1
|
Tsiagadigui JG, Ndiwe B, Ngo Yamben MA, Fotio N, Belinga FE, Njeugna E. The effects of multiple drilling of a bone with the same drill bit: thermal and force analysis. Heliyon 2022; 8:e08927. [PMID: 35243056 PMCID: PMC8861400 DOI: 10.1016/j.heliyon.2022.e08927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/21/2021] [Accepted: 02/07/2022] [Indexed: 11/17/2022] Open
Abstract
Repeated use of the same drill bit during drilling wears off the cutting edges, which can lead to a significant increase in heat as a result of friction, which is harmful to a bone above 55 °C. Few previous studies have examined the effects of using the same drill bit several times, on temperature. The objective of this study was to determine the effect of each drilling on temperature and force. 72 trials were performed. A total of 24 stainless steel drill bits of ∅3.2 mm were used to drill bovine bone samples. Each drill bit was used at least 3 times. T thermocouples were used to measure temperatures during each drilling test. Possible correlations of cutting parameters were studied. Tests were performed on a test rig measuring forces and temperatures during drilling. Effects of spindle speed (N), feed rate (Vf), and several trials (E) on temperature and forces were measured. Images of the drill bits were analyzed by digital microscopy before and after the drilling series for signs of wear. Temperatures increased significantly from E1 to E3. They decreased moderately with Vf. The best cutting conditions were at N = 200 rpm for Vf = 60 mm/min and N = 100 rpm for Vf = 30 mm/min drilling. At N > 200 rpm, they were very high. Temperature rise is significantly related to number of drilling (E), spindle speed (N), and inversely to feed rate (Vf). Analysis of images by digital microscopy confirmed drill bits wearing off, following the number of trials.
Collapse
Affiliation(s)
- Jean Gustave Tsiagadigui
- Department of Surgery and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, B.P: 1364, Yaoundé, Cameroon
- Department of Mechanical Engineering, ENSET, University of Douala, P.O. Box 1872, Douala, Cameroon
- Corresponding author.
| | - Benoit Ndiwe
- Department of Mechanical Engineering, ENSET, University of Douala, P.O. Box 1872, Douala, Cameroon
| | - Marie-Ange Ngo Yamben
- Department of Surgery and Specialties, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, B.P: 1364, Yaoundé, Cameroon
| | - Nzogning Fotio
- Department of Mechanical Engineering, ENSET, University of Douala, P.O. Box 1872, Douala, Cameroon
- Laboratory of Materials Mechanics, Structures and Integrated Manufacturing, National Advanced School of Engineering, Yaoundé 1 University, BP 8390, Yaoundé, Cameroon
| | - Fabrice Ella Belinga
- Department of Mechanical Engineering, ENSET, University of Douala, P.O. Box 1872, Douala, Cameroon
| | - Ebenezer Njeugna
- Department of Mechanical Engineering, ENSET, University of Douala, P.O. Box 1872, Douala, Cameroon
| |
Collapse
|
2
|
Singh RP, Pandey PM, Behera C, Mridha AR. Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones. Proc Inst Mech Eng H 2020; 234:829-842. [PMID: 32490719 DOI: 10.1177/0954411920925254] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Efficacy and outcomes of osteosynthesis depend on various factors including types of injury and repair, host factors, characteristics of implant materials and type of implantation. One of the most important host factors appears to be the extent of bone damage due to the mechanical force and thermal injury which are produced at cutting site during bone drilling. The temperature above the critical temperature (47 °C) produces thermal osteonecrosis in the bones. In the present work, experimental investigations were performed to determine the effect of drilling parameters (rotational speed, feed rate and drill diameter) and techniques (conventional surgical bone drilling and rotary ultrasonic bone drilling) on cutting force and temperature generated during bone drilling. The drilling experiments were performed by a newly developed bone drilling machine on different types of human bones (femur, tibia and fibula) having different biological structure and mechanical behaviour. The bone samples were procured from male cadavers with the age of second to fourth decades. The results revealed that there was a significant difference (p < 0.05) in cutting force and temperature rise for rotary ultrasonic bone drilling and conventional surgical bone drilling. The cutting force obtained in rotary ultrasonic bone drilling was 30%-40%, whereas temperature generated was 50%-55% lesser than conventional surgical bone drilling process for drilling in all types of bones. It was also found that the cutting force increased with increasing feed rate, drill diameter and decrease in rotational speed, whereas increasing rotational speed, drill diameter and feed rate resulted in higher heat generation during bone drilling. Both the techniques revealed that the axial cutting force and the temperature rise were significantly higher in femur and tibia compared with the fibula for all combinations of process parameters.
Collapse
Affiliation(s)
- Ravinder Pal Singh
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Pulak Mohan Pandey
- Department of Mechanical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Chittaranjan Behera
- Department of Forensic Medicine, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Asit Ranjan Mridha
- Department of Pathology, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
3
|
Gupta V, Singh RP, Pandey PM, Gupta R. In vitro comparison of conventional surgical and rotary ultrasonic bone drilling techniques. Proc Inst Mech Eng H 2020; 234:398-411. [DOI: 10.1177/0954411919898301] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In orthopedic and trauma surgical operations, drilling of bone is one of the commonly used procedures performed in hospitals and is a clinical practice for fixing the fractured parts of human bones. Force, torque and temperature play a significant role during the bone drilling and decide the stability of the medical implants. Therefore, it is necessary to minimize force, torque and temperature while drilling to avoid the thermal necrosis and osteosynthesis. This study focused on studying the influence of various types of bone drilling parameters (rotational speed, feed rate, drill diameter and ultrasonic amplitude), tools (solid tool, hollow tool and conventional twist drill bit) and techniques (conventional surgical drilling, rotary ultrasonic bone drilling and rotary bone drilling) on force, torque, temperature and microcracks produced in the drilled surface of the bone. The experimental investigations were conducted on porcine bone samples to perform the comparative study. Results revealed that increasing the diameter of drill tool and feed rate results in the increase in force, torque and temperature, while low rotational speed (500 r/min) generated a low temperature, high cutting force and torque for all types of drilling processes and tools evaluated in this study. Experimental results also revealed that rotary ultrasonic bone drilling with hollow tool generated the lowest cutting force, torque, temperature (<47 °C) and microcracks in the drilled surface of the bone as compared to the other four types of drilling techniques evaluated in this study. Influence of external irrigation technique on temperature was also studied with respect to the rotary ultrasonic bone drilling with a hollow tool, which could eliminate the problem of thermal necrosis. In conclusion, this study revealed that the rotary ultrasonic bone drilling process with hollow tool produced lesser cutting force as compared to rotary bone drilling and conventional surgical drilling for hollow and solid tools. The study also revealed that rotary ultrasonic bone drilling process has the potential to minimize the cutting force, torque and temperature as compared to the conventional surgical drilling for orthopedic surgery.
Collapse
Affiliation(s)
- Vishal Gupta
- Mechanical Engineering Department, Thapar Institute of Engineering and Technology, Patiala, India
| | - Ravinder Pal Singh
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, India
| | - Pulak M Pandey
- Mechanical Engineering Department, Indian Institute of Technology Delhi, New Delhi, India
| | - Ravi Gupta
- Department of Orthopedics, Sports Injury Division, Government Medical College & Hospital, Chandigarh, India
| |
Collapse
|
4
|
Alam K, Al-Ghaithi A, Piya S, Saleem A. In-vitro experimental study of histopathology of bone in vibrational drilling. Med Eng Phys 2019; 67:78-87. [PMID: 30981608 DOI: 10.1016/j.medengphy.2019.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 03/09/2019] [Accepted: 03/30/2019] [Indexed: 02/06/2023]
Abstract
Drilling is a common surgical procedure for fracture treatment and reconstruction in multiple surgical fields, including orthopaedics, neurology, and dentistry. Drilling delicate tissue (such as bone) with a hard metallic tool is considered notorious for inducing mechanical and thermal damage, which can adversely affect osseointegration and may weaken the bond between the bone and implant, or other fixative devices anchoring the bone. The aim of this study is to explore the benefits of vibrational drilling (VD) in overcoming the complications associated with conventional drilling (CD). Drilling tests were performed on fresh cortical bone with the intention of investigating the effect of a range of frequencies, in combination with drilling speed and feed rate, on biological damage around the drilling region using histological sections of skeletally mature bone. The study examined the most influential factors and optimal combination of parameters for safe and efficient drilling in bone. Results from Taguchi grey relational analysis showed that a lower drilling speed and feed rate combined with a frequency of 20 kHz were favourable parameters for safe drilling in bone. Accordingly, VD using controlled parameters may be an alternative to CD in bone surgical procedures.
Collapse
Affiliation(s)
- Khurshid Alam
- Department of Mechanical and Industrial Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Sultanate of Oman.
| | | | - Sujan Piya
- Department of Mechanical and Industrial Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Sultanate of Oman
| | - Ashraf Saleem
- Department of Electrical and Computer Engineering, Sultan Qaboos University, P.O. Box 33, Al-Khoud 123, Sultanate of Oman
| |
Collapse
|
5
|
PANDITHEVAN PONNUSAMY, PANDY NATARAJANVINAYAGAMURUGA, PRASANNAVENKADESAN VARATHARAJAN. INVESTIGATION OF BONE DRILLING FOR SECURE IMPLANT FIXATION IN HUMAN FEMURS: TAGUCHI OPTIMIZATION AND PREDICTIVE FORCE MODELS WITH EXPERIMENTAL VALIDATION. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418500616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Drilling procedures are important to optimize and ensure the strongest fixation in bone fracture treatment and reconstruction surgery. The mechanistic force models currently available for bovine bones, human spines and human mandibles are not relevant to perform drilling through human femurs. The present study addresses this lack of information and aims to develop the predictive force models for drilling human femurs at different regions and directions. In this study, 10 freshly harvested cadaveric human femurs were included, and a surgical drill bit of 3.2[Formula: see text]mm diameter was used to make 4[Formula: see text]mm deep holes. Different spindle speeds (500, 1000 and 1500[Formula: see text]rpm), feed rates (40, 60 and 80[Formula: see text]mm/min), and apparent density between 0.98 and 1.98[Formula: see text]g/cm3were considered. The optimal parameters [Formula: see text], [Formula: see text], and [Formula: see text] respectively obtained for longitudinal, radial, and circumferential direction could minimize the thrust forces in bone drilling by up to 7.70, 10.50, and 16.20 N, respectively. Validation study demonstrated that the force model developed could predict the thrust force from computed tomography data sets of the patient, only with 5.05%, 6.74%, and 4.91% as a maximum error in longitudinal, radial, and circumferential direction. This important tool can assist to perform complicated surgical operations.
Collapse
Affiliation(s)
- PONNUSAMY PANDITHEVAN
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai 600127, Tamilnadu, India
| | - NATARAJAN VINAYAGA MURUGA PANDY
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai 600127, Tamilnadu, India
| | - VARATHARAJAN PRASANNAVENKADESAN
- Department of Mechanical Engineering, Indian Institute of Information Technology, Design and Manufacturing Kancheepuram, Chennai 600127, Tamilnadu, India
| |
Collapse
|
6
|
Hoffseth K, Randall C, Chandrasekar S, Hansma P, Yang HT. Analyzing the effect of hydration on the wedge indentation fracture behavior of cortical bone. J Mech Behav Biomed Mater 2017; 69:318-326. [DOI: 10.1016/j.jmbbm.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 12/24/2016] [Accepted: 01/02/2017] [Indexed: 10/20/2022]
|
7
|
Marco M, Rodríguez-Millán M, Santiuste C, Giner E, Henar Miguélez M. A review on recent advances in numerical modelling of bone cutting. J Mech Behav Biomed Mater 2015; 44:179-201. [DOI: 10.1016/j.jmbbm.2014.12.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 11/29/2022]
|
8
|
Lughmani WA, Bouazza-Marouf K, Ashcroft I. Drilling in cortical bone: a finite element model and experimental investigations. J Mech Behav Biomed Mater 2015; 42:32-42. [DOI: 10.1016/j.jmbbm.2014.10.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/29/2014] [Accepted: 10/31/2014] [Indexed: 10/24/2022]
|
9
|
Li S, Abdel-Wahab A, Demirci E, Silberschmidt VV. Penetration of cutting tool into cortical bone: Experimental and numerical investigation of anisotropic mechanical behaviour. J Biomech 2014; 47:1117-26. [DOI: 10.1016/j.jbiomech.2013.12.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/19/2013] [Accepted: 12/16/2013] [Indexed: 11/28/2022]
|
10
|
Lughmani WA, Bouazza-Marouf K, Ashcroft I. Finite element modeling and experimentation of bone drilling forces. ACTA ACUST UNITED AC 2013. [DOI: 10.1088/1742-6596/451/1/012034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
11
|
Variability and anisotropy of mechanical behavior of cortical bone in tension and compression. J Mech Behav Biomed Mater 2013; 21:109-20. [DOI: 10.1016/j.jmbbm.2013.02.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 02/15/2013] [Accepted: 02/23/2013] [Indexed: 11/21/2022]
|
12
|
Alam K, Kerckhofs G, Mitrofanov AV, Lomov S, Wevers M, Silberschmidt VV. On-line analysis of cracking in cortical bone under wedge penetration. Proc Inst Mech Eng H 2012; 226:709-17. [DOI: 10.1177/0954411912451824] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Understanding the mechanism of crack propagation during bone cutting is necessary for the development of realistic bone cutting models. This article studies the on-line fractural behaviour of cortical bone caused by penetration with a sharp metallic wedge mounted on an on-line loading stage within an X-ray microfocus computed tomography system. The experimental results demonstrated anisotropy in crack propagation depending on the penetration direction with regard to the longitudinal bone axis and relate the crack growth to the extent of penetration. Scanning electron microscopy is performed to analyse the mechanism of cracking in the two phase microstructure of compact bone.
Collapse
Affiliation(s)
- Khurshid Alam
- School of Mechanical and Manufacturing Engineering, National University of Sciences and Technology, Pakistan
| | - Greet Kerckhofs
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Belgium
| | | | - Stepan Lomov
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Belgium
| | - Martin Wevers
- Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Belgium
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, UK
| |
Collapse
|
13
|
Lee J, Gozen BA, Ozdoganlar OB. Modeling and experimentation of bone drilling forces. J Biomech 2012; 45:1076-83. [DOI: 10.1016/j.jbiomech.2011.12.012] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 12/12/2011] [Accepted: 12/15/2011] [Indexed: 11/25/2022]
|