Cavaliere F, Lorenzetti S, Cozzini P. Molecular modelling methods in food safety: Bisphenols as case study.
Food Chem Toxicol 2020;
137:111116. [PMID:
31931072 DOI:
10.1016/j.fct.2020.111116]
[Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/02/2019] [Accepted: 01/02/2020] [Indexed: 12/26/2022]
Abstract
Bisphenol A (BPA), a synthetic compound widely used as a building block for polycarbonate plastics, has been declared in the European Union (EU) as a substance of very high concern (SVHC). A series of BPA alternatives and derivatives (bisphenols/BPs) with similar physical-chemical properties have been produced and used by companies for substituting it. To evaluate the estrogenic and androgenic binding activity of 26 BPs, a non-statistical in silico approach has been applied. The results of molecular docking analyses applied on six different nuclear receptors (NRs) have revealed that: i) some BPA metabolites could lower the harmful effects of BPA exposure; ii) BPS is a lower interactor for all NRs, but it does not appear safer at all for androgen receptor (AR), for which its binding activity is found similar to a pharmacological anti-androgen; iii) only a BP has been found as a safer compound for all NRs considered. Moreover, molecular dynamic simulation of three BPs on ERα have revealed that the presence of negative hydrophobic interactions could induce a decrease in receptor activity. Overall, the present results demonstrate that in silico methods could be a valid approach to screen estrogenic and androgenic activity of food contact materials (FCMs).
Collapse