1
|
Ming L, Qu Y, Wang Z, Dong L, Li Y, Liu F, Wang Q, Zhang D, Li Z, Zhou Z, Shang F, Xie X. Small Extracellular Vesicles Laden Oxygen-Releasing Thermosensitive Hydrogel for Enhanced Antibacterial Therapy against Anaerobe-Induced Periodontitis Alveolar Bone Defect. ACS Biomater Sci Eng 2024; 10:932-945. [PMID: 38275448 DOI: 10.1021/acsbiomaterials.3c00493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Periodontitis is a bacterially induced chronic destructive inflammatory disease that leads to irreversible destruction of the tooth supporting structure, including connective tissue destruction, bone resorption, and even tooth loss. Until now, there has been no effective treatment to repair inflammatory bone loss in periodontitis. Recently, small extracellular vesicles (sEVs) emerged as the essential paracrine factors of mesenchymal stem cells (MSCs) that mediated tissue regeneration. However, limitations of antimicrobial activity associated with the use of sEVs have led to the urgency of new alternative strategies. Currently, we investigated the potential of a biocompatible oxygen-releasing thermosensitive hydrogel laded with sEVs secreted by bone marrow MSCs (BMMSCs) for the alveolar bone defect in periodontitis. The hydrogel composed of different polymers such as chitosan (CS), poloxamer 407 (P407), and cross-linked hyaluronic acid (c-HA) conglomerating is a kind of nanoporous structure material. Then, the gel matrix further encapsulated sEVs and calcium peroxide nanoparticles to realize the control of sEVs and oxygen release. Furthermore, ascorbic acid was added to achieve the REDOX equilibrium and acid-base equilibrium. The experiments in vivo and in vitro proved its good biocompatibility and effectively inhibited the growth of the periodontal main anaerobe, relieved periodontal pocket anaerobic infections, and promoted the periodontal defect regeneration. Therefore, this finding demonstrated that it was a promising approach for combating anaerobic pathogens with enhanced and selective properties in periodontal diseases, even in other bacteria-induced infections, for future clinical application.
Collapse
Affiliation(s)
- Leiguo Ming
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Yanling Qu
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Zhe Wang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Lingjuan Dong
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Yinghui Li
- Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fen Liu
- Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi Province, China
| | - Qingxia Wang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Dan Zhang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Zhifeng Li
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibetan Military Command, Lhasa 850007, Tibet, China
| | - Fengqing Shang
- Shaanxi Zhonghong Institute of Regenerative Medicine, Xi'an 710003, Shaanxi Province, China
- Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, China
| |
Collapse
|
2
|
Özçelik H, Batool F, Corre M, Garlaschelli A, Conzatti G, Stutz C, Petit C, Delpy E, Zal F, Leize-Zal E, Huck O. Characterization of a hyaluronic acid-based hydrogel containing an extracellular oxygen carrier (M101) for periodontitis treatment: An in vitro study. Int J Pharm 2021; 605:120810. [PMID: 34144138 DOI: 10.1016/j.ijpharm.2021.120810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 11/30/2022]
Abstract
Periodontitis is an inflammatory disease associated with anaerobic bacteria leading to the destruction of tooth-supporting tissues. Porphyromonas gingivalis is a keystone anaerobic pathogen involved in the development of severe lesions. Periodontal treatment aims to suppress subgingival biofilms and to restore tissue homeostasis. However, hypoxia impairs wound healing and promotes bacterial growth within periodontal pocket. This study aimed to evaluate the potential of local oxygen delivery through the local application of a hydrogel containing Arenicola marina's hemoglobin (M101). To this end, a hydrogel (xanthan (2%), hyaluronic acid (1%)) containing M101 (1-2 g/L) (Xn(2%)-HA(1%)-M101) was prepared and characterized. Rheological tests revealed the occurrence of high deformation without the loss of elastic properties. Dialysis experiment revealed that incorporation of M101 within the gel did not modify its oxygen transportation properties. Samples of release media of the gels (1 g/L (10%) and 2 g/L (10%) M101) decreased significantly the growth of P. gingivalis after 24 h validating its antibacterial effect. Metabolic activity measurement confirmed the cytocompatibility of Xn(2%)-HA(1%)-M101. This study suggests the therapeutic interest of Xn(2%)-HA(1%)-M101 gel to optimize treatment of periodontitis with a non-invasive approach.
Collapse
Affiliation(s)
- Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | | | | | - Guillaume Conzatti
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Céline Stutz
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France
| | - Catherine Petit
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France; Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Eric Delpy
- Hemarina SA, Aéropôle centre, 29600 Morlaix, France
| | - Franck Zal
- Hemarina SA, Aéropôle centre, 29600 Morlaix, France
| | | | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France; Université de Strasbourg, Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, 67000 Strasbourg, France; Pôle de médecine et chirurgie bucco-dentaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
3
|
A therapeutic oxygen carrier isolated from Arenicola marina decreased P. gingivalis induced inflammation and tissue destruction. Sci Rep 2020; 10:14745. [PMID: 32901057 PMCID: PMC7479608 DOI: 10.1038/s41598-020-71593-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The control of inflammation and infection is crucial for periodontal wound healing and regeneration. M101, an oxygen carrier derived from Arenicola marina, was tested for its anti-inflammatory and anti-infectious potential based on its anti-oxidative and tissue oxygenation properties. In vitro, no cytotoxicity was observed in oral epithelial cells (EC) treated with M101. M101 (1 g/L) reduced significantly the gene expression of pro-inflammatory markers such as TNF-α, NF-κΒ and RANKL in P. gingivalis-LPS stimulated and P. gingivalis-infected EC. The proteome array revealed significant down-regulation of pro-inflammatory cytokines (IL-1β and IL-8) and chemokine ligands (RANTES and IP-10), and upregulation of pro-healing mediators (PDGF-BB, TGF-β1, IL-10, IL-2, IL-4, IL-11 and IL-15) and, extracellular and immune modulators (TIMP-2, M-CSF and ICAM-1). M101 significantly increased the gene expression of Resolvin-E1 receptor. Furthermore, M101 treatment reduced P. gingivalis biofilm growth over glass surface, observed with live/dead analysis and by decreased P. gingivalis 16 s rRNA expression (51.7%) (p < 0.05). In mice, M101 reduced the clinical abscess size (50.2%) in P. gingivalis-induced calvarial lesion concomitant with a decreased inflammatory score evaluated through histomorphometric analysis, thus, improving soft tissue and bone healing response. Therefore, M101 may be a novel therapeutic agent that could be beneficial in the management of P. gingivalis associated diseases.
Collapse
|