eng 2016. [PMID: 26424476 DOI: 10.1007/sl0439-015-1474-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Computational models of cardiac electromechanics (EM) are increasingly being applied to clinical problems, with patient-specific models being generated from high fidelity imaging and used to simulate patient physiology, pathophysiology and response to treatment. Current structured meshes are limited in their ability to fully represent the detailed anatomical data available from clinical images and capture complex and varied anatomy with limited geometric accuracy. In this paper, we review the state of the art in image-based personalization of cardiac anatomy for biophysically detailed, strongly coupled EM modeling, and present our own tools for the automatic building of anatomically and structurally accurate patient-specific models. Our method relies on using high resolution unstructured meshes for discretizing both physics, electrophysiology and mechanics, in combination with efficient, strongly scalable solvers necessary to deal with the computational load imposed by the large number of degrees of freedom of these meshes. These tools permit automated anatomical model generation and strongly coupled EM simulations at an unprecedented level of anatomical and biophysical detail.
Collapse
Affiliation(s)
- A Crozier
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria
| | - C M Augustin
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria
| | - A Neic
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria
| | - A J Prassl
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria
| | - M Holler
- Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - T E Fastl
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - A Hennemuth
- Modeling and Simulation Group, Fraunhofer MEVIS, Bremen, Germany
| | - K Bredies
- Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - T Kuehne
- Non-Invasive Cardiac Imaging in Congenital Heart Disease Unit, Charité-Universitätsmedizin, Berlin, Germany
- German Heart Institute, Berlin, Germany
| | - M J Bishop
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - S A Niederer
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - G Plank
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria.
| |
Collapse
|
37
|
Taniguchi K, Utaki H, Yamamoto D, Himeno Y, Amano A. Influence of Activation Time on Hemodynamic Parameters: a Simulation Study. ADVANCED BIOMEDICAL ENGINEERING 2016. [DOI: 10.14326/abe.5.94] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
| | | | | | | | - Akira Amano
- Department of Life Sciences, Ritsumeikan University
| |
Collapse
|
38
|
Land S, Gurev V, Arens S, Augustin CM, Baron L, Blake R, Bradley C, Castro S, Crozier A, Favino M, Fastl TE, Fritz T, Gao H, Gizzi A, Griffith BE, Hurtado DE, Krause R, Luo X, Nash MP, Pezzuto S, Plank G, Rossi S, Ruprecht D, Seemann G, Smith NP, Sundnes J, Rice JJ, Trayanova N, Wang D, Jenny Wang Z, Niederer SA. Verification of cardiac mechanics software: benchmark problems and solutions for testing active and passive material behaviour. Proc Math Phys Eng Sci 2015; 471:20150641. [PMID: 26807042 PMCID: PMC4707707 DOI: 10.1098/rspa.2015.0641] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Models of cardiac mechanics are increasingly used to investigate cardiac physiology. These models are characterized by a high level of complexity, including the particular anisotropic material properties of biological tissue and the actively contracting material. A large number of independent simulation codes have been developed, but a consistent way of verifying the accuracy and replicability of simulations is lacking. To aid in the verification of current and future cardiac mechanics solvers, this study provides three benchmark problems for cardiac mechanics. These benchmark problems test the ability to accurately simulate pressure-type forces that depend on the deformed objects geometry, anisotropic and spatially varying material properties similar to those seen in the left ventricle and active contractile forces. The benchmark was solved by 11 different groups to generate consensus solutions, with typical differences in higher-resolution solutions at approximately 0.5%, and consistent results between linear, quadratic and cubic finite elements as well as different approaches to simulating incompressible materials. Online tools and solutions are made available to allow these tests to be effectively used in verification of future cardiac mechanics software.
Collapse
Affiliation(s)
- Sander Land
- Department of Biomedical Engineering, King's College London , London, UK
| | - Viatcheslav Gurev
- Thomas J. Watson Research Center, IBM Research, Yorktown Heights , NY 10598, USA
| | - Sander Arens
- Department of Physics and Astronomy , Ghent University , Ghent, Belgium
| | | | - Lukas Baron
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology , Karlsruhe, Germany
| | - Robert Blake
- Department of Biomedical Engineering and Institute for Computational Medicine , Johns Hopkins University , Baltimore, MD 21218, USA
| | - Chris Bradley
- Auckland Bioengineering Institute, University of Auckland , Auckland, New Zealand
| | - Sebastian Castro
- Department of Structural and Geotechnical Engineering , Pontifica Universidad Católica de Chile , Chile
| | - Andrew Crozier
- Institute of Biophysics, Medical University of Graz , Graz, Austria
| | - Marco Favino
- Center for Computational Medicine in Cardiology , Institute of Computational Science, Università della Svizzera italiana , Lugano, Switzerland
| | - Thomas E Fastl
- Department of Biomedical Engineering, King's College London , London, UK
| | - Thomas Fritz
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology , Karlsruhe, Germany
| | - Hao Gao
- School of Mathematics and Statistics, University of Glasgow , Glasgow, UK
| | - Alessio Gizzi
- Department of Engineering, Nonlinear Physics and Mathematical Modeling Lab , University Campus Bio-Medico of Rome , Rome, Italy
| | - Boyce E Griffith
- Interdisciplinary Applied Mathematics Center , University of North Carolina at Chapel Hill , Chapel Hill, NC, USA
| | - Daniel E Hurtado
- Department of Structural and Geotechnical Engineering , Pontifica Universidad Católica de Chile , Chile
| | - Rolf Krause
- Center for Computational Medicine in Cardiology , Institute of Computational Science, Università della Svizzera italiana , Lugano, Switzerland
| | - Xiaoyu Luo
- School of Mathematics and Statistics, University of Glasgow , Glasgow, UK
| | - Martyn P Nash
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand; Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | - Simone Pezzuto
- Center for Computational Medicine in Cardiology, Institute of Computational Science, Università della Svizzera italiana, Lugano, Switzerland; Simula Research Laboratory, Fornebu, Norway
| | - Gernot Plank
- Institute of Biophysics, Medical University of Graz , Graz, Austria
| | - Simone Rossi
- Civil and Environmental Engineering Department , Duke University , Durham, NC 27708-0287, USA
| | - Daniel Ruprecht
- Center for Computational Medicine in Cardiology , Institute of Computational Science, Università della Svizzera italiana , Lugano, Switzerland
| | - Gunnar Seemann
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology , Karlsruhe, Germany
| | - Nicolas P Smith
- Department of Biomedical Engineering, King's College London, London, UK; Department of Engineering Science, University of Auckland, Auckland, New Zealand
| | | | - J Jeremy Rice
- Thomas J. Watson Research Center, IBM Research, Yorktown Heights , NY 10598, USA
| | - Natalia Trayanova
- Department of Biomedical Engineering and Institute for Computational Medicine , Johns Hopkins University , Baltimore, MD 21218, USA
| | - Dafang Wang
- Department of Biomedical Engineering and Institute for Computational Medicine , Johns Hopkins University , Baltimore, MD 21218, USA
| | - Zhinuo Jenny Wang
- Auckland Bioengineering Institute, University of Auckland , Auckland, New Zealand
| | - Steven A Niederer
- Department of Biomedical Engineering, King's College London , London, UK
| |
Collapse
|
39
|
Winslow RL, Walker MA, Greenstein JL. Modeling calcium regulation of contraction, energetics, signaling, and transcription in the cardiac myocyte. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 8:37-67. [PMID: 26562359 DOI: 10.1002/wsbm.1322] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 12/11/2022]
Abstract
Calcium (Ca(2+)) plays many important regulatory roles in cardiac muscle cells. In the initial phase of the action potential, influx of Ca(2+) through sarcolemmal voltage-gated L-type Ca(2+) channels (LCCs) acts as a feed-forward signal that triggers a large release of Ca(2+) from the junctional sarcoplasmic reticulum (SR). This Ca(2+) drives heart muscle contraction and pumping of blood in a process known as excitation-contraction coupling (ECC). Triggered and released Ca(2+) also feed back to inactivate LCCs, attenuating the triggered Ca(2+) signal once release has been achieved. The process of ECC consumes large amounts of ATP. It is now clear that in a process known as excitation-energetics coupling, Ca(2+) signals exert beat-to-beat regulation of mitochondrial ATP production that closely couples energy production with demand. This occurs through transport of Ca(2+) into mitochondria, where it regulates enzymes of the tricarboxylic acid cycle. In excitation-signaling coupling, Ca(2+) activates a number of signaling pathways in a feed-forward manner. Through effects on their target proteins, these interconnected pathways regulate Ca(2+) signals in complex ways to control electrical excitability and contractility of heart muscle. In a process known as excitation-transcription coupling, Ca(2+) acting primarily through signal transduction pathways also regulates the process of gene transcription. Because of these diverse and complex roles, experimentally based mechanistic computational models are proving to be very useful for understanding Ca(2+) signaling in the cardiac myocyte.
Collapse
Affiliation(s)
- Raimond L Winslow
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Mark A Walker
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| | - Joseph L Greenstein
- Institute for Computational Medicine and Department of Biomedical Engineering, The Johns Hopkins University School of Medicine and Whiting School of Engineering, Baltimore, MD, USA
| |
Collapse
|
40
|
Crozier A, Augustin CM, Neic A, Prassl AJ, Holler M, Fastl TE, Hennemuth A, Bredies K, Kuehne T, Bishop MJ, Niederer SA, Plank G. Image-Based Personalization of Cardiac Anatomy for Coupled Electromechanical Modeling. Ann Biomed Eng 2015; 44:58-70. [PMID: 26424476 PMCID: PMC4690840 DOI: 10.1007/s10439-015-1474-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/24/2015] [Indexed: 11/26/2022]
Abstract
Computational models of cardiac electromechanics (EM) are increasingly being applied to clinical problems, with patient-specific models being generated from high fidelity imaging and used to simulate patient physiology, pathophysiology and response to treatment. Current structured meshes are limited in their ability to fully represent the detailed anatomical data available from clinical images and capture complex and varied anatomy with limited geometric accuracy. In this paper, we review the state of the art in image-based personalization of cardiac anatomy for biophysically detailed, strongly coupled EM modeling, and present our own tools for the automatic building of anatomically and structurally accurate patient-specific models. Our method relies on using high resolution unstructured meshes for discretizing both physics, electrophysiology and mechanics, in combination with efficient, strongly scalable solvers necessary to deal with the computational load imposed by the large number of degrees of freedom of these meshes. These tools permit automated anatomical model generation and strongly coupled EM simulations at an unprecedented level of anatomical and biophysical detail.
Collapse
Affiliation(s)
- A Crozier
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria
| | - C M Augustin
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria
| | - A Neic
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria
| | - A J Prassl
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria
| | - M Holler
- Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - T E Fastl
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - A Hennemuth
- Modeling and Simulation Group, Fraunhofer MEVIS, Bremen, Germany
| | - K Bredies
- Institute for Mathematics and Scientific Computing, University of Graz, Graz, Austria
| | - T Kuehne
- Non-Invasive Cardiac Imaging in Congenital Heart Disease Unit, Charité-Universitätsmedizin, Berlin, Germany
- German Heart Institute, Berlin, Germany
| | - M J Bishop
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - S A Niederer
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - G Plank
- Institute of Biophysics, Medical University of Graz, Harrachgasse 21/IV, 8010, Graz, Austria.
| |
Collapse
|
41
|
Choi YJ, Constantino J, Vedula V, Trayanova N, Mittal R. A New MRI-Based Model of Heart Function with Coupled Hemodynamics and Application to Normal and Diseased Canine Left Ventricles. Front Bioeng Biotechnol 2015; 3:140. [PMID: 26442254 PMCID: PMC4585083 DOI: 10.3389/fbioe.2015.00140] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/31/2015] [Indexed: 11/22/2022] Open
Abstract
A methodology for the simulation of heart function that combines an MRI-based model of cardiac electromechanics (CE) with a Navier–Stokes-based hemodynamics model is presented. The CE model consists of two coupled components that simulate the electrical and the mechanical functions of the heart. Accurate representations of ventricular geometry and fiber orientations are constructed from the structural magnetic resonance and the diffusion tensor MR images, respectively. The deformation of the ventricle obtained from the electromechanical model serves as input to the hemodynamics model in this one-way coupled approach via imposed kinematic wall velocity boundary conditions and at the same time, governs the blood flow into and out of the ventricular volume. The time-dependent endocardial surfaces are registered using a diffeomorphic mapping algorithm, while the intraventricular blood flow patterns are simulated using a sharp-interface immersed boundary method-based flow solver. The utility of the combined heart-function model is demonstrated by comparing the hemodynamic characteristics of a normal canine heart beating in sinus rhythm against that of the dyssynchronously beating failing heart. We also discuss the potential of coupled CE and hemodynamics models for various clinical applications.
Collapse
Affiliation(s)
- Young Joon Choi
- Department of Mechanical Engineering, Johns Hopkins University , Baltimore, MD , USA ; Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA
| | - Jason Constantino
- Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA ; Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Vijay Vedula
- Department of Mechanical Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Natalia Trayanova
- Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA ; Department of Biomedical Engineering, Johns Hopkins University , Baltimore, MD , USA
| | - Rajat Mittal
- Department of Mechanical Engineering, Johns Hopkins University , Baltimore, MD , USA ; Institute for Computational Medicine, Johns Hopkins University , Baltimore, MD , USA
| |
Collapse
|
42
|
Abstract
The heart pumps blood to maintain circulation and ensure the delivery of oxygenated blood to all the organs of the body. Mechanics play a critical role in governing and regulating heart function under both normal and pathological conditions. Biological processes and mechanical stress are coupled together in regulating myocyte function and extracellular matrix structure thus controlling heart function. Here, we offer a brief introduction to the biomechanics of left ventricular function and then summarize recent progress in the study of the effects of mechanical stress on ventricular wall remodeling and cardiac function as well as the effects of wall mechanical properties on cardiac function in normal and dysfunctional hearts. Various mechanical models to determine wall stress and cardiac function in normal and diseased hearts with both systolic and diastolic dysfunction are discussed. The results of these studies have enhanced our understanding of the biomechanical mechanism in the development and remodeling of normal and dysfunctional hearts. Biomechanics provide a tool to understand the mechanism of left ventricular remodeling in diastolic and systolic dysfunction and guidance in designing and developing new treatments.
Collapse
Affiliation(s)
- Andrew P. Voorhees
- Department of Mechanical Engineering, The University of Texas at San Antonio, Biomedical Engineering Program, UTSA-UTHSCSA
| | - Hai-Chao Han
- Department of Mechanical Engineering, The University of Texas at San Antonio, Biomedical Engineering Program, UTSA-UTHSCSA
| |
Collapse
|
43
|
Land S, Niederer SA. A Spatially Detailed Model of Isometric Contraction Based on Competitive Binding of Troponin I Explains Cooperative Interactions between Tropomyosin and Crossbridges. PLoS Comput Biol 2015; 11:e1004376. [PMID: 26262582 PMCID: PMC4532474 DOI: 10.1371/journal.pcbi.1004376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/03/2015] [Indexed: 01/20/2023] Open
Abstract
Biophysical models of cardiac tension development provide a succinct representation of our understanding of force generation in the heart. The link between protein kinetics and interactions that gives rise to high cooperativity is not yet fully explained from experiments or previous biophysical models. We propose a biophysical ODE-based representation of cross-bridge (XB), tropomyosin and troponin within a contractile regulatory unit (RU) to investigate the mechanisms behind cooperative activation, as well as the role of cooperativity in dynamic tension generation across different species. The model includes cooperative interactions between regulatory units (RU-RU), between crossbridges (XB-XB), as well more complex interactions between crossbridges and regulatory units (XB-RU interactions). For the steady-state force-calcium relationship, our framework predicts that: (1) XB-RU effects are key in shifting the half-activation value of the force-calcium relationship towards lower [Ca2+], but have only small effects on cooperativity. (2) XB-XB effects approximately double the duty ratio of myosin, but do not significantly affect cooperativity. (3) RU-RU effects derived from the long-range action of tropomyosin are a major factor in cooperative activation, with each additional unblocked RU increasing the rate of additional RU’s unblocking. (4) Myosin affinity for short (1–4 RU) unblocked stretches of actin of is very low, and the resulting suppression of force at low [Ca2+] is a major contributor in the biphasic force-calcium relationship. We also reproduce isometric tension development across mouse, rat and human at physiological temperature and pacing rate, and conclude that species differences require only changes in myosin affinity and troponin I/troponin C affinity. Furthermore, we show that the calcium dependence of the rate of tension redevelopment ktr is explained by transient blocking of RU’s by a temporary decrease in XB-RU effects. Force generation in cardiac muscle cells is driven by changes in calcium concentration. Relatively small changes in the calcium concentration over the course of a heart beat lead to the large changes in force required to fully contract and relax the heart. This is known as ‘cooperative activation’, and involves a complex interaction of several proteins involved in contraction. Current computer models which reproduce force generation often do not represent these processes explicitly, and stochastic approaches that do tend to require large amounts of computational power to solve, which limit the range of investigations in which they can be used. We have created an new computational model that captures the underlying physiological processes in more detail, and is more efficient than stochastic approaches, while still being able to run a large range of simulations. The model is able to explain the biological processes leading to the cooperative activation of muscle. In addition, the model reproduces how this cooperative activation translates to normal muscle function to generate force from changes in calcium across three different species.
Collapse
Affiliation(s)
- Sander Land
- Department of Biomedical Engineering, King’s College London, United Kingdom
- * E-mail:
| | - Steven A. Niederer
- Department of Biomedical Engineering, King’s College London, United Kingdom
| |
Collapse
|
44
|
Collins TA, Bergenholm L, Abdulla T, Yates J, Evans N, Chappell MJ, Mettetal JT. Modeling and Simulation Approaches for Cardiovascular Function and Their Role in Safety Assessment. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2015. [PMID: 26225237 PMCID: PMC4394617 DOI: 10.1002/psp4.18] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Systems pharmacology modeling and pharmacokinetic-pharmacodynamic (PK/PD) analysis of drug-induced effects on cardiovascular (CV) function plays a crucial role in understanding the safety risk of new drugs. The aim of this review is to outline the current modeling and simulation (M&S) approaches to describe and translate drug-induced CV effects, with an emphasis on how this impacts drug safety assessment. Current limitations are highlighted and recommendations are made for future effort in this vital area of drug research.
Collapse
Affiliation(s)
- T A Collins
- Drug Safety and Metabolism, AstraZeneca Alderley Park, Macclesfield, UK
| | | | - T Abdulla
- School of Engineering, University of Warwick UK
| | - Jwt Yates
- Oncology, AstraZeneca Alderley Park, Macclesfield, UK
| | - N Evans
- School of Engineering, University of Warwick UK
| | | | - J T Mettetal
- Drug Safety and Metabolism, AstraZeneca Waltham, Massachusetts, USA
| |
Collapse
|
45
|
Tøndel K, Land S, Niederer SA, Smith NP. Quantifying inter-species differences in contractile function through biophysical modelling. J Physiol 2015; 593:1083-111. [PMID: 25480801 DOI: 10.1113/jphysiol.2014.279232] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/28/2014] [Indexed: 11/08/2022] Open
Abstract
Animal models and measurements are frequently used to guide and evaluate clinical interventions. In this context, knowledge of inter-species differences in physiology is crucial for understanding the limitations and relevance of animal experimental assays for informing clinical applications. Extensive effort has been put into studying the structure and function of cardiac contractile proteins and how differences in these translate into the functional properties of muscles. However, integrating this knowledge into a quantitative description, formalising and highlighting inter-species differences both in the kinetics and in the regulation of physiological mechanisms, remains challenging. In this study we propose and apply a novel approach for the quantification of inter-species differences between mouse, rat and human. Assuming conservation of the fundamental physiological mechanisms underpinning contraction, biophysically based computational models are fitted to simulate experimentally recorded phenotypes from multiple species. The phenotypic differences between species are then succinctly quantified as differences in the biophysical model parameter values. This provides the potential of quantitatively establishing the human relevance of both animal-based experimental and computational models for application in a clinical context. Our results indicate that the parameters related to the sensitivity and cooperativity of calcium binding to troponin C and the activation and relaxation rates of tropomyosin/crossbridge binding kinetics differ most significantly between mouse, rat and human, while for example the reference tension, as expected, shows only minor differences between the species. Hence, while confirming expected inter-species differences in calcium sensitivity due to large differences in the observed calcium transients, our results also indicate more unexpected differences in the cooperativity mechanism. Specifically, the decrease in the unbinding rate of calcium to troponin C with increasing active tension was much lower for mouse than for rat and human. Our results also predicted crossbridge binding to be slowest in human and fastest in mouse.
Collapse
Affiliation(s)
- Kristin Tøndel
- Department of Biomedical Engineering, King's College London, St. Thomas' Hospital, Westminster Bridge Road, London, SE1 7EH, UK; Simula Research Laboratory, Martin Linges v. 17/25, Rolfsbukta 4B, Fornebu, 1364, Norway
| | | | | | | |
Collapse
|
46
|
Gurev V, Pathmanathan P, Fattebert JL, Wen HF, Magerlein J, Gray RA, Richards DF, Rice JJ. A high-resolution computational model of the deforming human heart. Biomech Model Mechanobiol 2015; 14:829-49. [PMID: 25567753 DOI: 10.1007/s10237-014-0639-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
|
47
|
Land S, Niederer SA, Lamata P, Smith NP. Improving the stability of cardiac mechanical simulations. IEEE Trans Biomed Eng 2014; 62:939-947. [PMID: 25474804 DOI: 10.1109/tbme.2014.2373399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the field of cardiac modeling, the mechanical action of the heart is often simulated using finite element methods. These simulations are becoming increasingly challenging as the computational domain is customized to a patient's anatomy, within which large heterogeneous tension gradients are generated via biophysical cell models which drive simulations of the cardiac pump cycle. The convergence of nonlinear solvers in simulations of large deformation mechanics depends on many factors. When extreme stress or irregular deformations are modeled, commonly used numerical methods can often fail to find a solution, which can prevent investigation of interesting parameter variations or use of models in a clinical context with high standards for robustness. This paper outlines a novel numerical method that is straightforward to implement and which significantly improves the stability of these simulations. The method involves adding a compressibility penalty to the standard incompressible formulation of large deformation mechanics. We compare the method's performance when used with both a direct discretization of the equations for incompressible solid mechanics, as well as the formulation based on an isochoric/deviatoric split of the deformation gradient. The addition of this penalty decreases the tendency for solutions to deviate from the incompressibility constraint, and significantly improves the ability of the Newton solver to find a solution. Additionally, our method maintains the expected order of convergence under mesh refinement, has nearly identical solutions for the pressure-volume relations, and stabilizes the solver to allow challenging simulations of both diastolic and systolic function on personalized patient geometries.
Collapse
Affiliation(s)
| | | | | | - Nicolas P Smith
- Department of Biomedical Engineering, King's College, London
| |
Collapse
|
48
|
Tanner BCW, Wang Y, Robbins J, Palmer BM. Kinetics of cardiac myosin isoforms in mouse myocardium are affected differently by presence of myosin binding protein-C. J Muscle Res Cell Motil 2014; 35:267-78. [PMID: 25287107 DOI: 10.1007/s10974-014-9390-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
Abstract
We tested whether cardiac myosin binding protein-C (cMyBP-C) affects myosin cross-bridge kinetics in the two cardiac myosin heavy chain (MyHC) isoforms. Mice lacking cMyBP-C (t/t) and transgenic controls (WT(t/t)) were fed L-thyroxine (T4) to induce 90/10% expression of α/β-MyHC. Non-transgenic (NTG) and t/t mice were fed 6-n-propyl-2-thiouracil (PTU) to induce 100% expression of β-MyHC. Ca(2+)-activated, chemically-skinned myocardium underwent length perturbation analysis with varying [MgATP] to estimate the MgADP release rate (k(-ADP)) and MgATP binding rate (k(+ATP)). Values for (k(-ADP)) were not significantly different between t/t(T4) (102.2 ± 7.0 s(-1)) and WT(t/t)(T4) (91.3 ± 8.9 s(-1)), but k(+ATP)) was lower in t/t(T4) (165.9 ± 12.5 mM(-1) s(-1)) compared to WT(t/t)(T4) (298.6 ± 15.7 mM(-1) s(-1), P < 0.01). In myocardium expressing β-MyHC, values for k(-ADP) were higher in t/t(PTU) (24.8 ± 1.0 s(-1)) compared to NTG(PTU) (15.6 ± 1.3 s(-1), P < 0.01), and k(+ATP) was not different. At saturating [MgATP], myosin detachment rate approximates k(-ADP), and detachment rate decreased as sarcomere length (SL) was increased in both t/t(T4) and WT(t/t)(T4) with similar sensitivities to SL. In myocardium expressing β-MyHC, detachment rate decreased more as SL increased in t/t(PTU) (21.5 ± 1.3 s(-1) at 2.2 μm and 13.3 ± 0.9 s(-1) at 3.3 μm) compared to NTGPTU (15.8 ± 0.3 s(-1) at 2.2 μm and 10.9 ± 0.3 s(-1) at 3.3 μm) as detected by repeated-measures ANOVA (P < 0.01). These findings suggest that cMyBP-C reduces MgADP release rate for β-MyHC, but not for α-MyHC, even as the number of cMyBP-C that overlap with the thin filament is reduced to zero. Therefore, cMyBP-C appears to affect β-MyHC kinetics independent of its interaction with the thin filament.
Collapse
Affiliation(s)
- Bertrand C W Tanner
- Department of Molecular Physiology and Biophysics, University of Vermont, 122 HSRF, 149 Beaumont Ave., Burlington, VT, 05405, USA
| | | | | | | |
Collapse
|
49
|
Land S, Niederer SA, Louch WE, Røe ÅT, Aronsen JM, Stuckey DJ, Sikkel MB, Tranter MH, Lyon AR, Harding SE, Smith NP. Computational modeling of Takotsubo cardiomyopathy: effect of spatially varying β-adrenergic stimulation in the rat left ventricle. Am J Physiol Heart Circ Physiol 2014; 307:H1487-96. [PMID: 25239804 PMCID: PMC4233305 DOI: 10.1152/ajpheart.00443.2014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
In Takotsubo cardiomyopathy, the left ventricle shows apical ballooning combined with basal hypercontractility. Both clinical observations in humans and recent experimental work on isolated rat ventricular myocytes suggest the dominant mechanisms of this syndrome are related to acute catecholamine overload. However, relating observed differences in single cells to the capacity of such alterations to result in the extreme changes in ventricular shape seen in Takotsubo syndrome is difficult. By using a computational model of the rat left ventricle, we investigate which mechanisms can give rise to the typical shape of the ventricle observed in this syndrome. Three potential dominant mechanisms related to effects of β-adrenergic stimulation were considered: apical-basal variation of calcium transients due to differences in L-type and sarco(endo)plasmic reticulum Ca2+-ATPase activation, apical-basal variation of calcium sensitivity due to differences in troponin I phosphorylation, and apical-basal variation in maximal active tension due to, e.g., the negative inotropic effects of p38 MAPK. Furthermore, we investigated the interaction of these spatial variations in the presence of a failing Frank-Starling mechanism. We conclude that a large portion of the apex needs to be affected by severe changes in calcium regulation or contractile function to result in apical ballooning, and smooth linear variation from apex to base is unlikely to result in the typical ventricular shape observed in this syndrome. A failing Frank-Starling mechanism significantly increases apical ballooning at end systole and may be an important additional factor underpinning Takotsubo syndrome.
Collapse
Affiliation(s)
- Sander Land
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Steven A Niederer
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Åsmund T Røe
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål, Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Daniel J Stuckey
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Markus B Sikkel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Matthew H Tranter
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alexander R Lyon
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Insitute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom; and
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; National Insitute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom; and
| | - Nicolas P Smith
- Department of Biomedical Engineering, King's College London, London, United Kingdom; Faculty of Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
Nordbø O, Lamata P, Land S, Niederer S, Aronsen JM, Louch WE, Sjaastad I, Martens H, Gjuvsland AB, Tøndel K, Torp H, Lohezic M, Schneider JE, Remme EW, Smith N, Omholt SW, Vik JO. A computational pipeline for quantification of mouse myocardial stiffness parameters. Comput Biol Med 2014; 53:65-75. [PMID: 25129018 DOI: 10.1016/j.compbiomed.2014.07.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/04/2014] [Accepted: 07/20/2014] [Indexed: 10/24/2022]
Abstract
The mouse is an important model for theoretical-experimental cardiac research, and biophysically based whole organ models of the mouse heart are now within reach. However, the passive material properties of mouse myocardium have not been much studied. We present an experimental setup and associated computational pipeline to quantify these stiffness properties. A mouse heart was excised and the left ventricle experimentally inflated from 0 to 1.44kPa in eleven steps, and the resulting deformation was estimated by echocardiography and speckle tracking. An in silico counterpart to this experiment was built using finite element methods and data on ventricular tissue microstructure from diffusion tensor MRI. This model assumed a hyperelastic, transversely isotropic material law to describe the force-deformation relationship, and was simulated for many parameter scenarios, covering the relevant range of parameter space. To identify well-fitting parameter scenarios, we compared experimental and simulated outcomes across the whole range of pressures, based partly on gross phenotypes (volume, elastic energy, and short- and long-axis diameter), and partly on node positions in the geometrical mesh. This identified a narrow region of experimentally compatible values of the material parameters. Estimation turned out to be more precise when based on changes in gross phenotypes, compared to the prevailing practice of using displacements of the material points. We conclude that the presented experimental setup and computational pipeline is a viable method that deserves wider application.
Collapse
Affiliation(s)
- Oyvind Nordbø
- Department of Mathematical Sciences and Technology, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Pablo Lamata
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Sander Land
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Steven Niederer
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Jan M Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Kirkeveien 166, 4th Floor Building 7, 0407 Oslo, Norway; Bjørknes College, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Kirkeveien 166, 4th Floor Building 7, 0407 Oslo, Norway; KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0407 Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital Ullevål and University of Oslo, Kirkeveien 166, 4th Floor Building 7, 0407 Oslo, Norway
| | - Harald Martens
- Department of Engineering Cybernetics, Faculty of Information Technology, Mathematics and Electrical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arne B Gjuvsland
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Kristin Tøndel
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Hans Torp
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Postboks 8905, Medisinsk teknisk forskningssenter, NO-7491 Trondheim, Norway
| | - Maelene Lohezic
- Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Welcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jurgen E Schneider
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Postboks 8905, Medisinsk teknisk forskningssenter, NO-7491 Trondheim, Norway
| | - Espen W Remme
- KG Jebsen Cardiac Research Center and Center for Heart Failure Research, University of Oslo, 0407 Oslo, Norway; Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Nicolas Smith
- Department of Biomedical Engineering, King's College London, St. Thomas׳ Hospital, Westminster Bridge Road, London SE17EH, UK
| | - Stig W Omholt
- Faculty of Medicine, Norwegian University of Science and Technology, P.O. Box 8905, N-7491 Trondheim, Norway
| | - Jon Olav Vik
- Department of Animal and Aquacultural Sciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway.
| |
Collapse
|