1
|
Mahmood I, Zia Ur Rahman M, Dehghani-Sanij AA. Modelling and analysis of orthoses generated whole-body vertical vibrations impact on limb stability and compliant dynamics in a ramp gait. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
2
|
Xu X, Talifu Z, Zhang CJ, Gao F, Ke H, Pan YZ, Gong H, Du HY, Yu Y, Jing YL, Du LJ, Li JJ, Yang DG. Mechanism of skeletal muscle atrophy after spinal cord injury: A narrative review. Front Nutr 2023; 10:1099143. [PMID: 36937344 PMCID: PMC10020380 DOI: 10.3389/fnut.2023.1099143] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Spinal cord injury leads to loss of innervation of skeletal muscle, decreased motor function, and significantly reduced load on skeletal muscle, resulting in atrophy. Factors such as braking, hormone level fluctuation, inflammation, and oxidative stress damage accelerate skeletal muscle atrophy. The atrophy process can result in skeletal muscle cell apoptosis, protein degradation, fat deposition, and other pathophysiological changes. Skeletal muscle atrophy not only hinders the recovery of motor function but is also closely related to many systemic dysfunctions, affecting the prognosis of patients with spinal cord injury. Extensive research on the mechanism of skeletal muscle atrophy and intervention at the molecular level has shown that inflammation and oxidative stress injury are the main mechanisms of skeletal muscle atrophy after spinal cord injury and that multiple pathways are involved. These may become targets of future clinical intervention. However, most of the experimental studies are still at the basic research stage and still have some limitations in clinical application, and most of the clinical treatments are focused on rehabilitation training, so how to develop more efficient interventions in clinical treatment still needs to be further explored. Therefore, this review focuses mainly on the mechanisms of skeletal muscle atrophy after spinal cord injury and summarizes the cytokines and signaling pathways associated with skeletal muscle atrophy in recent studies, hoping to provide new therapeutic ideas for future clinical work.
Collapse
Affiliation(s)
- Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Zuliyaer Talifu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Chun-Jia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Han Ke
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Yun-Zhu Pan
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Hua-Yong Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yan Yu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Ying-Li Jing
- School of Rehabilitation, Capital Medical University, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Liang-Jie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Jian-Jun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong, China
- *Correspondence: Jian-Jun Li
| | - De-Gang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Chinese Institute of Rehabilitation Science, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
- De-Gang Yang
| |
Collapse
|
3
|
Mahmood I, Martinez-Hernandez U, Dehghani-Sanij AA. A model identification approach to quantify impact of whole-body vertical vibrations on limb compliant dynamics and walking stability. Med Eng Phys 2020; 80:8-17. [PMID: 32451270 DOI: 10.1016/j.medengphy.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/26/2020] [Accepted: 04/05/2020] [Indexed: 11/18/2022]
Abstract
Extensive research is ongoing in the field of orthoses/exoskeleton design for efficient lower limbs assistance. However, despite wearable devices reported to improve lower limb mobility, their structural impacts on whole-body vertical dynamics have not been investigated. This study introduced a model identification approach and frequency domain analysis to quantify the impacts of orthosis-generated vibrations on limb stability and contractile dynamics. Experiments were recorded in the motion capture lab using 11 unimpaired subjects by wearing an adjustable ankle-foot orthosis (AFO). The lower limb musculoskeletal structure was identified as spring-mass (SM) and spring-mass-damper (SMD) based compliant models using the whole-body centre-of-mass acceleration data. Furthermore, Nyquist and Bode methods were implemented to quantify stabilities resulting from vertical impacts. Our results illustrated a significant decrease (p < 0.05) in lower limb contractile properties by wearing AFO compared with a normal walk. Also, stability margins quantified by wearing AFO illustrated a significant variance in terms of gain-margins (p < 0.05) for both loading and unloading phases whereas phase-margins decreased (p < 0.05) only for the respective unloading phases. The methods introduced here provide evidence that wearable orthoses significantly affect lower limb vertical dynamics and should be considered when evaluating orthosis/prosthesis/exoskeleton effectiveness.
Collapse
Affiliation(s)
- Imran Mahmood
- Institute of Design, Robotics, and Optimisation, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Uriel Martinez-Hernandez
- Department of Electronics and Electrical Engineering, Faculty of Engineering and Design, University of Bath, Bath, United Kingdom
| | - Abbas A Dehghani-Sanij
- Institute of Design, Robotics, and Optimisation, School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
4
|
Odderson IR. Can botulinum toxin cause chronic muscle weakness? Muscle Nerve 2018; 57:350-352. [DOI: 10.1002/mus.25988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/10/2017] [Accepted: 10/10/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Ib R. Odderson
- Department of Rehabilitation Medicine; University of Washington, 1959 Northeast Pacific Street, Box 356490; Seattle Washington 98195 USA
| |
Collapse
|
5
|
Yeh CH, Young HWV, Wang CY, Wang YH, Lee PL, Kang JH, Lo MT. Quantifying Spasticity With Limited Swinging Cycles Using Pendulum Test Based on Phase Amplitude Coupling. IEEE Trans Neural Syst Rehabil Eng 2016; 24:1081-1088. [PMID: 26829797 DOI: 10.1109/tnsre.2016.2521612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Parameters derived from the goniometer measures in the Pendulum test are insufficient in describing the function of abnormal muscle activity in the spasticity. To explore a quantitative evaluation of muscle activation-movement interaction, we propose a novel index based on phase amplitude coupling (PAC) analysis with the consideration of the relations between movement and surface electromyography (SEMG) activity among 22 hemiplegic stroke patients. To take off trend and noise, we use the empirical mode decomposition (EMD) to obtain intrinsic mode functions (IMFs) of the angular velocity due to its superior decomposing ability in nonlinear oscillations. Shannon entropy based on angular velocity (phase)-envelope of EMG (amplitude) distribution was calculated to demonstrate characteristics of the coupling between SEMG activity and joint movement. We also compare our results with those from traditional methods such as the normalized relaxation index derived from the Pendulum test and the mean root mean square (RMS) of the SEMG signals in the study. Our results show effective discrimination ability between spastic and nonaffected limbs using our method . This study indicates the feasibility of using the novel indices based on the PAC in evaluation the spasticity among the hemiplegic stroke patients with less than three swinging cycles.
Collapse
|
6
|
D'Amico JM, Condliffe EG, Martins KJB, Bennett DJ, Gorassini MA. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Integr Neurosci 2014; 8:36. [PMID: 24860447 PMCID: PMC4026713 DOI: 10.3389/fnint.2014.00036] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada
| | - Elizabeth G Condliffe
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada ; Division of Physical Medicine and Rehabilitation, University of Alberta Edmonton, AB, Canada
| | - Karen J B Martins
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| | - David J Bennett
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada
| | - Monica A Gorassini
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
7
|
Roy RR, Edgerton VR. Neurobiological perspective of spasticity as occurs after a spinal cord injury. Exp Neurol 2012; 235:116-22. [DOI: 10.1016/j.expneurol.2012.01.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 01/14/2012] [Accepted: 01/19/2012] [Indexed: 12/15/2022]
|
8
|
Zijdewind I, Thomas CK. Firing patterns of spontaneously active motor units in spinal cord-injured subjects. J Physiol 2012; 590:1683-97. [PMID: 22310313 DOI: 10.1113/jphysiol.2011.220103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Involuntary motor unit activity at low rates is common in hand muscles paralysed by spinal cord injury. Our aim was to describe these patterns of motor unit behaviour in relation to motoneurone and motor unit properties. Intramuscular electromyographic activity (EMG), surface EMG and force were recorded for 30 min from thenar muscles of nine men with chronic cervical SCI. Motor units fired for sustained periods (>10 min) at regular (coefficient of variation ≤ 0.15, CV, n =19 units) or irregular intervals (CV>0.15, n =14). Regularly firing units started and stopped firing independently suggesting that intrinsic motoneurone properties were important for recruitment and derecruitment. Recruitment (3.6 Hz, SD 1.2), maximal (10.2 Hz, SD 2.3, range: 7.5-15.4 Hz) and derecruitment frequencies were low (3.3 Hz, SD 1.6), as were firing rate increases after recruitment (~20 intervals in 3 s). Once active, firing often covaried, promoting the idea that units received common inputs.Half of the regularly firing units showed a very slow decline (>40 s) in discharge before derecruitment and had interspike intervals longer than their estimated after hyperpolarisation potential (AHP) duration (estimated by death rate and breakpoint analyses). The other units were derecruited more abruptly and had shorter estimated AHP durations. Overall, regularly firing units had longer estimated AHP durations and were weaker than irregularly firing units, suggesting they were lower threshold units. Sustained firing of units at regular rates may reflect activation of persistent inward currents, visible here in the absence of voluntary drive, whereas irregularly firing units may only respond to synaptic noise.
Collapse
Affiliation(s)
- Inge Zijdewind
- Department of Neuroscience, Medical Physiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | |
Collapse
|
9
|
Harris RL, Bennett DJ, Levine MA, Putman CT. Tail muscle parvalbumin content is decreased in chronic sacral spinal cord injured rats with spasticity. Exp Physiol 2011; 96:1311-20. [PMID: 21930674 DOI: 10.1113/expphysiol.2011.061614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In rats, chronic sacral spinal isolation eliminates both descending and afferent inputs to motoneurons supplying the segmental tail muscles, eliminating daily tail muscle EMG activity. In contrast, chronic sacral spinal cord transection preserves afferent inputs, causing tail muscle spasticity that generates quantitatively normal daily EMG. Compared with normal rats, rats with spinal isolation and transection/spasticity provide a chronic model of progressive neuromuscular injury. Using normal, spinal isolated and spastic rats, we characterized the activity dependence of calcium-handling protein expression for parvalbumin, fast sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA1) and slow SERCA2. As these proteins may influence fatigue resistance, we also assayed the activities of oxidative (citrate synthase; CS) and glycolytic enzymes (glyceraldehyde phosphate dehydrogenase; GAPDH). We hypothesized that, compared with normal rats, chronic isolation would cause decreased parvalbumin, SERCA1 and SERCA2 expression and CS and GAPDH activities. We further hypothesized that chronic spasticity would promote recovery of parvalbumin, SERCA1 and SERCA2 expression and of CS and GAPDH activities. Parvalbumin, SERCA1 and SERCA2 were quantified with Western blotting. Citrate synthase and GAPDH activities were quantified photometrically. Compared with normal rats, spinal isolation caused large decreases in parvalbumin (95%), SERCA1 (70%) and SERCA2 (68%). Compared with spinal isolation, spasticity promoted parvalbumin recovery (ninefold increase) and a SERCA2-to-SERCA1 transformation (84% increase in the ratio of SERCA1 to SERCA2). Compared with normal values, CS and GAPDH activities decreased in isolated and spastic muscles. In conclusion, with complete paralysis due to spinal isolation, parvalbumin expression is nearly eliminated, but with muscle spasticity after spinal cord transection, parvalbumin expression partly recovers. Additionally, spasticity after transection causes a slow-to-fast SERCA isoform transformation that may be compensatory for decreased parvalbumin content.
Collapse
Affiliation(s)
- R Luke Harris
- School of Health Sciences, University of Northern British Columbia, Prince George, British Columbia, Canada.
| | | | | | | |
Collapse
|
10
|
Bittar CK, Cliquet A. Effects of quadriceps and anterior tibial muscles electrical stimulation on the feet and ankles of patients with spinal cord injuries. Spinal Cord 2010; 48:881-5. [PMID: 20479766 DOI: 10.1038/sc.2010.50] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Controlled clinical test. OBJECTIVES The purpose of this study was to assess the effects of quadriceps and anterior tibial muscles electrical stimulation on the feet and ankles of patients with spinal cord injuries and to compare them with able-bodied individuals and a group of patients who did not undergo neuromuscular electrical stimulation (NMES). SETTING This study was conducted at the Hospital das Clínicas of Unicamp, Campinas, São Paulo, Brazil. METHODS Between January and April 2008, 30 patients at the spinal cord injury ambulatory clinic who underwent NMES (group A) were submitted to a clinical and radiographic assessment of their feet and ankles and compared with a spinal cord injury group (group B) who did not undergo NMES and a group of able-bodied individuals (group C). The Kruskal-Wallis test was used to compare all the three groups, and between-group differences (P<0.05) were investigated with the Mann-Whitney test. RESULTS The mean mobility of the midfoot and ankle subtalar joint was significantly higher in group C than in groups A and B. Differences in the mean measurements of the profiles of the talocalcaneal and the talus-first metatarsal angles were statistically significant for group A vs the other groups (P=0.0020, 0.0024, respectively). Foot deformities were found in groups including claw toes and flat feet (group A) and grade I ulcers on the lateral malleolus and calcaneus (group B). CONCLUSION Partial-load NMES maintains the feet and ankles in a planted and adequate walking position in patients with spinal cord injuries, a favorable result of new technologies that allows these patients to reacquire independent walking capacity.
Collapse
Affiliation(s)
- C K Bittar
- Orthopaedics Department, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil.
| | | |
Collapse
|
11
|
Hornby TG, Lewek MD, Thompson CK, Heitz R. Repeated maximal volitional effort contractions in human spinal cord injury: initial torque increases and reduced fatigue. Neurorehabil Neural Repair 2009; 23:928-38. [PMID: 19478056 PMCID: PMC5603074 DOI: 10.1177/1545968309336147] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Substantial data indicate greater muscle fatigue in individuals with spinal cord injury (SCI) compared with healthy control subjects when tested by using electrical stimulation protocols. Few studies have investigated the extent of volitional fatigue in motor incomplete SCI. METHODS Repeated, maximal volitional effort (MVE) isometric contractions of the knee extensors (KE) were performed in 14 subjects with a motor incomplete SCI and in 10 intact subjects. Subjects performed 20 repeated, intermittent MVEs (5 seconds contraction/5 seconds rest) with KE torques and thigh electromyographic (EMG) activity recorded. RESULTS Peak KE torques declined to 64% of baseline MVEs with repeated efforts in control subjects. Conversely, subjects with SCI increased peak torques during the first 5 contractions by 15%, with little evidence of fatigue after 20 repeated efforts. Increases in peak KE torques and the rate of torque increase during the first 5 contractions were attributed primarily to increases in quadriceps EMG activity, but not to decreased knee flexor co-activation. The observed initial increases in peak torque were dependent on the subject's volitional activation and were consistent on the same or different days, indicating little contribution of learning or accommodation to the testing conditions. Sustained MVEs did not elicit substantial increases in peak KE torques as compared to repeated intermittent efforts. CONCLUSIONS These data revealed a marked divergence from expected results of increased fatigability in subjects with SCI, and may be a result of complex interactions between mechanisms underlying spastic motor activity and changes in intrinsic motoneuron properties.
Collapse
Affiliation(s)
- T George Hornby
- Department of Physical Medicine and Rehabilitation, Northwestern University Medical School, Chicago, Illinois 60612, USA.
| | | | | | | |
Collapse
|
12
|
Pelletier CA, Hicks AL. The length-tension relationship of human dorsiflexor and plantarflexor muscles after spinal cord injury. Spinal Cord 2009; 48:202-6. [PMID: 19721452 DOI: 10.1038/sc.2009.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN A cross-sectional design. OBJECTIVES To examine the length-tension relationship of dorsiflexion (DF) and plantarflexion (PF) muscle groups in seven individuals with chronic spinal cord injury (SCI; C2-T7; age 43+/-10.1 years) and compare it with a group of age and sex-matched able-bodied (AB) controls. SETTING McMaster University, Hamilton, ON, Canada. METHODS Isometric single twitch properties, 0.5-s tetanic contractions (SCI) and maximal voluntary contractions (AB) were measured at nine joint angles from 20 degrees DF to 20 degrees PF. RESULTS In the DF muscles, peak-evoked twitch (PT) torque occurred at 20 degrees PF for SCI (3.4+/-1.1 N m) and AB (3.8+/-1.4 N m) with no difference in peak torque between groups, whereas peak summated force occurred at 10 degrees PF in AB and 20 degrees PF in SCI (P<0.01). In the PF muscles, PT torque occurred at 15 degrees DF in AB (18.6+/-2.6 N m) and at 5 degrees DF (6.8+/-3.3 N m; P<0.01) in SCI, and peak-summated force occurred at 15 degrees DF in AB. The SCI group did not show any change in PF peak-summated force with varying joint angles. Rates of contraction and relaxation were not different between the two groups. CONCLUSIONS The results suggest a significant change in the length-tension relationship of the PF muscles after SCI, but no change in the DF muscle group. Rehabilitation programs should focus on maintaining PF muscle length in order to optimize muscle strength and function after SCI.
Collapse
Affiliation(s)
- C A Pelletier
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
13
|
Gorassini MA, Norton JA, Nevett-Duchcherer J, Roy FD, Yang JF. Changes in locomotor muscle activity after treadmill training in subjects with incomplete spinal cord injury. J Neurophysiol 2009; 101:969-79. [PMID: 19073799 PMCID: PMC2796983 DOI: 10.1152/jn.91131.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/01/2008] [Indexed: 11/22/2022] Open
Abstract
Intensive treadmill training after incomplete spinal cord injury can improve functional walking abilities. To determine the changes in muscle activation patterns that are associated with improvements in walking, we measured the electromyography (EMG) of leg muscles in 17 individuals with incomplete spinal cord injury during similar walking conditions both before and after training. Specific differences were observed between subjects that eventually gained functional improvements in overground walking (responders), compared with subjects where treadmill training was ineffective (nonresponders). Although both groups developed a more regular and less clonic EMG pattern on the treadmill, it was only the tibialis anterior and hamstring muscles in the responders that displayed increases in EMG activation. Likewise, only the responders demonstrated decreases in burst duration and cocontraction of proximal (hamstrings and quadriceps) muscle activity. Surprisingly, the proximal muscle activity in the responders, unlike nonresponders, was three- to fourfold greater than that in uninjured control subjects walking at similar speeds and level of body weight support, suggesting that the ability to modify muscle activation patterns after injury may predict the ability of subjects to further compensate in response to motor training. In summary, increases in the amount and decreases in the duration of EMG activity of specific muscles are associated with functional recovery of walking skills after treadmill training in subjects that are able to modify muscle activity patterns following incomplete spinal cord injury.
Collapse
Affiliation(s)
- Monica A Gorassini
- Department of Biomedical Engineering, 513 HMRC, Centre for Neuroscience, University of Alberta, Edmonton, Alberta, Canada T6G 2S2.
| | | | | | | | | |
Collapse
|
14
|
Spanjaard M, Reeves ND, van Dieën JH, Baltzopoulos V, Maganaris CN. Lower-limb biomechanics during stair descent: influence of step-height and body mass. J Exp Biol 2008; 211:1368-75. [DOI: 10.1242/jeb.014589] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The aim of the present study was to examine the biomechanics of the lower limb during stair descent and the effects of increasing demand in two ways: by increasing step-height and by increasing body mass. Ten male subjects walked down a four-step staircase, the height of which could be altered. The step-heights were: standard (17 cm), 50% decreased, 50% increased and 75%increased. At the standard height, subjects also walked down wearing a weighted jacket carrying 20% extra body mass. Lower limb kinematics and kinetics were determined using motion capture and ground reaction forces. Also measured were gastrocnemius medialis (GM) muscle electromyography and GM muscle fascicle length using ultrasonography. GM muscle fascicles actively shortened during the touch-down phase of stair descent in all conditions,while the muscle–tendon complex (MTC), as calculated from the knee and ankle joint kinematics, lengthened. The GM muscle fascicles shortened more when step-height was increased, which corresponded to the increase in ankle joint moment. Increased body mass did not alter the ankle or knee joint moment in the first contact phase of a step down; due to a change in strategy, the trailing leg, instead of the leading leg, supported the extra mass. Hence, the amount of GM muscle fascicle shortening, during the touch-down phase, also did not change with added body mass. Our results suggest that the increase in joint moments is related to the amount of fascicle shortening, which occurs whilst the MTC is lengthening, thereby stretching the elastic tendinous tissues.
Collapse
Affiliation(s)
- M. Spanjaard
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Alsager, UK
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | - N. D. Reeves
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Alsager, UK
| | - J. H. van Dieën
- Research Institute MOVE, Faculty of Human Movement Sciences, VU University Amsterdam, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands
| | - V. Baltzopoulos
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Alsager, UK
| | - C. N. Maganaris
- Institute for Biomedical Research into Human Movement and Health, Manchester Metropolitan University, Alsager, UK
| |
Collapse
|
15
|
Harris RLW, Putman CT, Rank M, Sanelli L, Bennett DJ. Spastic tail muscles recover from myofiber atrophy and myosin heavy chain transformations in chronic spinal rats. J Neurophysiol 2007; 97:1040-51. [PMID: 17122320 PMCID: PMC5759973 DOI: 10.1152/jn.00622.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Without intervention after spinal cord injury (SCI), paralyzed skeletal muscles undergo myofiber atrophy and slow-to-fast myofiber type transformations. We hypothesized that chronic spasticity-associated neuromuscular activity after SCI would promote recovery from such deleterious changes. We examined segmental tail muscles of chronic spinal rats with long-standing tail spasticity (7 mo after sacral spinal cord transection; older chronic spinals), chronic spinal rats that experienced less spasticity early after injury (young chronic spinals), and rats without spasticity after transection and bilateral deafferentation (spinal isolated). These were compared with tail muscles of age-matched normal rats. Using immunohistochemistry, we observed myofiber distributions of 15.9 +/- 3.5% type I, 18.7 +/- 10.7% type IIA, 60.8 +/- 12.6% type IID(X), and 2.3 +/- 1.3% type IIB (means +/- SD) in young normals, which were not different in older normals. Young chronic spinals demonstrated transformations toward faster myofiber types with decreased type I and increased type IID(X) paralleled by atrophy of all myofiber types compared with young normals. Spinal isolated rats also demonstrated decreased type I myofiber proportions and increased type II myofiber proportions, and severe myofiber atrophy. After 4 mo of complete spasticity (older chronic spinals), myofiber type transformations were reversed, with no significant differences in type I, IIA, IID(X), or IIB proportions compared with age-matched normals. Moreover, after this prolonged spasticity, type I, IIA, and IIB myofibers recovered from atrophy, and type IID(X) myofibers partially recovered. Our results indicate that early after transection or after long-term spinal isolation, relatively inactive tail myofibers atrophy and transform toward faster myofiber types. However, long-term spasticity apparently produces neuromuscular activity that promotes recovery of myofiber types and myofiber sizes.
Collapse
Affiliation(s)
- R Luke W Harris
- Centre for Neuroscience, 5-13 Heritage Medical Research Centre, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
16
|
Shields RK, Dudley-Javoroski S, Littmann AE. Postfatigue potentiation of the paralyzed soleus muscle: evidence for adaptation with long-term electrical stimulation training. J Appl Physiol (1985) 2006; 101:556-65. [PMID: 16575026 PMCID: PMC3270308 DOI: 10.1152/japplphysiol.00099.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.
Collapse
Affiliation(s)
- Richard K Shields
- Graduate Program in Physical Therapy and Rehabilitation Science, The Univ. of Iowa, 1-252 Medical Education Bldg., Iowa City, IA 52242-1190, USA.
| | | | | |
Collapse
|
17
|
Harris RLW, Bobet J, Sanelli L, Bennett DJ. Tail muscles become slow but fatigable in chronic sacral spinal rats with spasticity. J Neurophysiol 2006; 95:1124-33. [PMID: 16282205 PMCID: PMC5726403 DOI: 10.1152/jn.00456.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Paralyzed skeletal muscle sometimes becomes faster and more fatigable after spinal cord injury (SCI) because of reduced activity. However, in some cases, pronounced muscle activity in the form of spasticity (hyperreflexia and hypertonus) occurs after long-term SCI. We hypothesized that this spastic activity may be associated with a reversal back to a slower, less fatigable muscle. In adult rats, a sacral (S2) spinal cord transection was performed, affecting only tail musculature and resulting in chronic tail spasticity beginning 2 wk later and lasting indefinitely. At 8 mo after injury, we examined the contractile properties of the segmental tail muscle in anesthetized spastic rats and in age-matched normal rats. The segmental tail muscle has only a few motor units (<12), which were easily detected with graded nerve stimulation, revealing two clear motor unit twitch durations. The dominant faster unit twitches peaked at 15 ms and ended within 50 ms, whereas the slower unit twitches only peaked at 30-50 ms. With chronic injury, this slow twitch component increased, resulting in a large overall increase (>150%) in the fraction of the peak muscle twitch force remaining at 50 ms. With injury, the peak muscle twitch (evoked with supramaximal stimulation) also increased in its time to peak (+48.9%) and half-rise time (+150.0%), and decreased in its maximum rise (-35.0%) and decay rates (-40.1%). Likewise, after a tetanic stimulation, the tetanus half-fall time increased by 53.8%. Therefore the slow portion of the muscle was enhanced in spastic muscles. Consistent with slowing, posttetanic potentiation was 9.2% lower and the stimulation frequency required to produce half-maximal tetanus decreased 39.0% in chronic spinals. Interestingly, in spastic muscles compared with normal, whole muscle twitch force was 81.1% higher, whereas tetanic force production was 38.1% lower. Hence the twitch-to-tetanus ratio increased 104.0%. Inconsistent with overall slowing, whole spastic muscles were 61.5% more fatigable than normal muscles. Thus contrary to the classical slow-to-fast conversion that is seen after SCI without spasticity, SCI with spasticity is associated with a mixed effect, including a preservation/enhancement of slow properties, but a loss of fatigue resistance.
Collapse
Affiliation(s)
- R Luke W Harris
- Centre for Neuroscience, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
18
|
Deutsch KM, Hornby TG, Schmit BD. The intralimb coordination of the flexor reflex response is altered in chronic human spinal cord injury. Neurosci Lett 2005; 380:305-10. [PMID: 15862907 DOI: 10.1016/j.neulet.2005.01.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 12/28/2004] [Accepted: 01/20/2005] [Indexed: 11/21/2022]
Abstract
The current study compared the intralimb coordination of flexor reflex responses in spinal intact and complete chronic spinal cord injured (SCI) individuals. Noxious electrocutaneous stimulation was applied at the apex of the medial arch of the foot (50 mA, 500 Hz, 1 ms pulse width, 20 ms) in 21 complete chronic SCI and 19 spinal intact volunteers and the flexor reflex response was quantified by measuring the isometric joint torques at the ankle, knee and hip. The results showed that SCI individuals had significantly smaller peak knee and hip joint flexion torques, often exhibited a net knee extension torque, and produced a much smaller hip joint flexion torque during the flexor reflex response in contrast to the spinal intact individuals. The latency of the reflex response, measured from the tibialis anterior electromyogram, was comparable in both test populations. These findings indicate that the intralimb coordination of the flexor reflex response of chronic complete SCI individuals is altered, possibly reflecting a functional reorganization of the flexion pathways of the spinal cord.
Collapse
Affiliation(s)
- Katherine M Deutsch
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, IL 60611, USA
| | | | | |
Collapse
|
19
|
Hidler JM, Schmit BD. Evidence for force-feedback inhibition in chronic stroke. IEEE Trans Neural Syst Rehabil Eng 2004; 12:166-76. [PMID: 15218931 DOI: 10.1109/tnsre.2004.828428] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The presence of force-feedback inhibition was explored during reflex responses in five subjects with known incidence of stroke. Using constant velocity stretches, it was previously found that after movement onset, active reflex force progressively increases with increasing joint angle, at a rate proportional to a fractional exponent of the speed of stretch. However, after the reflex force magnitude exceeds a particular level, it begins rolling off until maintaining a steady-state value. The magnitudes of these force plateaus are correlated with the speed of stretch, such that higher movement speeds result in higher steady-state forces. Based upon these previous studies, we hypothesized that force plateau behavior could be explained by a force-feedback inhibitory pathway. To help facilitate an understanding of this stretch reflex force roll off, a simple model representing the elbow reflex pathways was developed. This model contained two separate feedback pathways, one representing the monosynaptic stretch reflex originating from muscle spindle excitation, and another representing force-feedback inhibition arising from force sensitive receptors. It was found that force-feedback inhibition altered the stretch reflex response, resulting in a force response that followed a sigmoidal shape similar to that observed experimentally. Furthermore, simulated reflex responses were highly dependent on force-feedback gain, where predicted reflex force began plateauing at decreasing levels with increases in this force-feedback gain. The parameters from the model fits indicate that the force threshold for force-sensitive receptors is relatively high, suggesting that the inhibition may arise from muscle free nerve endings rather than Golgi tendon organs. The experimental results coupled with the simulations of elbow reflex responses suggest the possibility that after stroke, the effectiveness of force-feedback inhibition may increase to a level that has functional significance. Practical implications of these findings are discussed in relation to muscle weakness commonly associated with stroke.
Collapse
Affiliation(s)
- Joseph M Hidler
- Department of Biomedical Engineering, Catholic University, Washington, DC 20064, USA.
| | | |
Collapse
|