1
|
Boffano M, Ratto N, Conti A, Pellegrino P, Rossi L, Perale G, Piana R. A Preliminary Study on the Mechanical Reliability and Regeneration Capability of Artificial Bone Grafts in Oncologic Cases, With and Without Osteosynthesis. J Clin Med 2020; 9:jcm9051388. [PMID: 32397222 PMCID: PMC7291150 DOI: 10.3390/jcm9051388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/25/2022] Open
Abstract
Several bone grafts are available for clinical use, each with their own peculiar biological and mechanical properties. A new bone graft was obtained by combining mineral structures from natural bovine bones with bioresorbable polymers and cellular nutrients. The study aims to evaluate the clinical, biological and structural properties of this bone graft and its reliability in orthopedic oncology. 23 adult patients (age range 18–85 years) were treated between October 2016 and December 2018; the oncologicdiagnoses were heterogeneous. After surgical curettage and bone grafting, a clinical-radiological follow up was conducted. Radiographs were used to evaluate graft integration according to the usual bone healing and oncologic follow up. Local complications (infection, local recurrence, wound dehiscence, fracture or early reabsorption) were evaluated. The mean followup was of 18.34 ± 4.83 months. No fracture or infection occurred. One case of patellar Giant Cell Tumor (GCT) and one of proximal tibia low-grade chondrosarcoma recurred after about one year. Two wound dehiscences occurred (one required a local flap). Follow-up X-rays showed good to excellent graft integration in most patients (20 out of 21). The investigated graft has a mechanical and structural function that can allow early weight-bearing and avoid a preventive bone fixation (only needed in four patients in this series). The graft blocks are different for shapes and dimensions, but they can be customized by the producer or sawcut by the surgeon in the operating theatre to fit the residual bone cavity. The complication rate was low, and a rapid integration was observed with no inflammatory reaction in the surrounding tissues. Further studies are mandatory to confirm these promising results.
Collapse
Affiliation(s)
- Michele Boffano
- Oncologic Orthopaedic Division, Department of Orthopaedic and Traumatology, Orthopaedic and Trauma Center, Città della Salute e della Scienza, University of Turin, 10126 Turin, Italy; (M.B.); (N.R.); (P.P.); (R.P.)
| | - Nicola Ratto
- Oncologic Orthopaedic Division, Department of Orthopaedic and Traumatology, Orthopaedic and Trauma Center, Città della Salute e della Scienza, University of Turin, 10126 Turin, Italy; (M.B.); (N.R.); (P.P.); (R.P.)
| | - Andrea Conti
- Oncologic Orthopaedic Division, Department of Orthopaedic and Traumatology, Orthopaedic and Trauma Center, Città della Salute e della Scienza, University of Turin, 10126 Turin, Italy; (M.B.); (N.R.); (P.P.); (R.P.)
- Department of Orthopaedic and Traumatology, University of Turin, 10126 Turin, Italy
- Correspondence: ; Tel.: +39-0116933229; Fax: +39-0116933270
| | - Pietro Pellegrino
- Oncologic Orthopaedic Division, Department of Orthopaedic and Traumatology, Orthopaedic and Trauma Center, Città della Salute e della Scienza, University of Turin, 10126 Turin, Italy; (M.B.); (N.R.); (P.P.); (R.P.)
| | - Laura Rossi
- Clinical Research Coordinator, Fondazione per la ricerca sui tumori dell’apparato muscoloscheletrico e rari Onlus, 10143, Turin, Italy;
| | - Giuseppe Perale
- Industrie Biomediche Insubri SA, via Cantonale 67, 6805 Mezzovico-Vira, Switzerland;
- Faculty of Biomedical Sciences, University of Southern Switzerland (USI), Via G. Buffi 13, 6900 Lugano, Switzerland
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstrasse 13, 1200 Vienna, Austria
| | - Raimondo Piana
- Oncologic Orthopaedic Division, Department of Orthopaedic and Traumatology, Orthopaedic and Trauma Center, Città della Salute e della Scienza, University of Turin, 10126 Turin, Italy; (M.B.); (N.R.); (P.P.); (R.P.)
| |
Collapse
|
2
|
Composite Xenohybrid Bovine Bone-Derived Scaffold as Bone Substitute for the Treatment of Tibial Plateau Fractures. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9132675] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Tibial plateau fractures represent a common challenge for orthopaedic surgeons, sometimes representing complex cases to manage, where augmentation using bone grafts is required for stabilisation. Autologous iliac bone graft (AIBG) is the current gold standard for bone grafting. In order to overcome limitations related to the procedure, alternative strategies, like allogenic and xenogeneic bone substitutes have been investigated. Here, within the framework of an observational clinical study, we report clinical and radiological outcomes of patients treated for tibial plateau fractures with a composite xenohybrid bone graft, aiming at assessing clinical and radiological outcomes. Materials and Methods: We performed a cohort retrospective study of patients treated for tibial plateau fractures from May 2017 to January 2018. Thirty-four patients, i.e. 100% of those having received the bone graft under investigation for tibial plateaux fracture treatment, met the inclusion criteria and were enrolled in the study. Patients were assessed at 2 weeks, and then at a 1-, 3-, and 6-months, and 1-year follow-up. At each evaluation patients filled a visual analogue scale (VAS) for the level of pain during the day life activities and underwent physical exam and anteroposterior and lateral projection radiographs of the knee. At 1 year the Tegner Lysholm Scoring Scale, International Knee Document Committee 2000 (IKDC 2000), and Short Form (36) Health Survey (SF-36) were administered. Results: At 1-year, mean VAS decreased from 6.33 ± 1.40 to 1 ± 0.79 (P < 0.0001); Tegner Lysholm Scoring Scale was 89 ± 4.10 and mean IKDC 2000 was 78.67 ± 3.31. No infections, neurovascular complications or adverse effects related to implants were reported during the clinical exams at follow-up. Mean ROM was 124 ± 6°. Radiographs did not show defects of consolidation or progressive post-surgical subsidence and demonstrated a good grade of integration of the implant. Conclusions: Clinical and radiological outcomes, and scores of questionnaires, were good. The xenograft has demonstrated to be a safe biomaterial, with satisfactory mechanical and biological performances in the mid-term period. It also showed a high grade of osteointegration and remodelling.
Collapse
|
3
|
A Radiological Approach to Evaluate Bone Graft Integration in Reconstructive Surgeries. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
(1) Background: Bone tissue engineering is a promising tool to develop new smart solutions for regeneration of complex bone districts, from orthopedic to oral and maxillo-facial fields. In this respect, a crucial characteristic for biomaterials is the ability to fully integrate within the patient body. In this work, we developed a novel radiological approach, in substitution to invasive histology, for evaluating the level of osteointegration and osteogenesis, in both qualitative and quantitative manners. (2) SmartBone®, a composite xeno-hybrid bone graft, was selected as the base material because of its remarkable effectiveness in clinical practice. Using pre- and post-surgery computed tomography (CT), we built 3D models that faithfully represented the patient’s anatomy, with special attention to the bone defects. (3) Results: This way, it was possible to assess whether the new bone formation respected the natural geometry of the healthy bone. In all cases of the study (four dental, one maxillo-facial, and one orthopedic) we evaluated the presence of new bone formation and volumetric increase. (4) Conclusion: The newly established radiological protocol allowed the tracking of SmartBone® effective integration and bone regeneration. Moreover, the patient’s anatomy was completely restored in the defect area and functionality completely rehabilitated without foreign body reaction or inflammation.
Collapse
|