1
|
Al-Jumaily AM, Liaquat H, Paul S. Focused Ultrasound for Dermal Applications. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:8-17. [PMID: 37806924 DOI: 10.1016/j.ultrasmedbio.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Focused ultrasound (FUS) is emerging as one of the most promising, non-invasive treatment techniques. The advancement of transducer technology has paved the way for dermatological applications. A comprehensive review is presented for healthcare practitioners and researchers, summarizing the effect of various operational parameters on the injury zone produced by ultrasound beams for various dermatological applications, which include skin tightening, fat reduction, hyperpigmentation and cancer treatment. In this article, we aim to highlight the efficient operational parameters of FUS to enhance pain relief during surgery and its affordability for skin treatment. Finally, a prospective future technique for efficient FUS is discussed.
Collapse
Affiliation(s)
- Ahmed M Al-Jumaily
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand.
| | - Hassan Liaquat
- Institute of Biomedical Technologies, Auckland University of Technology, Auckland, New Zealand
| | - Sharad Paul
- University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Baker RR, Payne C, Yu Y, Mohseni M, Connell JJ, Lin F, Harrison IF, Southern P, Rudrapatna US, Stuckey DJ, Kalber TL, Siow B, Thorne L, Punwani S, Jones DK, Emberton M, Pankhurst QA, Lythgoe MF. Image-Guided Magnetic Thermoseed Navigation and Tumor Ablation Using a Magnetic Resonance Imaging System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105333. [PMID: 35106965 PMCID: PMC9036015 DOI: 10.1002/advs.202105333] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Medical therapies achieve their control at expense to the patient in the form of a range of toxicities, which incur costs and diminish quality of life. Magnetic resonance navigation is an emergent technique that enables image-guided remote-control of magnetically labeled therapies and devices in the body, using a magnetic resonance imaging (MRI) system. Minimally INvasive IMage-guided Ablation (MINIMA), a novel, minimally invasive, MRI-guided ablation technique, which has the potential to avoid traditional toxicities, is presented. It comprises a thermoseed navigated to a target site using magnetic propulsion gradients generated by an MRI scanner, before inducing localized cell death using an MR-compatible thermoablative device. The authors demonstrate precise thermoseed imaging and navigation through brain tissue using an MRI system (0.3 mm), and they perform thermoablation in vitro and in vivo within subcutaneous tumors, with the focal ablation volume finely controlled by heating duration. MINIMA is a novel theranostic platform, combining imaging, navigation, and heating to deliver diagnosis and therapy in a single device.
Collapse
Affiliation(s)
- Rebecca R Baker
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Christopher Payne
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Yichao Yu
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Matin Mohseni
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - John J Connell
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Fangyu Lin
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| | - Ian F Harrison
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Paul Southern
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
| | - Umesh S Rudrapatna
- Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Daniel J Stuckey
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Tammy L Kalber
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Bernard Siow
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| | - Lewis Thorne
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7TS, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, Charles Bell House, 43-45 Foley Street, London, W1W 7JN, UK
| | - Quentin A Pankhurst
- Resonant Circuits Limited, 21 Albemarle Street, London, W1S 4BS, UK
- UCL Healthcare Biomagnetics Laboratory, University College London, 21 Albemarle Street, London, W1S 4BS, UK
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, 72 Huntley Street, London, WC1E 6DD, UK
| |
Collapse
|
3
|
Abbass MA, Killin JK, Mahalingam N, Hooi FM, Barthe PG, Mast TD. Real-Time Spatiotemporal Control of High-Intensity Focused Ultrasound Thermal Ablation Using Echo Decorrelation Imaging in ex Vivo Bovine Liver. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:199-213. [PMID: 29074273 PMCID: PMC5712268 DOI: 10.1016/j.ultrasmedbio.2017.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 05/05/2023]
Abstract
The ability to control high-intensity focused ultrasound (HIFU) thermal ablation using echo decorrelation imaging feedback was evaluated in ex vivo bovine liver. Sonications were automatically ceased when the minimum cumulative echo decorrelation within the region of interest exceeded an ablation control threshold, determined from preliminary experiments as -2.7 (log-scaled decorrelation per millisecond), corresponding to 90% specificity for local ablation prediction. Controlled HIFU thermal ablation experiments were compared with uncontrolled experiments employing two, five or nine sonication cycles. Means and standard errors of the lesion width, area and depth, as well as receiver operating characteristic curves testing ablation prediction performance, were computed for each group. Controlled trials exhibited significantly smaller average lesion area, width and treatment time than five-cycle or nine-cycle uncontrolled trials and also had significantly greater prediction capability than two-cycle uncontrolled trials. These results suggest echo decorrelation imaging is an effective approach to real-time HIFU ablation control.
Collapse
Affiliation(s)
- Mohamed A Abbass
- Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jakob K Killin
- Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Fong Ming Hooi
- Ultrasound Division, Siemens Healthcare, Issaquah, Washington, USA
| | | | - T Douglas Mast
- Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA.
| |
Collapse
|
4
|
Ahmad Reza Dibaji S, Wansapura J, Myers MR, Banerjee RK. In Vivo Monitoring of HIFU Induced Temperature Rise in Porcine Liver Using Magnetic Resonance Thermometry1. J Med Device 2014. [DOI: 10.1115/1.4027082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Seyed Ahmad Reza Dibaji
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221
| | - Janaka Wansapura
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45221
| | - Matthew R. Myers
- Division of Solid and Fluid Mechanics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Rupak K. Banerjee
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, Cincinnati, OH 45221
| |
Collapse
|
5
|
Ahmad Reza Dibaji S, Al-Rjoub MF, Myers MR, Banerjee RK. Enhanced Heat Transfer and Thermal Dose Using Magnetic Nanoparticles During HIFU Thermal Ablation—An In-Vitro Study. J Nanotechnol Eng Med 2014. [DOI: 10.1115/1.4027340] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Avoiding collateral damage to healthy tissues during the high intensity focused ultrasound (HIFU) ablation of malignant tumors is one of the major challenges for effective thermal therapy. Such collateral damage can originate out of the need for using higher acoustic powers to treat deep seated or highly vascularized tumors. The objective of this study is to assess the utility of using magnetic nanoparticles (mNPs) during HIFU procedures to locally enhance heating at low powers, thereby reducing the likelihood of collateral thermal damage and undesired destruction due to cavitation. Tissue phantoms with 0% (control), 1% and 3% mNPs concentrations by volume were fabricated. Each tissue phantom was embedded with four thermocouples (TCs) and sonicated using transducer acoustic powers of 5.15 W, 9.17 W, and 14.26 W. The temperature profiles during the heating and cooling periods were recorded for each embedded TC. The measured transient temperature profiles were used for thermal-dose calculations. The increase in the concentration of mNPs in the tissue phantoms, from 0% to 3%, resulted in the rise in the peak temperatures for all the TCs for each acoustic power. The thermal dose also increased with the rise in the concentration of mNPs in the tissue phantoms. For the highest applied acoustic power (14.26 W), the peak temperature at TC 1 (T1) in tissue phantoms with 1% and 3% mNPs concentrations increased (with respect to tissue phantom with 0% (control) mNPs concentration) by 1.59× and 2.09×, respectively. For an acoustic power of 14.26 W, the time required to achieve cellular necrosis as defined by a 240 equivalent min thermal dose was approximately 75 s in the absence of mNPs, 14 s for the 1% concentration, and 8 s for the 3% concentration. Magnetic nanoparticles have the potential to significantly reduce the time for HIFU thermal-ablation procedures. They can also decrease the likelihood of collateral damage by the propagating beam in HIFU procedures by reducing the intensity required to achieve cellular necrosis.
Collapse
Affiliation(s)
- Seyed Ahmad Reza Dibaji
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH 45221
| | - Marwan F. Al-Rjoub
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, 2600 Clifton Avenue, Cincinnati, OH 45221
| | - Matthew R. Myers
- Division of Solid and Fluid Mechanics, Center for Devices and Radiological Health, U. S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993
| | - Rupak K. Banerjee
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, 598 Rhodes Hall, P.O. Box 210072, Cincinnati, OH 45221 e-mail:
| |
Collapse
|
6
|
Iannessi A, Doyen J, Leysalle A, Thyss A. Magnetic resonance guided focalised ultrasound thermo-ablation: A promising oncologic local therapy. Diagn Interv Imaging 2014; 95:339-43. [DOI: 10.1016/j.diii.2013.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Hou GY, Marquet F, Wang S, Konofagou EE. Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study. Phys Med Biol 2014; 59:1121-45. [PMID: 24556974 DOI: 10.1088/0031-9155/59/5/1121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.
Collapse
Affiliation(s)
- Gary Y Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | | | | | | |
Collapse
|
8
|
Al-Qraini MM, Canney MS, Oweis GF. Laser-induced fluorescence thermometry of heating in water from short bursts of high intensity focused ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2013; 39:647-659. [PMID: 23497843 DOI: 10.1016/j.ultrasmedbio.2012.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 11/14/2012] [Accepted: 11/18/2012] [Indexed: 06/01/2023]
Abstract
Free field experimental measurements of the temperature rise of water in the focal region of a 2 MHz high intensity focused ultrasound (HIFU) transducer were performed. The transducer was operated in pulse-mode with millisecond bursts, at acoustic intensities of 5 to 18.5 kW/cm(2) at the focus, resulting in non-linear wave propagation and shock wave formation. Pulsed, planar, laser-induced fluorescence (LIF) was used as a fast rise-time, non-intrusive, temperature measurement method of the water present in the focal region. LIF thermometry is based on calibrating the temperature-dependent fluorescence intensity signal emitted by a passive dye dissolved in water when excited by a pulse of laser light. The laser beam was formed into a thin light sheet to illuminate a planar area in the HIFU focal region. The laser light sheet was oriented transverse to the acoustic axis. Cross-sectional, instantaneous temperature field measurements within the HIFU focal volume showed that the water temperature increased steadily with increasing HIFU drive voltage. Heating rates of 4000-7000°C/s were measured within the first millisecond of the HIFU burst. Increasing the length of the burst initially resulted in an increase in the water temperature within the HIFU focal spot (up to ∼3 ms), after which it steadied or slightly dropped. Acoustic streaming was measured and shown to be consistent with the reduction in heating with increased burst length due to convective cooling. LIF thermometry may thus be a viable non-invasive method for the characterization of HIFU transducers at high power intensities.
Collapse
Affiliation(s)
- Moath M Al-Qraini
- Department of Mechanical Engineering, American University of Beirut, Beirut, Lebanon
| | | | | |
Collapse
|
9
|
Hou GY, Luo J, Marquet F, Maleke C, Vappou J, Konofagou EE. Performance assessment of HIFU lesion detection by harmonic motion imaging for focused ultrasound (HMIFU): a 3-D finite-element-based framework with experimental validation. ULTRASOUND IN MEDICINE & BIOLOGY 2011; 37:2013-27. [PMID: 22036637 PMCID: PMC4005895 DOI: 10.1016/j.ultrasmedbio.2011.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 08/18/2011] [Accepted: 09/06/2011] [Indexed: 05/11/2023]
Abstract
Harmonic motion imaging for focused ultrasound (HMIFU) is a novel high-intensity focused ultrasound (HIFU) therapy monitoring method with feasibilities demonstrated in vitro, ex vivo and in vivo. Its principle is based on amplitude-modulated (AM) - harmonic motion imaging (HMI), an oscillatory radiation force used for imaging the tissue mechanical response during thermal ablation. In this study, a theoretical framework of HMIFU is presented, comprising a customized nonlinear wave propagation model, a finite-element (FE) analysis module and an image-formation model. The objective of this study is to develop such a framework to (1) assess the fundamental performance of HMIFU in detecting HIFU lesions based on the change in tissue apparent elasticity, i.e., the increasing Young's modulus, and the HIFU lesion size with respect to the HIFU exposure time and (2) validate the simulation findings ex vivo. The same HMI and HMIFU parameters as in the experimental studies were used, i.e., 4.5-MHz HIFU frequency and 25 Hz AM frequency. For a lesion-to-background Young's modulus ratio of 3, 6 and 9, the FE and estimated HMI displacement ratios were equal to 1.83, 3.69 and 5.39 and 1.65, 3.19 and 4.59, respectively. In experiments, the HMI displacement followed a similar increasing trend of 1.19, 1.28 and 1.78 at 10-s, 20-s and 30-s HIFU exposure, respectively. In addition, moderate agreement in lesion size growth was found in both simulations (16.2, 73.1 and 334.7 mm(2)) and experiments (26.2, 94.2 and 206.2 mm(2)). Therefore, the feasibility of HMIFU for HIFU lesion detection based on the underlying tissue elasticity changes was verified through the developed theoretical framework, i.e., validation of the fundamental performance of the HMIFU system for lesion detection, localization and quantification, was demonstrated both theoretically and ex vivo.
Collapse
Affiliation(s)
- Gary Y. Hou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jianwen Luo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Fabrice Marquet
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Caroline Maleke
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jonathan Vappou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Elisa E. Konofagou
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Radiology, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Dasgupta S, Das P, Wansapura J, Hariharan P, Pratt R, Witte D, Myers MR, Banerjee RK. Reduction of Noise From MR Thermometry Measurements During HIFU Characterization Procedures. J Nanotechnol Eng Med 2011. [DOI: 10.1115/1.4003861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Magnetic resonance (MR) thermometry is a valuable method for characterizing thermal fields generated by high intensity focused ultrasound (HIFU) transducers in tissue phantoms and excised tissues. However, infiltration of noise signals generated by external rf sources into the scanner orifice limits the ability of the scanner to measure temperature rise during the heating or ablation phase. In this study, magnetic resonance interferometry (MRI) monitored HIFU ablations are performed on freshly excised porcine liver samples, at varying sonication times, 20 s, 30 s, and 40 s at a constant acoustic intensity level of 1244 W/cm2. Temperature throughout the procedure was measured using proton resonant frequency MR thermometry. Without filtering, reliable temperature measurements during the heating phase could not be obtained since temperature maps appeared blurred and analysis was impossible. Also, measurements acquired during the cooling phase decayed manifested an unrealistically slow rate of temperature decay. This abnormally slow rate was confirmed with computational results. A low-pass RC filter circuit was subsequently incorporated into the experimental setup to prevent infiltration of noise signals in the MRI orifice. This modified RC filter circuit allowed noninvasive measurement of the HIFU induced temperature rise during the heating phase followed by temperature decay during cooling. The measured data were within 13% agreement with the temperature rise computed by solving the acoustic and heat equations.
Collapse
Affiliation(s)
- Subhashish Dasgupta
- Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45220
| | - Prasenjeet Das
- Department of Mechanical Engineering, University of Cincinnati, Cincinnati, OH 45220
| | - Janaka Wansapura
- Department of X-Ray/Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220
| | - Prasanna Hariharan
- Division of Solid and Fluid Mechanics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Ron Pratt
- Department of X-Ray/Radiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220
| | - David Witte
- Department of Histopathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45220
| | - Matthew R. Myers
- Division of Solid and Fluid Mechanics, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993
| | - Rupak K. Banerjee
- Department of Mechanical Engineering, and Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45220
| |
Collapse
|
11
|
Characterization Methods of High-Intensity Focused Ultrasound-Induced Thermal Field. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s0065-2717(10)42002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|