1
|
Dottori J, Casciaro M, Craiem D, El-Batti S, Mousseaux E, Alsac JM, Larrabide I. Regional assessment of vascular morphology and hemodynamics: methodology and evaluation for abdominal aortic aneurysms after endovascular repair. Comput Methods Biomech Biomed Engin 2020; 23:1060-1070. [DOI: 10.1080/10255842.2020.1786073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Javier Dottori
- Pladema - CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| | - Mariano Casciaro
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | - Damian Craiem
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería (IMeTTyB), Universidad Favaloro - CONICET, Buenos Aires, Argentina
| | | | | | | | - Ignacio Larrabide
- Pladema - CONICET, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil, Argentina
| |
Collapse
|
2
|
An Automated Workflow for Hemodynamic Computations in Cerebral Aneurysms. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2020; 2020:5954617. [PMID: 32655681 PMCID: PMC7317611 DOI: 10.1155/2020/5954617] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/03/2020] [Accepted: 04/28/2020] [Indexed: 01/06/2023]
Abstract
In recent years, computational fluid dynamics (CFD) has become a valuable tool for investigating hemodynamics in cerebral aneurysms. CFD provides flow-related quantities, which have been shown to have a potential impact on aneurysm growth and risk of rupture. However, the adoption of CFD tools in clinical settings is currently limited by the high computational cost and the engineering expertise required for employing these tools, e.g., for mesh generation, appropriate choice of spatial and temporal resolution, and of boundary conditions. Herein, we address these challenges by introducing a practical and robust methodology, focusing on computational performance and minimizing user interaction through automated parameter selection. We propose a fully automated pipeline that covers the steps from a patient-specific anatomical model to results, based on a fast, graphics processing unit- (GPU-) accelerated CFD solver and a parameter selection methodology. We use a reduced order model to compute the initial estimates of the spatial and temporal resolutions and an iterative approach that further adjusts the resolution during the simulation without user interaction. The pipeline and the solver are validated based on previously published results, and by comparing the results obtained for 20 cerebral aneurysm cases with those generated by a state-of-the-art commercial solver (Ansys CFX, Canonsburg PA). The automatically selected spatial and temporal resolutions lead to results which closely agree with the state-of-the-art, with an average relative difference of only 2%. Due to the GPU-based parallelization, simulations are computationally efficient, with a median computation time of 40 minutes per simulation.
Collapse
|
3
|
Acuna A, Berman AG, Damen FW, Meyers BA, Adelsperger AR, Bayer KC, Brindise MC, Bungart B, Kiel AM, Morrison RA, Muskat JC, Wasilczuk KM, Wen Y, Zhang J, Zito P, Goergen CJ. Computational Fluid Dynamics of Vascular Disease in Animal Models. J Biomech Eng 2019; 140:2676341. [PMID: 29570754 DOI: 10.1115/1.4039678] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Recent applications of computational fluid dynamics (CFD) applied to the cardiovascular system have demonstrated its power in investigating the impact of hemodynamics on disease initiation, progression, and treatment outcomes. Flow metrics such as pressure distributions, wall shear stresses (WSS), and blood velocity profiles can be quantified to provide insight into observed pathologies, assist with surgical planning, or even predict disease progression. While numerous studies have performed simulations on clinical human patient data, it often lacks prediagnosis information and can be subject to large intersubject variability, limiting the generalizability of findings. Thus, animal models are often used to identify and manipulate specific factors contributing to vascular disease because they provide a more controlled environment. In this review, we explore the use of CFD in animal models in recent studies to investigate the initiating mechanisms, progression, and intervention effects of various vascular diseases. The first section provides a brief overview of the CFD theory and tools that are commonly used to study blood flow. The following sections are separated by anatomical region, with the abdominal, thoracic, and cerebral areas specifically highlighted. We discuss the associated benefits and obstacles to performing CFD modeling in each location. Finally, we highlight animal CFD studies focusing on common surgical treatments, including arteriovenous fistulas (AVF) and pulmonary artery grafts. The studies included in this review demonstrate the value of combining CFD with animal imaging and should encourage further research to optimize and expand upon these techniques for the study of vascular disease.
Collapse
Affiliation(s)
- Andrea Acuna
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Alycia G Berman
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Frederick W Damen
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Brett A Meyers
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Amelia R Adelsperger
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Kelsey C Bayer
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Melissa C Brindise
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Brittani Bungart
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Alexander M Kiel
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Rachel A Morrison
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Joseph C Muskat
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Kelsey M Wasilczuk
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Yi Wen
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907 e-mail:
| | - Jiacheng Zhang
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907 e-mail:
| | - Patrick Zito
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| | - Craig J Goergen
- ASME Membership Bioengineering Division, Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907 e-mail:
| |
Collapse
|
4
|
Levitt MR, Mandrycky C, Abel A, Kelly CM, Levy S, Chivukula VK, Zheng Y, Aliseda A, Kim LJ. Genetic correlates of wall shear stress in a patient-specific 3D-printed cerebral aneurysm model. J Neurointerv Surg 2019; 11:999-1003. [PMID: 30979845 DOI: 10.1136/neurintsurg-2018-014669] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To study the correlation between wall shear stress and endothelial cell expression in a patient-specific, three-dimensional (3D)-printed model of a cerebral aneurysm. MATERIALS AND METHODS A 3D-printed model of a cerebral aneurysm was created from a patient's angiogram. After populating the model with human endothelial cells, it was exposed to media under flow for 24 hours. Endothelial cell morphology was characterized in five regions of the 3D-printed model using confocal microscopy. Endothelial cells were then harvested from distinct regions of the 3D-printed model for mRNA collection and gene analysis via quantitative polymerase chain reaction (qPCR.) Cell morphology and mRNA measurement were correlated with computational fluid dynamics simulations. RESULTS The model was successfully populated with endothelial cells, which survived under flow for 24 hours. Endothelial morphology showed alignment with flow in the proximal and distal parent vessel and aneurysm neck, but disorganization in the aneurysm dome. Genetic analysis of endothelial mRNA expression in the aneurysm dome and distal parent vessel was compared with the proximal parent vessels. ADAMTS-1 and NOS3 were downregulated in the aneurysm dome, while GJA4 was upregulated in the distal parent vessel. Disorganized morphology and decreased ADAMTS-1 and NOS3 expression correlated with areas of substantially lower wall shear stress and wall shear stress gradient in computational fluid dynamics simulations. CONCLUSIONS Creating 3D-printed models of patient-specific cerebral aneurysms populated with human endothelial cells is feasible. Analysis of these cells after exposure to flow demonstrates differences in both cell morphology and genetic expression, which correlate with areas of differential hemodynamic stress.
Collapse
Affiliation(s)
- Michael R Levitt
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Radiology, University of Washington, Seattle, WA, USA.,Mechanical Engineering, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | | | - Ashley Abel
- Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Cory M Kelly
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Samuel Levy
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | | | - Ying Zheng
- Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA.,Bioengineering, University of Washington, Seattle, WA, USA
| | - Alberto Aliseda
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Mechanical Engineering, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| | - Louis J Kim
- Neurological Surgery, University of Washington, Seattle, WA, USA.,Radiology, University of Washington, Seattle, WA, USA.,Stroke and Applied Neuroscience Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Ghaffari M, Alaraj A, Du X, Zhou XJ, Charbel FT, Linninger AA. Quantification of near-wall hemodynamic risk factors in large-scale cerebral arterial trees. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2987. [PMID: 29601146 PMCID: PMC6043404 DOI: 10.1002/cnm.2987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 05/18/2023]
Abstract
Detailed hemodynamic analysis of blood flow in pathological segments close to aneurysm and stenosis has provided physicians with invaluable information about the local flow patterns leading to vascular disease. However, these diseases have both local and global effects on the circulation of the blood within the cerebral tree. The aim of this paper is to demonstrate the importance of extending subject-specific hemodynamic simulations to the entire cerebral arterial tree with hundreds of bifurcations and vessels, as well as evaluate hemodynamic risk factors and waveform shape characteristics throughout the cerebral arterial trees. Angioarchitecture and in vivo blood flow measurement were acquired from healthy subjects and in cases with symptomatic intracranial aneurysm and stenosis. A global map of cerebral arterial blood flow distribution revealed regions of low to high hemodynamic risk that may significantly contribute to the development of intracranial aneurysms or atherosclerosis. Comparison of pre-intervention and post-intervention of pathological cases further shows large angular phase shift (~33.8°), and an augmentation of the peak-diastolic velocity. Hemodynamic indexes of waveform analysis revealed on average a 16.35% reduction in the pulsatility index after treatment from lesion site to downstream distal vessels. The lesion regions not only affect blood flow streamlines of the proximal sites but also generate pulse wave shift and disturbed flow in downstream vessels. This network effect necessitates the use of large-scale simulation to visualize both local and global effects of pathological lesions.
Collapse
Affiliation(s)
- Mahsa Ghaffari
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Ali Alaraj
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Xinjian Du
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaohong Joe Zhou
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Center for MR Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Fady T. Charbel
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| | - Andreas A. Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
6
|
Wang S, Dai D, Kolumam Parameswaran P, Kadirvel R, Ding YH, Robertson AM, Kallmes DF. Rabbit aneurysm models mimic histologic wall types identified in human intracranial aneurysms. J Neurointerv Surg 2017; 10:411-415. [PMID: 28768819 PMCID: PMC5796872 DOI: 10.1136/neurintsurg-2017-013264] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/23/2022]
Abstract
Background Semiquantitative scales correlate histopathologic findings in the walls of human aneurysms with rupture status. Objective To apply a semiquantitative scale to the rabbit elastase-induced aneurysm model to determine whether rabbit histologic types mimic the full range of histologic subtypes of humans. Materials and methods Twenty-seven elastase-induced female rabbit aneurysms were studied, harvested at 2 weeks (n=5) and 12 weeks (n=22). Paraffin-embedded sections received hematoxylin-eosin and Verhoeff-Van Gieson staining. Immunohistochemistry was performed for α-smooth muscle actin and CD31 for endothelial cells. A semiquantitative scale was used for scoring based on human aneurysm tissue, divided into four subtypes according to cellular and extracellular matrix findings: type A, linear organized smooth muscle cells (SMCs) and intact endothelium; type B, thickened wall with disorganized, proliferating SMCs; type C, thick, collagenized and hypocellular wall with or without organizing thrombosis, and type D, extremely thin, hypocellular wall. Separate scoring was performed of the aneurysm neck and proximal and distal zones. Results Findings compatible with all subtypes of human aneurysm tissue were identified. Types A and C were found in 13 (48%) and 11 (41%) of 27 aneurysms and in the proximal and distal wall at both time points. Type B was found in 16 aneurysms (59%), exclusively at the neck at both time points; type D, in 14 aneurysms (52%), exclusively at proximal and distal zones of 12-week aneurysms. Conclusions The wall of elastase-induced rabbit aneurysm demonstrates histologic findings similar to the four categories of human cerebral aneurysms based on cellular and extracellular wall content.
Collapse
Affiliation(s)
- Shunli Wang
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.,Department of Pathology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Daying Dai
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Yong-Hong Ding
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Anne M Robertson
- Center for Biological Imaging, University of Pittsburgh, Pittsburgh, USA
| | - David F Kallmes
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
7
|
Cerebral aneurysm blood flow simulations are sensitive to basic solver settings. J Biomech 2017; 57:46-53. [PMID: 28395878 DOI: 10.1016/j.jbiomech.2017.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 01/15/2023]
Abstract
Computational modeling of peri-aneurysmal hemodynamics is typically carried out with commercial software without knowledge of the sensitivity of the model to variation in input values. For three aneurysm models, we carried out a formal sensitivity analysis and optimization strategy focused on variation in timestep duration and model residual error values and their impact on hemodynamic outputs. We examined the solution sensitivity to timestep sizes of 10-3s, 10-4s, and 10-5s while using model residual error values of 10-4, 10-5, and 10-6 using ANSYS Fluent to observe compounding errors and to optimize solver settings for computational efficiency while preserving solution accuracy. Simulations were compared qualitatively and quantitatively against the most rigorous combination of timestep and residual parameters, 10-5s and 10-6, respectively. A case using 10-4s timesteps, with 10-5 residual errors proved to be a converged solution for all three models with mean velocity and WSS difference RMS errors less than <1% compared with baseline, and was computationally efficient with a simulation time of 62h per cardiac cycle compared to 392h for baseline for the model with the most complex flow simulation. The worst case of our analysis, using 10-3s timesteps and 10-4 residual errors, was still able to predict the dominant vortex in the aneurysm, but its velocity and WSS RMS errors reached 20%. Even with an appealing simulation time of 11h per cycle for the model with the most complex flow, the worst case analysis solution exhibited compounding errors from large timesteps and residual errors. To resolve time-dependent flow characteristics, CFD simulations of cerebral aneurysms require sufficiently small timestep size and residual error. Simulations with both insufficient timestep and residual resolution are vulnerable to compounding errors.
Collapse
|
8
|
Brinjikji W, Ding YH, Kallmes DF, Kadirvel R. From bench to bedside: utility of the rabbit elastase aneurysm model in preclinical studies of intracranial aneurysm treatment. J Neurointerv Surg 2016; 8:521-5. [PMID: 25904642 PMCID: PMC4932861 DOI: 10.1136/neurintsurg-2015-011704] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/06/2015] [Indexed: 11/03/2022]
Abstract
Preclinical studies are important in helping practitioners and device developers improve techniques and tools for endovascular treatment of intracranial aneurysms. Thus an understanding of the major animal models used in such studies is important. The New Zealand rabbit elastase induced arterial aneurysm of the common carotid artery is one of the most commonly used models in testing the safety and efficacy of new endovascular devices. In this review we discuss: (1) the various techniques used to create the aneurysm, (2) complications of aneurysm creation, (3) natural history of the arterial aneurysm, (4) histopathologic and hemodynamic features of the aneurysm, (5) devices tested using this model, and (6) weaknesses of the model. We demonstrate how preclinical studies using this model are applied in the treatment of intracranial aneurysms in humans. The model has similar hemodynamic, morphological, and histologic characteristics to human aneurysms, and demonstrates similar healing responses to coiling as human aneurysms. Despite these strengths, however, the model does have many weaknesses, including the fact that the model does not emulate the complex inflammatory processes affecting growing and ruptured aneurysms. Furthermore, the extracranial location of the model affects its ability to be used in preclinical safety assessments of new devices. We conclude that the rabbit elastase model has characteristics that make it a simple and effective model for preclinical studies on the endovascular treatment of intracranial aneurysms, but further work is needed to develop aneurysm models that simulate the histopathologic and morphologic characteristics of growing and ruptured aneurysms.
Collapse
Affiliation(s)
| | - Yong H Ding
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - David F Kallmes
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | |
Collapse
|
9
|
Hua Y, Oh JH, Kim YB. Influence of Parent Artery Segmentation and Boundary Conditions on Hemodynamic Characteristics of Intracranial Aneurysms. Yonsei Med J 2015; 56:1328-37. [PMID: 26256976 PMCID: PMC4541663 DOI: 10.3349/ymj.2015.56.5.1328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/19/2015] [Accepted: 04/26/2015] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The purpose of this study is to explore the influence of segmentation of the upstream and downstream parent artery and hemodynamic boundary conditions (BCs) on the evaluated hemodynamic factors for the computational fluid dynamics (CFD) analysis of intracranial aneurysms. MATERIALS AND METHODS Three dimensional patient-specific aneurysm models were analyzed by applying various combinations of inlet and outlet BCs. Hemodynamic factors such as velocity pattern, streamline, wall shear stress, and oscillatory shear index at the systolic time were visualized and compared among the different cases. RESULTS Hemodynamic factors were significantly affected by the inlet BCs while there was little influence of the outlet BCs. When the inlet length was relatively short, different inlet BCs showed different hemodynamic factors and the calculated hemodynamic factors were also dependent on the inlet length. However, when the inlet length (L) was long enough (L>20D, where D is the diameter of inlet section), the hemodynamic factors became similar regardless of the inlet BCs and lengths. The error due to different inlet BCs was negligible. The effect of the outlet length on the hemodynamic factors was similar to that of the inlet length. CONCLUSION Simulated hemodynamic factors are highly sensitive to inlet BCs and upstream parent artery segmentation. The results of this work can provide an insight into how to build models and to apply BCs for more accurate estimation of hemodynamic factors from CFD simulations of intracranial aneurysms.
Collapse
Affiliation(s)
- Yufeng Hua
- Department of Mechanical Engineering, Hanyang University, Seoul, Korea
| | - Je Hoon Oh
- Department of Mechanical Engineering, Hanyang University, Seoul, Korea
| | - Yong Bae Kim
- Department of Neurosurgery, Cerebrovascular Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
10
|
Chung B, Cebral JR. CFD for Evaluation and Treatment Planning of Aneurysms: Review of Proposed Clinical Uses and Their Challenges. Ann Biomed Eng 2014; 43:122-38. [DOI: 10.1007/s10439-014-1093-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
|
11
|
Gambaruto A, Janela J, Moura A, Sequeira A. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2013; 10:649-665. [PMID: 23906142 DOI: 10.3934/mbe.2013.10.649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two different generalized Newtonian mathematical models for blood flow, derived for the same experimental data, are compared, together with the Newtonian model, in three different anatomically realistic geometries of saccular cerebral aneurysms obtained from rotational CTA. The geometries differ in size of the aneurysm and the existence or not of side branches within the aneurysm. Results show that the differences between the two generalized Newtonian mathematical models are smaller than the differences between these and the Newtonian solution, in both steady and unsteady simulations.
Collapse
Affiliation(s)
- Alberto Gambaruto
- Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat and CEMAT P-1049-001, Lisbon, Portugal.
| | | | | | | |
Collapse
|
12
|
Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol 2013; 35:1254-62. [PMID: 23598838 DOI: 10.3174/ajnr.a3558] [Citation(s) in RCA: 582] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
SUMMARY Increasing detection of unruptured intracranial aneurysms, catastrophic outcomes from subarachnoid hemorrhage, and risks and cost of treatment necessitate defining objective predictive parameters of aneurysm rupture risk. Image-based computational fluid dynamics models have suggested associations between hemodynamics and intracranial aneurysm rupture, albeit with conflicting findings regarding wall shear stress. We propose that the "high-versus-low wall shear stress" controversy is a manifestation of the complexity of aneurysm pathophysiology, and both high and low wall shear stress can drive intracranial aneurysm growth and rupture. Low wall shear stress and high oscillatory shear index trigger an inflammatory-cell-mediated pathway, which could be associated with the growth and rupture of large, atherosclerotic aneurysm phenotypes, while high wall shear stress combined with a positive wall shear stress gradient trigger a mural-cell-mediated pathway, which could be associated with the growth and rupture of small or secondary bleb aneurysm phenotypes. This hypothesis correlates disparate intracranial aneurysm pathophysiology with the results of computational fluid dynamics in search of more reliable risk predictors.
Collapse
Affiliation(s)
- H Meng
- From the Toshiba Stroke and Vascular Research Center (H.M., V.M.T., J.X., A.S.)Departments of Mechanical and Aerospace Engineering (H.M.)Neurosurgery (H.M., J.X., A.S.)Biomedical Engineering (H.M., V.M.T.), University at Buffalo, State University of New York, Buffalo, New York.
| | - V M Tutino
- From the Toshiba Stroke and Vascular Research Center (H.M., V.M.T., J.X., A.S.)Biomedical Engineering (H.M., V.M.T.), University at Buffalo, State University of New York, Buffalo, New York
| | - J Xiang
- From the Toshiba Stroke and Vascular Research Center (H.M., V.M.T., J.X., A.S.)Neurosurgery (H.M., J.X., A.S.)
| | - A Siddiqui
- From the Toshiba Stroke and Vascular Research Center (H.M., V.M.T., J.X., A.S.)Neurosurgery (H.M., J.X., A.S.)
| |
Collapse
|
13
|
Kawaguchi T, Nishimura S, Kanamori M, Takazawa H, Omodaka S, Sato K, Maeda N, Yokoyama Y, Midorikawa H, Sasaki T, Nishijima M. Distinctive flow pattern of wall shear stress and oscillatory shear index: similarity and dissimilarity in ruptured and unruptured cerebral aneurysm blebs. J Neurosurg 2012; 117:774-80. [DOI: 10.3171/2012.7.jns111991] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
The difference in the hemodynamics of wall shear stress (WSS) and oscillatory shear index (OSI) between ruptured and unruptured aneurysms is not well understood. The authors investigated the hemodynamic similarities and dissimilarities in ruptured and thin-walled unruptured aneurysm blebs.
Methods
Magnetic resonance imaging–based fluid dynamics analysis was used to calculate WSS and OSI, and hemodynamic and intraoperative findings were compared. The authors also compared ruptured and unruptured thin-walled blebs for the magnitude of WSS and OSI.
Results
Intraoperatively, 13 ruptured and 139 thin-walled unruptured aneurysm blebs were identified. Twelve of the ruptured (92.3%) and 124 of the unruptured blebs (89.2%) manifested low WSS and high OSI. The degree of WSS was significantly lower in ruptured (0.49 ± 0.12 Pa) than in unruptured (0.64 ± 0.15 Pa; p < 0.01) blebs.
Conclusions
Ruptured and unruptured blebs shared a distinctive pattern of low WSS and high OSI. The degree of WSS at the rupture site was significantly lower than in the unruptured thin-walled blebs.
Collapse
Affiliation(s)
| | | | | | | | | | - Kenya Sato
- 2Radiology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Noriko Maeda
- 2Radiology, Aomori Prefectural Central Hospital, Aomori, Japan
| | - Yoko Yokoyama
- 2Radiology, Aomori Prefectural Central Hospital, Aomori, Japan
| | | | | | | |
Collapse
|
14
|
Ramalho S, Moura A, Gambaruto AM, Sequeira A. Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2012; 28:697-713. [PMID: 25364846 DOI: 10.1002/cnm.2461] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 10/14/2011] [Accepted: 12/06/2011] [Indexed: 06/04/2023]
Abstract
Mathematical models, namely the flow boundary conditions, as well as the detail of the bounding geometry, can highly influence the computed flow field. In this work, an anatomically realistic portion of cerebral vasculature with a saccular aneurysm, and its geometric idealisation, are considered. The importance of the geometric description, namely including the side branches or modelling them as holes in the main vessel, is studied. Several approaches to prescribe the outflow boundary conditions at the side branches are analysed, including the traction-free condition, zero velocity (hence neglecting the side-branch), and the coupling with simple zero-dimensional and one-dimensional models. Results of the effects of outflow boundary modelling choice on computed haemodynamic parameters are used to identify appropriateness of the models based on the physical interpretation. Estimated range of error-bars associated to outflow boundary model choice and the level of geometric details are presented for patient-specific computational haemodynamics, and can serve as invitation for future studies. The zero-dimensional and one-dimensional models are shown to provide good representations of the side branches in the case of the clipped geometry.
Collapse
Affiliation(s)
- S Ramalho
- Dept. of Mathematics and CEMAT/IST, Instituto Superior Técnico, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001, Lisboa, Portugal
| | | | | | | |
Collapse
|
15
|
Zeng Z, Durka MJ, Kallmes DF, Ding Y, Robertson AM. Can aspect ratio be used to categorize intra-aneurysmal hemodynamics?--A study of elastase induced aneurysms in rabbit. J Biomech 2011; 44:2809-16. [PMID: 21925661 DOI: 10.1016/j.jbiomech.2011.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 05/31/2011] [Accepted: 08/07/2011] [Indexed: 01/24/2023]
Abstract
Clinical studies suggest that aneurysm aspect ratio (AR) is an important indicator of rupture likelihood. The importance of AR is hypothesized to arise from its influence on intra-aneurysmal hemodynamics. It has been conjectured that slower flow in high AR sacs leads to a cascade of biological activities that weaken the aneurysm wall (Ujiie et al.,1999). However, the connection between AR, hemodynamics and wall weakening has never been proven. Animal models of saccular aneurysms provide a venue for evaluating this conjecture. The focus of this work was to evaluate whether a commonly used elastase induced aneurysm model in rabbits is suitable for a study of this kind from a hemodynamic perspective. In particular, to assess whether hemodynamic factors in low and high AR sacs are statistically different. To achieve this objective, saccular aneurysms were created in 51 rabbits and pulsatile computational fluid dynamics (CFD) studies were performed using rabbit specific inflows. Distinct hemodynamics were found in the low AR (AR<1.8, n=25), and high AR (AR>2.2, n=18) models. A single, stable recirculation zone was present in all low AR aneurysms, whereas a second, transient recirculation zone was also found in the superior aspect of the aneurysm dome for all high AR cases. Aneurysms with AR between 1.8 and 2.2 displayed transitional flow patterns. Differences in values and distributions of hemodynamic parameters were found between low and high AR cases including time averaged wall shear stress, oscillatory shear index, relative residence time and non-dimensional inflow rate. This work lays the foundation for future studies of the dependence of growth and remodeling on AR in the rabbit model and provides a motivation for further studies of the coupling between AR and hemodynamics in human aneurysms.
Collapse
Affiliation(s)
- Zijing Zeng
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 3700 O'Hara St., Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
16
|
Zeng Z, Kallmes DF, Durka MJ, Ding Y, Lewis D, Kadirvel R, Robertson AM. Hemodynamics and anatomy of elastase-induced rabbit aneurysm models: similarity to human cerebral aneurysms? AJNR Am J Neuroradiol 2011; 32:595-601. [PMID: 21273353 DOI: 10.3174/ajnr.a2324] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Animal models provide a mechanism for fundamental studies of the coupling between hemodynamics and pathophysiology in diseases such as saccular aneurysms. In this work, we evaluated the capability of an elastase-induced saccular aneurysm model in rabbits to reproduce the anatomic and hemodynamic features typical for human intracranial aneurysms. MATERIALS AND METHODS Saccular aneurysms were created in 51 rabbits at the origin of the RCCA. Twelve weeks' postcreation, the lumen geometry of the aneurysm and surrounding vasculature was acquired by using 3DRA. Geometric features of these models were measured. Pulsatile 3D CFD studies were performed with rabbit-specific inlet profiles. RESULTS Geometric features, including aneurysm height, width, neck diameter, aspect ratio, and NSI of all 51 rabbit aneurysm models fell within the range reported for human IAs. The distribution and range in values of pressure, WSS, and OSI were also typical for human IAs. A single recirculation region was observed in 33 (65%) of 51 cases, whereas a second transient recirculation zone was observed in 18 (35%) cases. Both of these flow types are commonly observed in human IAs. CONCLUSIONS Most hemodynamic and geometric features in a commonly used elastase-induced rabbit saccular aneurysm model are qualitatively and quantitatively similar to those seen in large numbers of human cerebral aneurysms.
Collapse
Affiliation(s)
- Z Zeng
- Department of Mechanical Engineering and Materials Sciences, University of Pittsburgh, Pennsylvania, 15261, USA
| | | | | | | | | | | | | |
Collapse
|