1
|
Tian J, Jia K, Wang T, Guo L, Xuan Z, Michaelis EK, Swerdlow RH, Du H. Hippocampal transcriptome-wide association study and pathway analysis of mitochondrial solute carriers in Alzheimer's disease. Transl Psychiatry 2024; 14:250. [PMID: 38858380 PMCID: PMC11164935 DOI: 10.1038/s41398-024-02958-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
The etiopathogenesis of late-onset Alzheimer's disease (AD) is increasingly recognized as the result of the combination of the aging process, toxic proteins, brain dysmetabolism, and genetic risks. Although the role of mitochondrial dysfunction in the pathogenesis of AD has been well-appreciated, the interaction between mitochondrial function and genetic variability in promoting dementia is still poorly understood. In this study, by tissue-specific transcriptome-wide association study (TWAS) and further meta-analysis, we examined the genetic association between mitochondrial solute carrier family (SLC25) genes and AD in three independent cohorts and identified three AD-susceptibility genes, including SLC25A10, SLC25A17, and SLC25A22. Integrative analysis using neuroimaging data and hippocampal TWAS-predicted gene expression of the three susceptibility genes showed an inverse correlation of SLC25A22 with hippocampal atrophy rate in AD patients, which outweighed the impacts of sex, age, and apolipoprotein E4 (ApoE4). Furthermore, SLC25A22 downregulation demonstrated an association with AD onset, as compared with the other two transcriptome-wide significant genes. Pathway and network analysis related hippocampal SLC25A22 downregulation to defects in neuronal function and development, echoing the enrichment of SLC25A22 expression in human glutamatergic neurons. The most parsimonious interpretation of the results is that we have identified AD-susceptibility genes in the SLC25 family through the prediction of hippocampal gene expression. Moreover, our findings mechanistically yield insight into the mitochondrial cascade hypothesis of AD and pave the way for the future development of diagnostic tools for the early prevention of AD from a perspective of precision medicine by targeting the mitochondria-related genes.
Collapse
Affiliation(s)
- Jing Tian
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Kun Jia
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Tienju Wang
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Lan Guo
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX, USA
| | - Elias K Michaelis
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Russell H Swerdlow
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heng Du
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA.
- Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Gushi S, Balis V. Mitochondrial Inherited Disorders and their Correlation with Neurodegenerative Diseases. Endocr Metab Immune Disord Drug Targets 2024; 24:381-393. [PMID: 37937560 DOI: 10.2174/0118715303250271231018103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
Mitochondria are essential organelles for the survival of a cell because they produce energy. The cells that need more mitochondria are neurons because they perform a variety of tasks that are necessary to support brain homeostasis. The build-up of abnormal proteins in neurons, as well as their interactions with mitochondrial proteins, or MAM proteins, cause serious health issues. As a result, mitochondrial functions, such as mitophagy, are impaired, resulting in the disorders described in this review. They are also due to mtDNA mutations, which alter the heritability of diseases. The topic of disease prevention, as well as the diagnosis, requires further explanation and exploration. Finally, there are treatments that are quite promising, but more detailed research is needed.
Collapse
Affiliation(s)
- Sofjana Gushi
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| | - Vasileios Balis
- Department of Health Science and Biomedical Science, Metropolitan College - Thessaloniki Campus, Thessaloniki, Greece
| |
Collapse
|
3
|
The Proteome of Neuromelanin Granules in Dementia with Lewy Bodies. Cells 2022; 11:cells11223538. [PMID: 36428966 PMCID: PMC9688080 DOI: 10.3390/cells11223538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Neuromelanin granules (NMGs) are organelle-like structures present in the human substantia nigra pars compacta. In addition to neuromelanin, NMGs contain proteins, lipids and metals. As NMG-containing dopaminergic neurons are preferentially lost in Parkinson's disease and dementia with Lewy bodies (DLB), it is assumed that NMGs may play a role in neurodegenerative processes. Until now, this role is not completely understood and needs further investigation. We therefore set up an exploratory proteomic study to identify differences in the proteomic profile of NMGs from DLB patients (n = 5) compared to healthy controls (CTRL, n = 5). We applied a laser microdissection and mass-spectrometry-based approach, in which we used targeted mass spectrometric experiments for validation. In NMG-surrounding (SNSurr.) tissue of DLB patients, we found evidence for ongoing oxidative damage and an impairment of protein degradation. As a potentially disease-related mechanism, we found α-synuclein and protein S100A9 to be enriched in NMGs of DLB cases, while the abundance of several ribosomal proteins was significantly decreased. As S100A9 is known to be able to enhance the formation of toxic α-synuclein fibrils, this finding points towards an involvement of NMGs in pathogenesis, however the exact role of NMGs as either neuroprotective or neurotoxic needs to be further investigated. Nevertheless, our study provides evidence for an impairment of protein degradation, ongoing oxidative damage and accumulation of potentially neurotoxic protein aggregates to be central mechanisms of neurodegeneration in DLB.
Collapse
|
4
|
Mammarella N, Gatti M, Ceccato I, Di Crosta A, Di Domenico A, Palumbo R. The Protective Role of Neurogenetic Components in Reducing Stress-Related Effects during Spaceflights: Evidence from the Age-Related Positive Memory Approach. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081176. [PMID: 36013355 PMCID: PMC9410359 DOI: 10.3390/life12081176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/17/2022]
Abstract
Fighting stress-related effects during spaceflight is crucial for a successful mission. Emotional, motivational, and cognitive mechanisms have already been shown to be involved in the decrease of negative emotions. However, emerging evidence is pointing to a neurogenetic profile that may render some individuals more prone than others to focusing on positive information in memory and increasing affective health. The relevance for adaptation to the space environment and the interaction with other stressors such as ionizing radiations is discussed. In particular, to clarify this approach better, we will draw from the psychology and aging literature data. Subsequently, we report on studies on candidate genes for sensitivity to positive memories. We review work on the following candidate genes that may be crucial in adaptation mechanisms: ADRA2B, COMT, 5HTTLPR, CB1, and TOMM40. The final aim is to show how the study of genetics and cell biology of positive memory can help us to reveal the underlying bottom-up pathways to also increasing positive effects during a space mission.
Collapse
Affiliation(s)
- Nicola Mammarella
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
- Correspondence:
| | - Matteo Gatti
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Irene Ceccato
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy;
| | - Adolfo Di Crosta
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Alberto Di Domenico
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| | - Rocco Palumbo
- Department of Psychological Sciences, Health and Territory, University G. d’Annunzio of Chieti-Pescara, 66100 Chieti, Italy; (M.G.); (A.D.C.); (A.D.D.); (R.P.)
| |
Collapse
|
5
|
Brunetti D, Catania A, Viscomi C, Deleidi M, Bindoff LA, Ghezzi D, Zeviani M. Role of PITRM1 in Mitochondrial Dysfunction and Neurodegeneration. Biomedicines 2021; 9:biomedicines9070833. [PMID: 34356897 PMCID: PMC8301332 DOI: 10.3390/biomedicines9070833] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/19/2022] Open
Abstract
Mounting evidence shows a link between mitochondrial dysfunction and neurodegenerative disorders, including Alzheimer Disease. Increased oxidative stress, defective mitodynamics, and impaired oxidative phosphorylation leading to decreased ATP production, can determine synaptic dysfunction, apoptosis, and neurodegeneration. Furthermore, mitochondrial proteostasis and the protease-mediated quality control system, carrying out degradation of potentially toxic peptides and misfolded or damaged proteins inside mitochondria, are emerging as potential pathogenetic mechanisms. The enzyme pitrilysin metallopeptidase 1 (PITRM1) is a key player in these processes; it is responsible for degrading mitochondrial targeting sequences that are cleaved off from the imported precursor proteins and for digesting a mitochondrial fraction of amyloid beta (Aβ). In this review, we present current evidence obtained from patients with PITRM1 mutations, as well as the different cellular and animal models of PITRM1 deficiency, which points toward PITRM1 as a possible driving factor of several neurodegenerative conditions. Finally, we point out the prospect of new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Dario Brunetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy;
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy;
| | - Alessia Catania
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy;
| | - Carlo Viscomi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy;
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany;
| | - Laurence A. Bindoff
- Neuro-SysMed, Center of Excellence for Clinical Research in Neurological Diseases, Haukeland University Hospital, N-5021 Bergen, Norway;
- Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy;
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
- Correspondence: (D.G.); (M.Z.)
| | - Massimo Zeviani
- Department of Neurosciences, University of Padova, 35128 Padova, Italy
- Venetian Institute of Molecular Medicine, 35128 Padova, Italy
- Correspondence: (D.G.); (M.Z.)
| |
Collapse
|
6
|
Doblado L, Lueck C, Rey C, Samhan-Arias AK, Prieto I, Stacchiotti A, Monsalve M. Mitophagy in Human Diseases. Int J Mol Sci 2021; 22:ijms22083903. [PMID: 33167334 PMCID: PMC8069949 DOI: 10.3390/ijms22083903] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mitophagy is a selective autophagic process, essential for cellular homeostasis, that eliminates dysfunctional mitochondria. Activated by inner membrane depolarization, it plays an important role during development and is fundamental in highly differentiated post-mitotic cells that are highly dependent on aerobic metabolism, such as neurons, muscle cells, and hepatocytes. Both defective and excessive mitophagy have been proposed to contribute to age-related neurodegenerative diseases, such as Parkinson’s and Alzheimer’s diseases, metabolic diseases, vascular complications of diabetes, myocardial injury, muscle dystrophy, and liver disease, among others. Pharmacological or dietary interventions that restore mitophagy homeostasis and facilitate the elimination of irreversibly damaged mitochondria, thus, could serve as potential therapies in several chronic diseases. However, despite extraordinary advances in this field, mainly derived from in vitro and preclinical animal models, human applications based on the regulation of mitochondrial quality in patients have not yet been approved. In this review, we summarize the key selective mitochondrial autophagy pathways and their role in prevalent chronic human diseases and highlight the potential use of specific interventions.
Collapse
Affiliation(s)
- Laura Doblado
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Lueck
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Claudia Rey
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
| | - Alejandro K. Samhan-Arias
- Department of Biochemistry, Universidad Autónoma de Madrid e Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain;
| | - Ignacio Prieto
- Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz, Isaac Peral 42, 28015 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, Universita’ Degli Studi di Milano, Via Mangiagalli 31, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
- Correspondence: (A.S.); (M.M.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain; (L.D.); (C.L.); (C.R.)
- Correspondence: (A.S.); (M.M.)
| |
Collapse
|
7
|
Watson CN, Belli A, Di Pietro V. Small Non-coding RNAs: New Class of Biomarkers and Potential Therapeutic Targets in Neurodegenerative Disease. Front Genet 2019; 10:364. [PMID: 31080456 PMCID: PMC6497742 DOI: 10.3389/fgene.2019.00364] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative diseases (NDs) are becoming increasingly prevalent in the world, with an aging population. In the last few decades, due to the devastating nature of these diseases, the research of biomarkers has become crucial to enable adequate treatments and to monitor the progress of disease. Currently, gene mutations, CSF and blood protein markers together with the neuroimaging techniques are the most used diagnostic approaches. However, despite the efforts in the research, conflicting data still exist, highlighting the need to explore new classes of biomarkers, particularly at early stages. Small non-coding RNAs (MicroRNA, Small nuclear RNA, Small nucleolar RNA, tRNA derived small RNA and Piwi-interacting RNA) can be considered a "relatively" new class of molecule that have already proved to be differentially regulated in many NDs, hence they represent a new potential class of biomarkers to be explored. In addition, understanding their involvement in disease development could depict the underlying pathogenesis of particular NDs, so novel treatment methods that act earlier in disease progression can be developed. This review aims to describe the involvement of small non-coding RNAs as biomarkers of NDs and their potential role in future clinical applications.
Collapse
Affiliation(s)
- Callum N. Watson
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Antonio Belli
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- Neuroscience and Ophthalmology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, Queen Elizabeth Hospital Birmingham, Birmingham, United Kingdom
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| |
Collapse
|
8
|
Tewari D, Stankiewicz AM, Mocan A, Sah AN, Tzvetkov NT, Huminiecki L, Horbańczuk JO, Atanasov AG. Ethnopharmacological Approaches for Dementia Therapy and Significance of Natural Products and Herbal Drugs. Front Aging Neurosci 2018; 10:3. [PMID: 29483867 PMCID: PMC5816049 DOI: 10.3389/fnagi.2018.00003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 01/08/2018] [Indexed: 12/21/2022] Open
Abstract
Dementia is a clinical syndrome wherein gradual decline of mental and cognitive capabilities of an afflicted person takes place. Dementia is associated with various risk factors and conditions such as insufficient cerebral blood supply, toxin exposure, mitochondrial dysfunction, oxidative damage, and often coexisting with some neurodegenerative disorders such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD). Although there are well-established (semi-)synthetic drugs currently used for the management of AD and AD-associated dementia, most of them have several adverse effects. Thus, traditional medicine provides various plant-derived lead molecules that may be useful for further medical research. Herein we review the worldwide use of ethnomedicinal plants in dementia treatment. We have explored a number of recognized databases by using keywords and phrases such as “dementia”, “Alzheimer's,” “traditional medicine,” “ethnopharmacology,” “ethnobotany,” “herbs,” “medicinal plants” or other relevant terms, and summarized 90 medicinal plants that are traditionally used to treat dementia. Moreover, we highlight five medicinal plants or plant genera of prime importance and discuss the physiological effects, as well as the mechanism of action of their major bioactive compounds. Furthermore, the link between mitochondrial dysfunction and dementia is also discussed. We conclude that several drugs of plant origin may serve as promising therapeutics for the treatment of dementia, however, pivotal evidence for their therapeutic efficacy in advanced clinical studies is still lacking.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Adrian M Stankiewicz
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Andrei Mocan
- Department of Pharmaceutical Botany, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,ICHAT and Institute for Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Archana N Sah
- Department of Pharmaceutical Sciences, Faculty of Technology, Kumaun University, Nainital, India
| | - Nikolay T Tzvetkov
- Department of Molecular Biology and Biochemical Pharmacology, Institute of Molecular Biology Roumen Tsanev, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Lukasz Huminiecki
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Jarosław O Horbańczuk
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Breeding of the Polish Academy of Sciences, Jastrzebiec, Poland.,Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Chang CC, Li HH, Chang YT, Ho YJ, Hsieh LJ, Chiu PY, Cheng YS, Lin CL, Lai TJ. Aβ exacerbates α-synuclein-induced neurotoxicity through impaired insulin signaling in α-synuclein-overexpressed human SK-N-MC neuronal cells. CNS Neurosci Ther 2017; 24:47-57. [PMID: 29092095 DOI: 10.1111/cns.12772] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022] Open
Abstract
AIM α-Synuclein (αSyn) is known as a small soluble protein abundantly expressed in neuronal cells. Although its physiological role is still unclear, the aggregation of αSyn has been recognized as responsible for some neurodegenerative disorders such as dementia with Lewy bodies (DLB). In most cases, intracellular abnormal aggregates are caused by protein-coding mutations that alter primary structure and therefore increase propensity toward aggregation. However, no pathogenic alterations or polymorphisms in αSyn are found in DLB patients so far, suggesting genetic mutations may not play a major role in DLB pathogenesis. In contrast, emerging evidence reveals that amyloid β (Aβ) may contribute to aggregate formation and exacerbate neurotoxicity of αSyn. However, the underlying mechanism of action has remained unclear. METHODS To investigate molecular pathways involved in Aβ-mediated αSyn pathology, we established an in vitro model for inducible αSyn overexpression in SK-N-MC human neuronal cells. RESULTS Our results demonstrated that Aβ treatment in αSyn-overexpressed neuronal cells significantly increases αSyn intracellular aggregation and cytotoxicity. Moreover, Aβ also caused AMP-activated protein kinase (AMPK) inhibition and impaired insulin sensitivity, which leads to significant downregulation of nuclear factor erythroid 2-related factor 2 (NRF2)/heme oxygenase 1 (HO-1) antioxidant signaling to elicit αSyn aggregation. CONCLUSIONS This raised the possibility that insulin resistance could be one of the causative factors of αSyn toxicity, and the strategies for insulin sensitization may have therapeutic potential for synucleinopathies including DLB.
Collapse
Affiliation(s)
- Ching-Chi Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hsin-Hua Li
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yen-Ting Chang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Ying-Jui Ho
- Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
| | - Ling-Jia Hsieh
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Pai-Yi Chiu
- Department of Neurology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yu-Shih Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Te-Jen Lai
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Psychiatry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
10
|
Arshad AR, Sulaiman SA, Saperi AA, Jamal R, Mohamed Ibrahim N, Abdul Murad NA. MicroRNAs and Target Genes As Biomarkers for the Diagnosis of Early Onset of Parkinson Disease. Front Mol Neurosci 2017; 10:352. [PMID: 29163029 PMCID: PMC5671573 DOI: 10.3389/fnmol.2017.00352] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Among the neurodegenerative disorders, Parkinson's disease (PD) ranks as the second most common disorder with a higher prevalence in individuals aged over 60 years old. Younger individuals may also be affected with PD which is known as early onset PD (EOPD). Despite similarities between the characteristics of EOPD and late onset PD (LODP), EOPD patients experience much longer disease manifestations and poorer quality of life. Although some individuals are more prone to have EOPD due to certain genetic alterations, the molecular mechanisms that differentiate between EOPD and LOPD remains unclear. Recent findings in PD patients revealed that there were differences in the genetic profiles of PD patients compared to healthy controls, as well as between EOPD and LOPD patients. There were variants identified that correlated with the decline of cognitive and motor symptoms as well as non-motor symptoms in PD. There were also specific microRNAs that correlated with PD progression, and since microRNAs have been shown to be involved in the maintenance of neuronal development, mitochondrial dysfunction and oxidative stress, there is a strong possibility that these microRNAs can be potentially used to differentiate between subsets of PD patients. PD is mainly diagnosed at the late stage, when almost majority of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers for early detection of PD is important. Given that miRNAs are crucial in controlling the gene expression, these regulatory microRNAs and their target genes could be used as biomarkers for early diagnosis of PD. In this article, we discussed the genes involved and their regulatory miRNAs, regarding their roles in PD progression, based on the findings of significantly altered microRNAs in EOPD studies. We also discussed the potential of these miRNAs as molecular biomarkers for early diagnosis.
Collapse
Affiliation(s)
- Ahmad R. Arshad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Siti A. Sulaiman
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Amalia A. Saperi
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Rahman Jamal
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, UKM Medical Centre, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| | - Nor Azian Abdul Murad
- UKM Medical Centre, UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Malaysia
| |
Collapse
|