1
|
Zimmerman BK, Maas SA, Weiss JA, Ateshian GA. Modeling Fatigue Failure of Cartilage and Fibrous Biological Tissues Using Constrained Reactive Mixture Theory. J Biomech Eng 2024; 146:121001. [PMID: 39152721 PMCID: PMC11500809 DOI: 10.1115/1.4066219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
Fatigue failure in biological soft tissues plays a critical role in the etiology of chronic soft tissue injuries and diseases such as osteoarthritis (OA). Understanding failure mechanisms is hindered by the decades-long timescales over which damage takes place. Analyzing the factors contributing to fatigue failure requires the help of validated computational models developed for soft tissues. This study presents a framework for fatigue failure of fibrous biological tissues based on reaction kinetics, where the composition of intact and fatigued material regions can evolve via degradation and breakage over time, in response to energy-based fatigue and damage criteria. Using reactive constrained mixture theory, material region mass fractions are governed by the axiom of mass balance. Progression of fatigue is controlled by an energy-based reaction rate, with user-selected probability functions defining the damage propensity of intact and fatigued material regions. Verification of this reactive theory, which is implemented in the open-source FEBio finite element software, is provided in this study. Validation is also demonstrated against experimental data, showing that predicted damage can be linked to results from biochemical assays. The framework is also applied to study fatigue failure during frictional contact of cartilage. Simulating previous experiments suggests that frictional effects slightly increase fatigue progression, but the main driver is cyclic compressive contact loading. This study demonstrated the ability of theoretical models to complement and extend experimental findings, advancing our understanding of the time progression of fatigue in biological tissues.
Collapse
Affiliation(s)
- Brandon K Zimmerman
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| | - Steve A Maas
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Jeffrey A Weiss
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Gerard A Ateshian
- Department of Mechanical Engineering, Columbia University, New York, NY 10027
| |
Collapse
|
2
|
Ayala S, Matan SO, Delco ML, Fortier LA, Cohen I, Bonassar LJ. Degradation of lubricating molecules in synovial fluid alters chondrocyte sensitivity to shear strain. J Orthop Res 2024. [PMID: 39182184 DOI: 10.1002/jor.25960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/01/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024]
Abstract
Articular joints facilitate motion and transfer loads to underlying bone through a combination of cartilage tissue and synovial fluid, which together generate a low-friction contact surface. Traumatic injury delivered to cartilage and the surrounding joint capsule causes secretion of proinflammatory cytokines by chondrocytes and the synovium, triggering cartilage matrix breakdown and impairing the ability of synovial fluid to lubricate the joint. Once these inflammatory processes become chronic, posttraumatic osteoarthritis (PTOA) development begins. However, the exact mechanism by which negative alterations to synovial fluid leads to PTOA pathogenesis is not fully understood. We hypothesize that removing the lubricating macromolecules from synovial fluid alters the relationship between mechanical loads and subsequent chondrocyte behavior in injured cartilage. To test this hypothesis, we utilized an ex vivo model of PTOA that involves subjecting cartilage explants to a single rapid impact followed by continuous articulation within a lubricating bath of either healthy synovial fluid, phosphate-buffered saline (PBS), synovial fluid treated with hyaluronidase, or synovial fluid treated with trypsin. These treatments degrade the main macromolecules attributed with providing synovial fluid with its lubricating properties; hyaluronic acid and lubricin. Explants were then bisected and fluorescently stained to assess global and depth-dependent cell death, caspase activity, and mitochondrial depolarization. Explants were tested via confocal elastography to determine the local shear strain profile generated in each lubricant. These results show that degrading hyaluronic acid or lubricin in synovial fluid significantly increases middle zone chondrocyte damage and shear strain loading magnitudes, while also altering chondrocyte sensitivity to loading.
Collapse
Affiliation(s)
- Steven Ayala
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Salman O Matan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
| | - Michelle L Delco
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, New York, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, New York, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
3
|
Suh JW, Kwon JH, Lee DH, Jung JU, Park HW. Outcomes of Osteochondral Autologous Transplantation with Ipsilateral Lateral Talar Autograft for Medial Osteochondral Lesions of the Talus. Clin Orthop Surg 2024; 16:620-627. [PMID: 39092295 PMCID: PMC11262937 DOI: 10.4055/cios23327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 08/04/2024] Open
Abstract
Background Osteochondral autologous transplantation (OAT) has been widely used in the treatment of osteochondral lesion of the talus (OLT). Previous studies have reported successful outcomes following the use of osteochondral autogenous grafts from the intercondylar notch of the knee or a non-weight-bearing region of the femoral condyle. However, donor-site morbidity of the knee joint has been observed in several cases. This study aimed to investigate the outcomes and safety of OAT with autografts from the ipsilateral lateral talar articular facet as an alternative donor site for medial OLT. Methods Among 40 patients who underwent OAT, 29 patients were excluded. Eleven patients who underwent OAT with an osteochondral graft harvested from the ipsilateral lateral talar articular facet from 2011 to 2022 were retrospectively analyzed. The size of OLT was measured on ankle magnetic resonance imaging, including coronal length, sagittal length, depth, and area. Clinical outcomes were evaluated using the American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scale and a visual analog scale (VAS). Weight-bearing ankle radiographs were obtained postoperatively and at 1 year after surgery. Results The average follow-up time after surgery was 64.7 months (range, 14-137 months). The average diameter of lesions was 8.8 mm (range, 8-9.9 mm). The average size of lesions was 51.2 mm2 (range, 33.6-71.3 mm2) , and all lesions included subchondral cysts. The average depth of lesions was 7.3 mm (range, 6.2-9.1 mm). Graft sizes ranged from 8 to 10 mm in diameter (8 mm, n = 1; 10 mm, n = 10) All measured clinical outcomes improved postoperatively, including the AOFAS scores (preoperative, 55.4 ± 9.0; 1-year follow-up, 92.1 ± 7.6; p = 0.001) and VAS scores (preoperative, 5.5 ± 0.7; 1-year follow-up, 1.9 ± 0.8; p = 0.001). All weight-bearing ankle radiographs of the graft and donor sites did not reveal arthritic change in the ankle joint, lateral talar dome collapse, and graft-site delayed union or nonunion at 1 year after surgery. Conclusions For a single medial OLT, harvesting autografts from the ipsilateral lateral talar articular facet without knee donor-site morbidities can be a good alternative in OAT for OLT.
Collapse
Affiliation(s)
- Jae Wan Suh
- Department of Orthopedic Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Joo Han Kwon
- Department of Orthopedic Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Dae Hee Lee
- Department of Orthopedic Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Jae Uk Jung
- Department of Orthopedic Surgery, Dankook University College of Medicine, Cheonan, Korea
| | - Hyun-Woo Park
- Department of Orthopedic Surgery, Dankook University College of Medicine, Cheonan, Korea
| |
Collapse
|
4
|
Zhang Z, Mu Y, Zhou H, Yao H, Wang DA. Cartilage Tissue Engineering in Practice: Preclinical Trials, Clinical Applications, and Prospects. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:473-490. [PMID: 36964757 DOI: 10.1089/ten.teb.2022.0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Articular cartilage defects significantly compromise the quality of life in the global population. Although many strategies are needed to repair articular cartilage, including microfracture, autologous osteochondral transplantation, and osteochondral allograft, the therapeutic effects remain suboptimal. In recent years, with the development of cartilage tissue engineering, scientists have continuously improved the formulations of therapeutic cells, biomaterial-based scaffolds, and biological factors, which have opened new avenues for better therapeutics of cartilage lesions. This review focuses on advances in cartilage tissue engineering, particularly in preclinical trials and clinical applications, prospects, and challenges.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Yulei Mu
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Huiqun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, P.R. China
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR
- Karolinska Institutet Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong SAR
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, P.R. China
| |
Collapse
|
5
|
Kůrová V, Salek RN, Vašina M, Vinklárková K, Zálešáková L, Gál R, Adámek R, Buňka F. The effect of homogenization and addition of polysaccharides on the viscoelastic properties of processed cheese sauce. J Dairy Sci 2022; 105:6563-6577. [PMID: 35840407 DOI: 10.3168/jds.2021-21520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/16/2022] [Indexed: 11/19/2022]
Abstract
This study was conducted to determine the effect of 1-stage homogenization (OSH) and 2-stage homogenization (TSH) and the addition of polysaccharides [κ-carrageenan (CR) or furcellaran (FR) at levels ranging from 0.000 to 1.000% (wt/wt)] on the physicochemical, viscoelastic, and mechanical vibration damping properties of processed cheese sauces (PCS) after 30 d of storage (6 ± 2°C). The basic chemical properties (pH, dry matter content) were similar for all tested samples. Viscoelastic measurements indicated that PCS rigidity was directly proportional to increasing CR or FR concentration and to the application of homogenization. The interactions between the application of homogenization and the concentration of polysaccharides used were also significant. Compared with OSH, TSH did not lead to any further increase in the rigidity. The preceding results were also supported by data obtained from a nondestructive method of mechanical vibration damping. No changes in water activity were observed in any PCS sample. Overall, the addition of FR or CR appeared to be highly suitable for increasing the emulsion stability of PCS. If PCS products with softer consistency are desired, then a concentration of CR/FR ≤0.250% (wt/wt) could be recommended together with OSH/TSH. For products for which a firmer PCS consistency is required, the addition of CR in concentrations of ≥0.500% (wt/wt) or FR in concentrations of ≥1.000% (wt/wt) together with OSH is recommended. Finally, as the concentration of polysaccharides increased, a darker PCS color was observed.
Collapse
Affiliation(s)
- V Kůrová
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - R N Salek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic.
| | - M Vašina
- Department of Physics and Materials Engineering, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - K Vinklárková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - L Zálešáková
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - R Gál
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - R Adámek
- Department of Food Technology, Faculty of Technology, Tomas Bata University in Zlín, nám. T. G. Masaryka 5555, 760 01, Zlín, Czech Republic
| | - F Buňka
- Food Research Laboratory, Department of Logistics, Faculty of Military Leadership, University of Defense, Kounicova 65, 662 10 Brno, Czech Republic
| |
Collapse
|
6
|
Wyse Jackson T, Michel J, Lwin P, Fortier LA, Das M, Bonassar LJ, Cohen I. Structural origins of cartilage shear mechanics. SCIENCE ADVANCES 2022; 8:eabk2805. [PMID: 35148179 PMCID: PMC8836800 DOI: 10.1126/sciadv.abk2805] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Articular cartilage is a remarkable material able to sustain millions of loading cycles over decades of use outperforming any synthetic substitute. Crucially, how extracellular matrix constituents alter mechanical performance, particularly in shear, remains poorly understood. Here, we present experiments and theory in support of a rigidity percolation framework that quantitatively describes the structural origins of cartilage's shear properties and how they arise from the mechanical interdependence of the collagen and aggrecan networks making up its extracellular matrix. This framework explains that near the cartilage surface, where the collagen network is sparse and close to the rigidity threshold, slight changes in either collagen or aggrecan concentrations, common in early stages of cartilage disease, create a marked weakening in modulus that can lead to tissue collapse. More broadly, this framework provides a map for understanding how changes in composition throughout the tissue alter its shear properties and ultimate in vivo function.
Collapse
Affiliation(s)
- Thomas Wyse Jackson
- Department of Physics, Cornell University, Ithaca, NY, USA
- Corresponding author. (T.W.J.); (I.C.)
| | - Jonathan Michel
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Pancy Lwin
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Moumita Das
- School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, USA
- Corresponding author. (T.W.J.); (I.C.)
| |
Collapse
|
7
|
Gologorsky CJ, Middendorf JM, Cohen I, Bonassar LJ. Depth-dependent patterns in shear modulus of temporomandibular joint cartilage correspond to tissue structure and anatomic location. J Biomech 2021; 129:110815. [PMID: 34706301 DOI: 10.1016/j.jbiomech.2021.110815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
To fully understand TMJ cartilage degeneration and appropriate repair mechanisms, it is critical to understand the native structure-mechanics relationships of TMJ cartilage and any local variation that may occur in the tissue. Here, we used confocal elastography and digital image correlation to measure the depth-dependent shear properties as well as the structural properties of TMJ cartilage at different anatomic locations on the condyle to identify depth-dependent changes in shear mechanics and structure. We found that samples at every anatomic location showed qualitatively similar shear modulus profiles as a function of depth. In every sample, four distinct zones of mechanical behavior were observed, with shear modulus values spanning 3-5 orders of magnitude across zones. However, quantitative characteristics of shear modulus profiles varied by anatomic location, particularly zone size and location, with the most significant variation in zonal width occurring in the fibrocartilage surface layer (zone 1). This anatomic variation suggests that different locations on the TMJ condyle may play unique mechanical roles in TMJ function. Furthermore, zones identified in the mechanical data corresponded on a sample-by-sample basis to zones identified in the structural data, indicating the known structural zones of TMJ cartilage may also play unique mechanical roles in TMJ function.
Collapse
Affiliation(s)
| | - Jill M Middendorf
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Clark Hall C7, Ithaca, NY 14853, USA
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Ayala S, Delco ML, Fortier LA, Cohen I, Bonassar LJ. Cartilage articulation exacerbates chondrocyte damage and death after impact injury. J Orthop Res 2021; 39:2130-2140. [PMID: 33274781 PMCID: PMC8175450 DOI: 10.1002/jor.24936] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) is typically initiated by momentary supraphysiologic shear and compressive forces delivered to articular cartilage during acute joint injury and develops through subsequent degradation of cartilage matrix components and tissue remodeling. PTOA affects 12% of the population who experience osteoarthritis and is attributed to over $3 billion dollars annually in healthcare costs. It is currently unknown whether articulation of the joint post-injury helps tissue healing or exacerbates cellular dysfunction and eventual death. We hypothesize that post-injury cartilage articulation will lead to increased cartilage damage. Our objective was to test this hypothesis by mimicking the mechanical environment of the joint during and post-injury and determining if subsequent joint articulation exacerbates damage produced by initial injury. We use a model of PTOA that combines impact injury and repetitive sliding with confocal microscopy to quantify and track chondrocyte viability, apoptosis, and mitochondrial depolarization in a depth-dependent manner. Cartilage explants were harvested from neonatal bovine knee joints and subjected to either rapid impact injury (17.34 ± 0.99 MPa, 21.6 ± 2.45 GPa/s), sliding (60 min at 1 mm/s, under 15% axial compression), or rapid impact injury followed by sliding. Explants were then bisected and fluorescently stained for cell viability, caspase activity (apoptosis), and mitochondria polarization. Results show that compared to either impact or sliding alone, explants that were both impacted and slid experienced higher magnitudes of damage spanning greater tissue depths.
Collapse
Affiliation(s)
- Steven Ayala
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Michelle L. Delco
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY
| | - Lawrence J. Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY
| |
Collapse
|
9
|
Xu M, Ramirez-Garcia MA, Narang H, Buckley MR, Lerner AL, Yoon G. Individualized Characterization of the Distribution of Collagen Fibril Dispersion Using Optical Aberrations of the Cornea for Biomechanical Models. Invest Ophthalmol Vis Sci 2021; 61:54. [PMID: 32866268 PMCID: PMC7463181 DOI: 10.1167/iovs.61.10.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The spatial distribution of collagen fibril dispersion has a significant impact on both corneal biomechanical and optical behaviors. The goal of this study was to demonstrate a novel method to characterize collagen fibril dispersion using intraocular pressure (IOP)-induced changes in corneal optical aberrations for individualized finite-element (FE) modeling. Methods The method was tested through both numerical simulations and ex vivo experiments. Inflation tests were simulated in FE models with three assumed patterns of collagen fibril dispersion and experimentally on three rhesus monkey corneas. Geometry, matrix stiffness, and the IOP-induced changes in wavefront aberrations were measured, and the collagen fibril dispersion was characterized. An individualized corneal model with customized collagen fibril dispersion was developed, and the estimated optical aberrations were compared with the measured data. Results For the theoretical investigations, three assumed distributions of fibril dispersion were all successfully characterized. The estimated optical aberrations closely matched the measured data, with average root-mean-square (RMS) differences of 0.29, 0.24, and 0.10 µm for the three patterns, respectively. The overall features of the IOP-induced changes in optical aberrations were estimated for two ex vivo monkey corneas, with average RMS differences of 0.57 and 0.43 µm. Characterization of the fibril dispersion in the third cornea might have been affected by corneal hydration, resulting in an increased RMS difference, 0.8 µm. Conclusions A more advanced corneal model with individualized distribution of collagen fibril dispersion can be developed and used to improve our ability to understand both biomechanical and optical behaviors of the cornea.
Collapse
Affiliation(s)
- Mengchen Xu
- Department of Mechanical Engineering, University of Rochester, Rochester, New York, United States
| | - Manuel A Ramirez-Garcia
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Harshita Narang
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Amy L Lerner
- Department of Mechanical Engineering, University of Rochester, Rochester, New York, United States.,Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| | - Geunyoung Yoon
- Flaum Eye Institute, The Institute of Optics, Center for Visual Science, Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States
| |
Collapse
|
10
|
Fugazzola MC, van Weeren PR. Surgical osteochondral defect repair in the horse-a matter of form or function? Equine Vet J 2020; 52:489-499. [PMID: 31958175 PMCID: PMC7317185 DOI: 10.1111/evj.13231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 12/11/2019] [Accepted: 01/11/2020] [Indexed: 02/03/2023]
Abstract
Focal cartilaginous and osteochondral lesions can have traumatic or chondropathic degenerative origin. The fibrocartilaginous repair tissue that forms naturally, eventually undergoes fibrillation and degeneration leading to further disruption of joint homeostasis. Both types of lesion will therefore eventually lead to activity-related pain, swelling and decreased mobility and will frequently progress to osteoarthritis. Most attempts at realising cartilage regeneration have so far resulted in cartilage repair (and not regeneration). The aim of this article was to review experimental research on surgical cartilage restoration techniques performed so far in equine models. Currently available surgical options for treatment of osteochondral lesions in the horse are summarised. The experimental validity of equine experimental models is addressed and finally possible avenues for further research are discussed.
Collapse
|
11
|
Wang L, Wang Z, Liu Q, Su J, Wang T, Li T. Effect of whole body vibration on HIF-2α expression in SD rats with early knee osteoarthritis. J Bone Miner Metab 2020; 38:491-500. [PMID: 32146507 DOI: 10.1007/s00774-020-01092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/11/2020] [Indexed: 01/06/2023]
Abstract
INTRODUCTION To investigate the effect of different frequencies of whole body vibration (WBV) on articular cartilage of early knee osteoarthritis (OA) rats and determine whether WBV would influence the pathway of hypoxia-inducible factor-2α (HIF-2α) regulation-related genes after 8 weeks of treatment. MATERIALS AND METHODS Forty 8-week-old OA rats were divided into five groups: sham control (SC); high frequency 60 Hz (HV1); high frequency 40 Hz (HV2); middle frequency 20 Hz (MV) and low frequency 10 Hz (LV). WBV (0.3 g) treatment was given 40 min/day and 5 days/week. After 8 weeks, rats were killed and knees were harvested. OA grading score: Osteoarthritis Research Society International (OARSI), and the expression of related genes: interleukin-1β (IL-1β), HIF-2α, matrix metalloproteinases-13 (MMP-13), and collagen type II alpha 1 (COL2A1), at both mRNA and protein levels were analyzed. RESULTS After 8 weeks of WBV, our data showed that lower frequency (10 Hz) was more effective than the higher ones, yet they all suggested that WBV alleviates the erosion of knee articular cartilage in early OA. The expression of IL-1β, HIF-2α and MMP-13 decreased with frequency and reached the lowest level at 10 Hz, the expression of COL2A1 increased with frequency and reached the highest level at 10 Hz. CONCLUSIONS This study demonstrates that WBV could alleviate the degeneration of knee joints in an early OA rat model. WBV regulates related gene expression at both mRNA and protein levels. HIF-2α could be a therapeutic target. The effect of WBV is frequency dependent; the lower frequency shows better effects.
Collapse
Affiliation(s)
- Lian Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Zongbao Wang
- Ministry of Science and Education, Anhui Provincial Hospital of Integrated Chinese and Western Medicine (The Third Affiliated Hospital of Anhui University of Chinese Medicine), No. 45, Shihe Road, Wulidun Subdistrict, Shushan District, Hefei, 230061, Anhui Province, China.
| | - Qiqi Liu
- Graduate School, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
| | - Jingchao Su
- Clinical College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
| | - Tianming Wang
- Clinical College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230038, Anhui Province, China
| | - Tao Li
- Ministry of Science and Education, Anhui Provincial Hospital of Integrated Chinese and Western Medicine (The Third Affiliated Hospital of Anhui University of Chinese Medicine), No. 45, Shihe Road, Wulidun Subdistrict, Shushan District, Hefei, 230061, Anhui Province, China
| |
Collapse
|
12
|
Bartell LR, Fortier LA, Bonassar LJ, Szeto HH, Cohen I, Delco ML. Mitoprotective therapy prevents rapid, strain-dependent mitochondrial dysfunction after articular cartilage injury. J Orthop Res 2020; 38:1257-1267. [PMID: 31840828 PMCID: PMC7225065 DOI: 10.1002/jor.24567] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/12/2019] [Indexed: 02/04/2023]
Abstract
Posttraumatic osteoarthritis (PTOA) involves the mechanical and biological deterioration of articular cartilage that occurs following joint injury. PTOA is a growing problem in health care due to the lack of effective therapies combined with an aging population with high activity levels. Recently, acute mitochondrial dysfunction and altered cellular respiration have been associated with cartilage degeneration after injury. This finding is particularly important because recently developed mitoprotective drugs, including SS peptides, can preserve mitochondrial structure and function after acute injury in other tissues. It is not known, however, if cartilage injury induces rapid structural changes in mitochondria, to what degree mitochondrial dysfunction in cartilage depends on the mechanics of injury or the time frame over which such dysfunction develops. Similarly, it is unknown if SS-peptide treatment can preserve mitochondrial structure and function after cartilage injury. Here, we combined fast camera elastography, longitudinal fluorescence assays, and computer vision techniques to track the fates of thousands of individual cells. Our results show that impact induces mechanically dependent mitochondrial depolarization within a few minutes after injury. Electron microscopy revealed that impact causes rapid structural changes in mitochondria that are related to reduced mitochondrial function, namely, fission and loss of cristae structure. We found that SS-peptide treatment prior to impact protects the mitochondrial structure and preserves mitochondrial function at levels comparable with that of unimpacted control samples. Overall, this study reveals the vital role of mitochondria in mediating cartilage's peracute (within minutes) response to traumatic injury and demonstrates mitoprotection as a promising therapeutic strategy for injury-induced cartilage damage.
Collapse
Affiliation(s)
- Lena R. Bartell
- School of Applied & Engineering Physics, Cornell University, Ithaca, NY, United States of America
| | - Lisa A. Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Lawrence J. Bonassar
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States of America
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States of America
| | - Hazel H. Szeto
- Burke Medical Research Institute, White Plains, NY, United States of America
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, United States of America
| | - Michelle L. Delco
- Department of Clinical Sciences, Cornell University, Ithaca, NY, United States of America
| |
Collapse
|
13
|
Durney KM, Shaeffer CA, Zimmerman BK, Nims RJ, Oungoulian S, Jones BK, Boorman-Padgett JF, Suh JT, Shah RP, Hung CT, Ateshian GA. Immature bovine cartilage wear by fatigue failure and delamination. J Biomech 2020; 107:109852. [PMID: 32517855 DOI: 10.1016/j.jbiomech.2020.109852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/12/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
Abstract
This study investigated wear damage of immature bovine articular cartilage using reciprocal sliding of tibial cartilage strips against glass or cartilage. Experiments were conducted in physiological buffered saline (PBS) or mature bovine synovial fluid (SF). A total of 63 samples were tested, of which 47 exhibited wear damage due to delamination of the cartilage surface initiated in the middle zone, with no evidence of abrasive wear. There was no difference between the friction coefficient of damaged and undamaged samples, showing that delamination wear occurs even when friction remains low under a migrating contact area configuration. No difference was observed in the onset of damage or in the friction coefficient between samples tested in PBS or SF. The onset of damage occurred earlier when testing cartilage against glass versus cartilage against cartilage, supporting the hypothesis that delamination occurs due to fatigue failure of the collagen in the middle zone, since stiffer glass produces higher strains and tensile stresses under comparable loads. The findings of this study are novel because they establish that delamination of the articular surface, starting in the middle zone, may represent a primary mechanism of failure. Based on preliminary data, it is reasonable to hypothesize that delamination wear via subsurface fatigue failure is similarly the primary mechanism of human cartilage wear under normal loading conditions, albeit requiring far more cycles of loading than in immature bovine cartilage.
Collapse
Affiliation(s)
- Krista M Durney
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Courtney A Shaeffer
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Brandon K Zimmerman
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Robert J Nims
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Sevan Oungoulian
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Brian K Jones
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Jason T Suh
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Roshan P Shah
- Department of Orthopaedic Surgery, Columbia University, New York, NY, USA
| | - Clark T Hung
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Gerard A Ateshian
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Mechanical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Motavalli M, Jones C, Berilla JA, Li M, Schluchter MD, Mansour JM, Welter JF. Apparatus and Method for Rapid Detection of Acoustic Anisotropy in Cartilage. J Med Biol Eng 2020; 40:419-427. [PMID: 32494235 DOI: 10.1007/s40846-020-00518-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose Articular cartilage is known to be mechanically anisotropic. In this paper, the acoustic anisotropy of bovine articular cartilage and the effects of freeze-thaw cycling on acoustic anisotropy were investigated. Methods We developed apparatus and methods that use a magnetic L-shaped sample holder, which allowed minimal handling of a tissue, reduced the number of measurements compared to previous studies, and produced highly reproducible results. Results SOS was greater in the direction perpendicular to the articular surface compared to the direction parallel to the articular surface (N=17, P = 0.00001). Average SOS was 1,758 ± 107 m/s perpendicular to the surface, and 1,617 ± 55 m/s parallel to it. The average percentage difference in SOS between the perpendicular and parallel directions was 8.2% (95% CI: 5.4% to 11%). Freeze-thaw cycling did not have a significant effect on SOS (P>0.4). Conclusion Acoustic measurement of tissue properties is particularly attractive for work in our laboratory since it has the potential for nondestructive characterization of the properties of developing engineered cartilage. Our approach allowed us to observe acoustic anisotropy of articular cartilage rapidly and reproducibly. This property was not significantly affected by freeze-thawing of the tissue samples, making cryopreservation practical for these assays.
Collapse
Affiliation(s)
- Mostafa Motavalli
- Department of Biology, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | | | - Jim A Berilla
- Department of Civil Engineering, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | - Ming Li
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | - Mark D Schluchter
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | - Joseph M Mansour
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| | - Jean F Welter
- Department of Biology, Case Western Reserve University, all Cleveland, OH, USA.,Case Center for Multimodal Evaluation of Engineered Cartilage, Case Western Reserve University, all Cleveland, OH, USA
| |
Collapse
|
15
|
Patel JM, Wise BC, Bonnevie ED, Mauck RL. A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering. Tissue Eng Part C Methods 2019; 25:593-608. [PMID: 31288616 DOI: 10.1089/ten.tec.2019.0116] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Articular cartilage is integral to the mechanical function of many joints in the body. When injured, cartilage lacks the capacity to self-heal, and thus, therapies and replacements have been developed in recent decades to treat damaged cartilage. Given that the primary function of articular cartilage is mechanical in nature, rigorous physical evaluation of cartilage tissues undergoing treatment and cartilage constructs intended for replacement is an absolute necessity. With the large number of groups developing cartilage tissue engineering strategies, however, a variety of mechanical testing protocols have been reported in the literature. This lack of consensus in testing methods makes comparison between studies difficult at times, and can lead to misinterpretation of data relative to native tissue. Therefore, the purpose of this study was to systematically review mechanical testing of articular cartilage and cartilage repair constructs over the past 10 years (January 2009-December 2018), to highlight the most common testing configurations, and to identify key testing parameters. For the most common tests, key parameters identified in this systematic review were validated by characterizing both cartilage tissue and hydrogels commonly used in cartilage tissue engineering. Our findings show that compression testing was the most common test performed (80.2%; 158/197), followed by evaluation of frictional properties (18.8%; 37/197). Upon further review of those studies performing compression testing, the various modes (ramp, stress relaxation, creep, dynamic) and testing configurations (unconfined, confined, in situ) are described and systematically reviewed for parameters, including strain rate, equilibrium time, and maximum strain. This systematic analysis revealed considerable variability in testing methods. Our validation testing studies showed that such variations in testing criteria could have large implications on reported outcome parameters (e.g., modulus) and the interpretation of findings from these studies. This analysis is carried out for all common testing methods, followed by a discussion of less common trends and directions in the mechanical evaluation of cartilage tissues and constructs. Overall, this work may serve as a guide for cartilage tissue engineers seeking to rigorously evaluate the physical properties of their novel treatment strategies. Impact Statement Articular cartilage tissue engineering has made significant strides with regard to treatments and replacements for injured tissue. The evaluation of these approaches typically involves mechanical testing, yet the plethora of testing techniques makes comparisons between studies difficult, and often leads to misinterpretation of data compared with native tissue. This study serves as a guide for the mechanical testing of cartilage tissues and constructs, highlighting recent trends in test conditions and validating these common procedures. Cartilage tissue engineers, especially those unfamiliar with mechanical testing protocols, will benefit from this study in their quest to physically evaluate novel treatment and regeneration approaches.
Collapse
Affiliation(s)
- Jay M Patel
- McKay Orthopedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Brian C Wise
- McKay Orthopedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edward D Bonnevie
- McKay Orthopedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania
| | - Robert L Mauck
- McKay Orthopedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Translational Musculoskeletal Research Center, Corporal Michael J Crescenz VA Medical Center, Philadelphia, Pennsylvania.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Marchiori G, Berni M, Boi M, Filardo G. Cartilage mechanical tests: Evolution of current standards for cartilage repair and tissue engineering. A literature review. Clin Biomech (Bristol, Avon) 2019; 68:58-72. [PMID: 31158591 DOI: 10.1016/j.clinbiomech.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Repair procedures and tissue engineering are solutions available in the clinical practice for the treatment of damaged articular cartilage. Regulatory bodies defined the requirements that any products, intended to regenerate cartilage, should have to be applied. In order to verify these requirements, the Food and Drug Administration (FDA, USA) and the International Standard Organization (ISO) indicated some Standard tests, which allow evaluating, in a reproducible way, the performances of scaffolds/treatments for cartilage tissue regeneration. METHODS A review of the literature about cartilage mechanical characterization found 394 studies, from 1970 to date. They were classified by material (simulated/animal/human cartilage) and method (theoretical/applied; static/dynamic; standard/non-standard study), and analyzed by nation and year of publication. FINDINGS While Standard methods for cartilage mechanical characterization still refer to studies developed in the eighties, expertise and interest on cartilage mechanics research are evolving continuously and internationally, with studies both in vitro - on human and animal tissues - and in silico, dealing with tissue function and modelling, using static and dynamic loading conditions. INTERPRETATION there is a consensus on the importance of mechanical characterization that should be considered to evaluate cartilage treatments. Still, relative Standards need to be updated to describe advanced constructs and procedures for cartilage regeneration in a more exhaustive way. The use of the more complex, fibre-reinforced biphasic model, instead of the standard simple biphasic model, to describe cartilage response to loading, and the standardisation of dynamic tests can represent a first step in this direction.
Collapse
Affiliation(s)
- Gregorio Marchiori
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Biomechanics and Technology Innovation, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matteo Berni
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Biomechanics and Technology Innovation, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marco Boi
- IRCCS Istituto Ortopedico Rizzoli, NanoBiotechnology Laboratory (NaBi), Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giuseppe Filardo
- IRCCS Istituto Ortopedico Rizzoli, NanoBiotechnology Laboratory (NaBi), Via di Barbiano 1/10, 40136 Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Applied and Translational Research Center, Via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
17
|
Maier F, Lewis CG, Pierce DM. The evolving large-strain shear responses of progressively osteoarthritic human cartilage. Osteoarthritis Cartilage 2019; 27:810-822. [PMID: 30660720 DOI: 10.1016/j.joca.2018.12.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/22/2018] [Accepted: 12/28/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The composition and structure of articular cartilage evolves during the development and progression of osteoarthritis (OA) resulting in changing mechanical responses. We aimed to assess the evolution of the intrinsic, large-strain mechanics of human articular cartilage-governed by collagen and proteoglycan and their interactions-during the progression of OA. DESIGN We completed quasi-static, large-strain shear tests on 64 specimens from ten donors undergoing total knee arthroplasty (TKA), and quantified the corresponding state of OA (OARSI grade), structural integrity (PLM score), and composition (glycosaminoglycan and collagen content). RESULTS We observed nonlinear stress-strain relationships with distinct hystereses for all magnitudes of applied strain where stiffnesses, nonlinearities, and hystereses all reduced as OA advanced. We found a reduction in energy dissipation density up to 80% in severely degenerated (OARSI grade 4, OA-4) vs normal (OA-1) cartilage, and more importantly, we found that even cartilage with a normal appearance in structure and composition (OA-1) dissipated 50% less energy than healthy (control) load-bearing cartilage (HL0). Changes in stresses and stiffnesses were in general less pronounced and did not allow us to distinguish between healthy load-bearing controls and very early-stage OA (OA-1), or to distinguish consistently among different levels of degeneration, i.e., OARSI grades. CONCLUSIONS Our results suggest that reductions in energy dissipation density can be detected by bulk-tissue testing, and that these reductions precede visible signs of degeneration. We highlight the potential of energy dissipation, as opposed to stress- or stiffness-based measures, as a marker to diagnose early-stage OA.
Collapse
Affiliation(s)
- F Maier
- University of Connecticut, Department of Mechanical Engineering, Storrs, CT, USA
| | - C G Lewis
- Hartford Healthcare, Bone & Joint Institute, Hartford, CT, USA
| | - D M Pierce
- University of Connecticut, Department of Mechanical Engineering, Storrs, CT, USA; University of Connecticut, Department of Biomedical Engineering, Storrs, CT, USA.
| |
Collapse
|
18
|
Han G, Hess C, Eriten M, Henak CR. Uncoupled poroelastic and intrinsic viscoelastic dissipation in cartilage. J Mech Behav Biomed Mater 2018; 84:28-34. [DOI: 10.1016/j.jmbbm.2018.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/09/2018] [Accepted: 04/25/2018] [Indexed: 11/16/2022]
|
19
|
Ramirez-Garcia MA, Khalifa YM, Buckley MR. Vulnerability of corneal endothelial cells to mechanical trauma from indentation forces assessed using contact mechanics and fluorescence microscopy. Exp Eye Res 2018; 175:73-82. [PMID: 29883637 DOI: 10.1016/j.exer.2018.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/17/2018] [Accepted: 06/04/2018] [Indexed: 11/25/2022]
Abstract
Corneal endothelial cell (CEC) loss occurs from tissue manipulation during anterior segment surgery and corneal transplantation as well as from contact with synthetic materials like intraocular lenses and tube shunts. While several studies have quantified CEC loss for specific surgical steps, the vulnerability of CECs to isolated, controllable and measurable mechanical forces has not been assessed previously. The purpose of this study was to develop an experimental testing platform where the susceptibility of CECs to controlled mechanical trauma could be measured. The corneal endothelial surfaces of freshly dissected porcine corneas were subjected to a range of indentation forces via a spherical stainless steel bead. A cell viability assay in combination with high-resolution fluorescence microscopy was used to visualize and quantify injured/dead CEC densities before and after mechanical loading. In specimens subjected to an indentation force of 9 mN, the mean ± SD peak contact pressure P0 was 18.64 ± 3.59 kPa (139.81 ± 26.93 mmHg) in the center of indentation and decreased radially outward. Injured/dead CEC densities were significantly greater (p ≤ 0.001) after mechanical indentation of 9 mN (167 ± 97 cells/mm2) compared to before indentation (39 ± 52 cells/mm2) and compared to the sham group (34 ± 31 cells/mm2). In specimens subjected to "contact only" - defined as an applied indentation force of 0.65 mN - the peak contact pressure P0 was 7.31 ± 1.5 kPa (54.83 ± 11.25 mmHg). In regions where the contact pressures was below 78% of P0 (<5.7 kPa or 42.75 mmHg), injured/dead CEC densities were within the range of CEC loss observed in the sham group, suggesting negligible cell death. These findings indicate that CECs are highly susceptible to mechanical trauma via indentation, supporting the established "no-touch" policy for ophthalmological procedures. While CECs can potentially remain viable below contact pressures of 5.7 kPa (42.75 mmHg), this low threshold suggests that prevention of indentation-associated CEC loss may be challenging.
Collapse
Affiliation(s)
| | | | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| |
Collapse
|
20
|
Kotelsky A, Woo CW, Delgadillo LF, Richards MS, Buckley MR. An Alternative Method to Characterize the Quasi-Static, Nonlinear Material Properties of Murine Articular Cartilage. J Biomech Eng 2018; 140:2657496. [PMID: 29049670 DOI: 10.1115/1.4038147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/08/2022]
Abstract
With the onset and progression of osteoarthritis (OA), articular cartilage (AC) mechanical properties are altered. These alterations can serve as an objective measure of tissue degradation. Although the mouse is a common and useful animal model for studying OA, it is extremely challenging to measure the mechanical properties of murine AC due to its small size (thickness < 50 μm). In this study, we developed novel and direct approach to independently quantify two quasi-static mechanical properties of mouse AC: the load-dependent (nonlinear) solid matrix Young's modulus (E) and drained Poisson's ratio (ν). The technique involves confocal microscope-based multiaxial strain mapping of compressed, intact murine AC followed by inverse finite element analysis (iFEA) to determine E and ν. Importantly, this approach yields estimates of E and ν that are independent of the initial guesses used for iterative optimization. As a proof of concept, mechanical properties of AC on the medial femoral condyles of wild-type mice were obtained for both trypsin-treated and control specimens. After proteolytic tissue degradation induced through trypsin treatment, a dramatic decrease in E was observed (compared to controls) at each of the three tested loading conditions. A significant decrease in ν due to trypsin digestion was also detected. These data indicate that the method developed in this study may serve as a valuable tool for comparative studies evaluating factors involved in OA pathogenesis using experimentally induced mouse OA models.
Collapse
Affiliation(s)
- Alexander Kotelsky
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| | - Chandler W Woo
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| | - Luis F Delgadillo
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| | - Michael S Richards
- Department of Surgery, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rm 2.4153, Rochester, NY 14627 e-mail:
| | - Mark R Buckley
- Department of Biomedical Engineering, University of Rochester, 207 Goergen Hall, Box 270168, Rochester, NY 14627 e-mail:
| |
Collapse
|
21
|
Abstract
The connective tissues of the musculoskeletal system can be grouped into fibrous, cartilaginous, and calcified tissues. While each tissue type has a distinct composition and function, the intersections between these tissues result in the formation of complex, composite, and graded junctions. The complexity of these interfaces is a critical aspect of their healthy function, but poses a significant challenge for their repair. In this review, we describe the organization and structure of complex musculoskeletal interfaces, identify emerging technologies for engineering such structures, and outline the requirements for assessing the complex nature of these tissues in the context of recapitulating their function through tissue engineering.
Collapse
Affiliation(s)
- Edward D Bonnevie
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, and Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Translational Musculoskeletal Research Center, Col. Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
22
|
Local and global measurements show that damage initiation in articular cartilage is inhibited by the surface layer and has significant rate dependence. J Biomech 2018. [PMID: 29526459 DOI: 10.1016/j.jbiomech.2018.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cracks in articular cartilage are a common sign of joint damage, but failure properties of cartilage are poorly understood, especially for damage initiation. Cartilage failure may be further complicated by rate-dependent and depth-dependent properties, including the compliant surface layer. Existing blunt impact methods do not resolve local cartilage inhomogeneities and traditional fracture mechanics tests induce crack blunting and may violate underlying assumptions of linear elasticity. To address this knowledge gap, we developed and applied a method to indent cartilage explants with a sharp blade and initiate damage across a range of loading rates (strain rates 0.5%/s-500%/s), while recording local sample deformation and strain energy fields using confocal elastography. To investigate the importance of cartilage's compliant surface, we repeated the experiment for samples with the surface removed. Bulk data suggest a critical force at which the tissue cuts, but local strains reveals that the deformation the sample can sustain before reaching this force is significantly higher in the surface layer. Bulk and local results also showed significant rate dependence, such that samples were easier to cut at faster speeds. This result highlights the importance of rate for understanding cracks in cartilage and parallels recent studies of rate-dependent failure in hydrogels. Notably, local sample deformation fields were well fit by classical Hookean elasticity. Overall, this study illustrates how local and global measurements surrounding the initiation of damage in articular cartilage can be combined to reveal the importance of cartilage's zonal structure in protecting against failure across physiologically relevant loading rates.
Collapse
|
23
|
Ramirez-Garcia MA, Sloan SR, Nidenberg B, Khalifa YM, Buckley MR. Depth-Dependent Out-of-Plane Young's Modulus of the Human Cornea. Curr Eye Res 2017; 43:595-604. [PMID: 29283675 DOI: 10.1080/02713683.2017.1411951] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Purpose/Aim: Despite their importance in accurate mechanical modeling of the cornea, the depth-dependent material properties of the cornea have only been partially elucidated. In this work, we characterized the depth-dependent out-of-plane Young's modulus of the central and peripheral human cornea with high spatial resolution. MATERIALS AND METHODS Central and peripheral corneal buttons from human donors were subjected to unconfined axial compression followed by stress relaxation for 30 min. Sequences of fluorescent micrographs of full-thickness corneal buttons were acquired throughout the experiment to enable tracking of fluorescently labeled stromal keratocyte nuclei and measurements of depth-dependent infinitesimal strains. The nominal (gross) out-of-plane Young's modulus and drained Poisson's ratio for each whole specimen was computed from the equilibrium stress and overall tissue deformation. The depth-dependent (local) out-of-plane Young's modulus was computed from the equilibrium stress and local tissue strain based on an anisotropic model (transverse isotropy). RESULTS The out-of-plane Young's modulus of the cornea exhibited a strong dependence on in-plane location (peripheral versus central cornea), but not depth. The depth-dependent out-of-plane Young's modulus of central and peripheral specimens ranged between 72.4-102.4 kPa and 38.3-58.9 kPa. The nominal out-of-plane Young's modulus was 87 ± 41.51 kPa and 39.9 ± 15.28 kPa in the central and peripheral cornea, while the drained Poisson's ratio was 0.05 ± 0.02 and 0.07 ± 0.04. CONCLUSIONS The out-of-plane Young's modulus of the cornea is mostly independent of depth, but not in-plane location (i.e. central vs. peripheral). These results may help inform more accurate finite element computer models of the cornea.
Collapse
Affiliation(s)
| | - Stephen R Sloan
- a Department of Biomedical Engineering , University of Rochester , Rochester , NY , USA
| | - Bennett Nidenberg
- a Department of Biomedical Engineering , University of Rochester , Rochester , NY , USA
| | - Yousuf M Khalifa
- b Department of Ophthalmology , Emory University , Atlanta , GA , USA
| | - Mark R Buckley
- a Department of Biomedical Engineering , University of Rochester , Rochester , NY , USA
| |
Collapse
|
24
|
Henak CR, Bartell LR, Cohen I, Bonassar LJ. Multiscale Strain as a Predictor of Impact-Induced Fissuring in Articular Cartilage. J Biomech Eng 2017; 139:2571657. [PMID: 27760253 DOI: 10.1115/1.4034994] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 11/08/2022]
Abstract
Mechanical damage is central to both initiation and progression of osteoarthritis (OA). However, specific causal links between mechanics and cartilage damage are incompletely understood, which results in an inability to predict failure. The lack of understanding is primarily due to the difficulty in simultaneously resolving the high rates and small length scales relevant to the problem and in correlating such measurements to the resulting fissures. This study leveraged microscopy and high-speed imaging to resolve mechanics on the previously unexamined time and length scales of interest in cartilage damage, and used those mechanics to develop predictive models. The specific objectives of this study were to: first, quantify bulk and local mechanics during impact-induced fissuring; second, develop predictive models of fissuring based on bulk mechanics and local strain; and third, evaluate the accuracy of these models in predicting fissures. To achieve these three objectives, bovine tibial cartilage was impacted using a custom spring-loaded device mounted on an inverted microscope. The occurrence of fissures was modulated by varying impact energy. For the first objective, during impact, deformation was captured at 10,000 frames per second and bulk and local mechanics were analyzed. For the second objective, data from samples impacted with a 1.2 mm diameter rod were fit to logistic regression functions, creating models of fissure probability based on bulk and local mechanics. Finally, for the third objective, data from samples impacted with a 0.8 mm diameter rod were used to test the accuracy of model predictions. This study provides a direct comparison between bulk and local mechanical thresholds for the prediction of fissures in cartilage samples, and demonstrates that local mechanics provide more accurate predictions of local failure than bulk mechanics provide. Bulk mechanics were accurate predictors of fissure for the entire sample cohort, but poor predictors of fissure for individual samples. Local strain fields were highly heterogeneous and significant differences were determined between fissured and intact samples, indicating the presence of damage thresholds. In particular, first principal strain rate and maximum shear strain were the best predictors of local failure, as determined by concordance statistics. These data provide an important step in establishing causal links between local mechanics and cartilage damage; ultimately, data such as these can be used to link macro- and micro-scale mechanics and thereby predict mechanically mediated disease on a subject-specific basis.
Collapse
Affiliation(s)
- Corinne R Henak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Lena R Bartell
- Department of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, 149 Weill Hall, Cornell University, Ithaca, NY 14853; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 e-mail:
| |
Collapse
|
25
|
Lee WD, Gawri R, Pilliar RM, Stanford WL, Kandel RA. Sol gel-derived hydroxyapatite films over porous calcium polyphosphate substrates for improved tissue engineering of osteochondral-like constructs. Acta Biomater 2017; 62:352-361. [PMID: 28818689 DOI: 10.1016/j.actbio.2017.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/26/2022]
Abstract
Integration of in vitro-formed cartilage on a suitable substrate to form tissue-engineered implants for osteochondral defect repair is a considerable challenge. In healthy cartilage, a zone of calcified cartilage (ZCC) acts as an intermediary for mechanical force transfer from soft to hard tissue, as well as an effective interlocking structure to better resist interfacial shear forces. We have developed biphasic constructs that consist of scaffold-free cartilage tissue grown in vitro on, and interdigitated with, porous calcium polyphosphate (CPP) substrates. However, as CPP degrades, it releases inorganic polyphosphates (polyP) that can inhibit local mineralization, thereby preventing the formation of a ZCC at the interface. Thus, we hypothesize that coating CPP substrate with a layer of hydroxyapatite (HA) might prevent or limit this polyP release. To investigate this we tested both inorganic or organic sol-gel processing methods, asa barrier coating on CPP substrate to inhibit polyP release. Both types of coating supported the formation of ZCC in direct contact with the substrate, however the ZCC appeared more continuous in the tissue formed on the organic HA sol gel coated CPP. Tissues formed on coated substrates accumulated comparable quantities of extracellular matrix and mineral, but tissues formed on organic sol-gel (OSG)-coated substrates accumulated less polyP than tissues formed on inorganic sol-gel (ISG)-coated substrates. Constructs formed with OSG-coated CPP substrates had greater interfacial shear strength than those formed with ISG-coated and non-coated substrates. These results suggest that the OSG coating method can modify the location and distribution of ZCC and can be used to improve the mechanical integrity of tissue-engineered constructs formed on porous CPP substrates. STATEMENT OF SIGNIFICANCE Articular cartilage interfaces with bone through a zone of calcified cartilage. This study describes a method to generate an "osteochondral-like" implant that mimics this organization using isolated deep zone cartilage cells and a sol-gel hydroxyapatite coated bone substitute material composed of calcium polyphosphate (CPP). Developing a layer of calcified cartilage at the interface should contribute to enhancing the success of this "osteochondral-like" construct following implantation to repair cartilage defects.
Collapse
Affiliation(s)
- Whitaik David Lee
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada
| | - Rahul Gawri
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario M5G 1X5, Canada
| | - Robert M Pilliar
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Faculty of Dentistry, University of Toronto, 124 Edward St., Toronto, Ontario M5G 1G6, Canada
| | - William L Stanford
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, 501 Smyth Road, Box 511., Ottawa, Ontario K1H 8L6, Canada; Department of Cellular & Molecular Medicine, University of Ottawa, 501 Smyth Road, Box 511., Ottawa, Ontario K1H 8L6, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 501 Smyth Road, Box 511., Ottawa, Ontario K1H 8L6, Canada
| | - Rita A Kandel
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario M5S 3G9, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, 600 University Ave., Toronto, Ontario M5G 1X5, Canada.
| |
Collapse
|
26
|
Mechanical function near defects in an aligned nanofiber composite is preserved by inclusion of disorganized layers: Insight into meniscus structure and function. Acta Biomater 2017; 56:102-109. [PMID: 28159718 DOI: 10.1016/j.actbio.2017.01.074] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/23/2016] [Accepted: 01/27/2017] [Indexed: 02/07/2023]
Abstract
The meniscus is comprised of circumferentially aligned fibers that resist the tensile forces within the meniscus (i.e., hoop stress) that develop during loading of the knee. Although these circumferential fibers are severed by radial meniscal tears, tibial contact stresses do not increase until the tear reaches ∼90% of the meniscus width, suggesting that the severed circumferential fibers still bear load and maintain the mechanical functionality of the meniscus. Recent data demonstrates that the interfibrillar matrix can transfer strain energy to disconnected fibrils in tendon fascicles. In the meniscus, interdigitating radial tie fibers, which function to stabilize and bind the circumferential fibers together, are hypothesized to function in a similar manner by transmitting load to severed circumferential fibers near a radial tear. To test this hypothesis, we developed an engineered fibrous analog of the knee meniscus using poly(ε-caprolactone) to create aligned scaffolds with variable amounts of non-aligned elements embedded within the scaffold. We show that the tensile properties of these scaffolds are a function of the ratio of aligned to non-aligned elements, and change in a predictable fashion following a simple mixture model. When measuring the loss of mechanical function in scaffolds with a radial tear, compared to intact scaffolds, the decrease in apparent linear modulus was reduced in scaffolds containing non-aligned layers compared to purely aligned scaffolds. Increased strains in areas adjacent to the defect were also noted in composite scaffolds. These findings indicate that non-aligned (disorganized) elements interspersed within an aligned network can improve overall mechanical function by promoting strain transfer to nearby disconnected fibers. This finding supports the notion that radial tie fibers may similarly promote tear tolerance in the knee meniscus, and will direct changes in clinical practice and provide guidance for tissue engineering strategies. STATEMENT OF SIGNIFICANCE The meniscus is a complex fibrous tissue, whose architecture includes radial tie fibers that run perpendicular to and interdigitate with the predominant circumferential fibers. We hypothesized that these radial elements function to preserve mechanical function in the context of interruption of circumferential bundles, as would be the case in a meniscal tear. To test this hypothesis, we developed a biomaterial analog containing disorganized layers enmeshed regularly throughout an otherwise aligned network. Using this material formulation, we showed that strain transmission is improved in the vicinity of defects when disorganized fiber layers were present. This supports the idea that radial elements within the meniscus improve function near a tear, and will guide future clinical interventions and the development of engineered replacements.
Collapse
|
27
|
Delco ML, Kennedy JG, Bonassar LJ, Fortier LA. Post-traumatic osteoarthritis of the ankle: A distinct clinical entity requiring new research approaches. J Orthop Res 2017; 35:440-453. [PMID: 27764893 PMCID: PMC5467729 DOI: 10.1002/jor.23462] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/07/2016] [Indexed: 02/04/2023]
Abstract
The diagnosis of ankle osteoarthritis (OA) is increasing as a result of advancements in non-invasive imaging modalities such as magnetic resonance imaging, improved arthroscopic surgical technology and heightened awareness among clinicians. Unlike OA of the knee, primary or age-related ankle OA is rare, with the majority of ankle OA classified as post-traumatic (PTOA). Ankle trauma, more specifically ankle sprain, is the single most common athletic injury, and no effective therapies are available to prevent or slow progression of PTOA. Despite the high incidence of ankle trauma and OA, ankle-related OA research is sparse, with the majority of clinical and basic studies pertaining to the knee joint. Fundamental differences exist between joints including their structure and molecular composition, response to trauma, susceptibility to OA, clinical manifestations of disease, and response to treatment. Considerable evidence suggests that research findings from knee should not be extrapolated to the ankle, however few ankle-specific preclinical models of PTOA are currently available. The objective of this article is to review the current state of ankle OA investigation, highlighting important differences between the ankle and knee that may limit the extent to which research findings from knee models are applicable to the ankle joint. Considerations for the development of new ankle-specific, clinically relevant animal models are discussed. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:440-453, 2017.
Collapse
Affiliation(s)
- Michelle L. Delco
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, New York
| | - John G. Kennedy
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, New York
| | - Lawrence J. Bonassar
- Nancy E. and Peter C. Meining School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Lisa A. Fortier
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, 930 Campus Road, Ithaca, New York
| |
Collapse
|
28
|
Vats K, Marsh G, Harding K, Zampetakis I, Waugh RE, Benoit DSW. Nanoscale physicochemical properties of chain- and step-growth polymerized PEG hydrogels affect cell-material interactions. J Biomed Mater Res A 2017; 105:1112-1122. [PMID: 28093865 DOI: 10.1002/jbm.a.36007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 12/15/2022]
Abstract
Poly(ethylene glycol) (PEG) hydrogels provide a versatile platform to develop cell instructive materials through incorporation of a variety of cell adhesive ligands and degradable chemistries. Synthesis of PEG gels can be accomplished via two mechanisms: chain and step growth polymerizations. The mechanism dramatically impacts hydrogel nanostructure, whereby chain polymerized hydrogels are highly heterogeneous and step growth networks exhibit more uniform structures. Underpinning these alterations in nanostructure of chain polymerized hydrogels are densely-packed hydrophobic poly(methyl methacrylate) or poly(acrylate) kinetic chains between hydrophilic PEG crosslinkers. As cell-material interactions, such as those mediated by integrins, occur at the nanoscale and affect cell behavior, it is important to understand how different modes of polymerization translate into nanoscale mechanical and hydrophobic heterogeneities of hydrogels. Therefore, chain- and step-growth polymerized PEG hydrogels with macroscopically similar macromers and compliance (for example, methacrylate-functionalized PEG (PEGDM), MW = 10 kDa and norbornene-functionalized 4-arm PEG (PEGnorb), MW = 10 kDa) were used to examine potential nanoscale differences in hydrogel mechanics and hydrophobicity using atomic force microscopy (AFM). It was found that chain-growth polymerized network yielded greater heterogeneities in both stiffness and hydrophobicity as compared to step-growth polymerized networks. These nanoscale heterogeneities impact cell-material interactions, particularly human mesenchymal stem cell (hMSC) adhesion and spreading, which has implications in use of these hydrogels for tissue engineering applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1112-1122, 2017.
Collapse
Affiliation(s)
- Kanika Vats
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Graham Marsh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Kristen Harding
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Ioannis Zampetakis
- Department of Biomedical Engineering, University of Rochester, Rochester, New York
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, New York.,Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York.,Department of Pharmacology and Physiology, University of Rochester, Rochester, New York
| | - Danielle S W Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, New York.,Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York.,Department of Chemical Engineering, University of Rochester, Rochester, New York
| |
Collapse
|
29
|
Santos S, Maier F, Pierce DM. Anisotropy and inter-condyle heterogeneity of cartilage under large-strain shear. J Biomech 2017; 52:74-82. [DOI: 10.1016/j.jbiomech.2016.12.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/11/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
30
|
Henak CR, Ross KA, Bonnevie ED, Fortier LA, Cohen I, Kennedy JG, Bonassar LJ. Human talar and femoral cartilage have distinct mechanical properties near the articular surface. J Biomech 2016; 49:3320-3327. [PMID: 27589932 DOI: 10.1016/j.jbiomech.2016.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 08/05/2016] [Accepted: 08/16/2016] [Indexed: 12/16/2022]
Abstract
Talar osteochondral lesions (OCL) frequently occur following injury. Surgical interventions such as femoral condyle allogeneic or autogenic osteochondral transplant (AOT) are often used to treat large talar OCL. Although AOT aims to achieve OCL repair by replacing damaged cartilage with mechanically matched cartilage, the spatially inhomogeneous material behavior of the talar dome and femoral donor sites have not been evaluated or compared. The objective of this study was to characterize the depth-dependent shear properties and friction behavior of human talar and donor-site femoral cartilage. To achieve this objective, depth-dependent shear modulus, depth-dependent energy dissipation and coefficient of friction were measured on osteochondral cores from the femur and talus. Differences between anatomical regions were pronounced near the articular surface, where the femur was softer, dissipated more energy and had a lower coefficient of friction than the talus. Conversely, shear modulus near the osteochondral interface was nearly indistinguishable between anatomical regions. Differences in energy dissipation, shear moduli and friction coefficients have implications for graft survival and host cartilage wear. When the biomechanical variation is combined with known biological variation, these data suggest the use of caution in transplanting cartilage from the femur to the talus. Where alternatives exist in the form of talar allograft, donor-recipient mechanical mismatch can be greatly reduced.
Collapse
Affiliation(s)
- Corinne R Henak
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Keir A Ross
- Hospital for Special Surgery, New York, NY, United States
| | - Edward D Bonnevie
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, United States
| | - John G Kennedy
- Hospital for Special Surgery, New York, NY, United States
| | - Lawrence J Bonassar
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
31
|
Maier F, Drissi H, Pierce DM. Shear deformations of human articular cartilage: Certain mechanical anisotropies apparent at large but not small shear strains. J Mech Behav Biomed Mater 2016; 65:53-65. [PMID: 27552599 DOI: 10.1016/j.jmbbm.2016.08.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/18/2016] [Accepted: 08/03/2016] [Indexed: 01/12/2023]
Abstract
Articular cartilage has pronounced through-the-thickness heterogeneity in both ultrastructure and mechanical function. The tissue undergoes a combination of large deformations in vivo, where shear is critical in both failure and chondrocyte death. Yet the microstructure mechanical response of cartilage to multi-axial large shear deformations is unknown. We harvested a total of 42 cartilage specimens from seven matched locations across the lateral femoral condyles and patellofemoral grooves of six human male donors (30.2±8.8yrs old, M±SD). With each specimen we applied a range of quasi-static, multi-axial large (simple) shear displacements both parallel and perpendicular to the local split-line direction (SLD). Shear stresses in cartilage specimens from the patellofemoral grooves were higher, and more energy was dissipated, at all applied strains under loading parallel to the local SLD versus perpendicular, while specimens from the lateral condyles were mechanically anisotropic only under larger strains of 20% and 25%. Cartilage also showed significant intra-donor variability at larger shear strains but no significant inter-donor variability. Overall, shear strain-energy dissipation was almost constant at 5% applied shear strain and increased nonlinearly with increasing shear magnitude. Our results suggest that full understanding of cartilage mechanics requires large-strain analyses to account for nonlinear, anisotropic and location-dependent effects not fully realized at small strains.
Collapse
Affiliation(s)
- Franz Maier
- University of Connecticut, Department of Mechanical Engineering, Storrs, CT, USA
| | - Hicham Drissi
- University of Connecticut Health Center, Orthopedic Surgery, Farmington, CT, USA
| | - David M Pierce
- University of Connecticut, Department of Mechanical Engineering, Storrs, CT, USA; University of Connecticut, Department of Biomedical Engineering, Storrs, CT, USA.
| |
Collapse
|
32
|
Briant P, Bevill S, Andriacchi T. Cartilage Strain Distributions Are Different Under the Same Load in the Central and Peripheral Tibial Plateau Regions. J Biomech Eng 2016; 137:121009. [PMID: 26501505 DOI: 10.1115/1.4031849] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Indexed: 11/08/2022]
Abstract
There is increasing evidence that the regional spatial variations in the biological and mechanical properties of articular cartilage are an important consideration in the pathogenesis of knee osteoarthritis (OA) following kinematic changes at the knee due to joint destabilizing events (such as an anterior cruciate ligament (ACL) injury). Thus, given the sensitivity of chondrocytes to the mechanical environment, understanding the internal mechanical strains in knee articular cartilage under macroscopic loads is an important element in understanding knee OA. The purpose of this study was to test the hypothesis that cartilage from the central and peripheral regions of the tibial plateau has different internal strain distributions under the same applied load. The internal matrix strain distribution for each specimen was measured on osteochondral blocks from the tibial plateau of mature ovine stifle joints. Each specimen was loaded cyclically for 20 min, after which the specimen was cryofixed in its deformed position and freeze fractured. The internal matrix was viewed in a scanning electron microscope (SEM) and internal strains were measured by quantifying the deformation of the collagen fiber network. The peak surface tensile strain, maximum principal strain, and maximum shear strain were compared between the regions. The results demonstrated significantly different internal mechanical strain distributions between the central and peripheral regions of tibial plateau articular cartilage under both the same applied load and same applied nominal strain. These differences in the above strain measures were due to differences in the deformation patterns of the collagen network between the central and peripheral regions. Taken together with previous studies demonstrating differences in the biochemical response of chondrocytes from the central and peripheral regions of the tibial plateau to mechanical load, the differences in collagen network deformation observed in this study help to provide a fundamental basis for understanding the association between altered knee joint kinematics and premature knee OA.
Collapse
|
33
|
Abstract
BACKGROUND Mandibular condyle cartilage (MCC) has a unique structure among articular cartilages; however, little is known about its nanoscale collagen network architecture, hampering design of regeneration therapies and rigorous evaluation of regeneration experiment outcomes in preclinical research. Helium ion microscopy is a novel technology with a long depth of field that is uniquely suited to imaging open 3D collagen networks at multiple scales without obscuring conductive coatings. OBJECTIVE The objective of this research was to image, at the micro- and nanoscales, the depth-dependent MCC collagen network architecture. DESIGN MCC was collected from New Zealand white rabbits. Images of MCC zones were acquired using helium ion, transmission electron, and light microscopy. Network fibril and canal diameters were measured. RESULTS For the first time, the MCC was visualized as a 3D collagen fibril structure at the nanoscale, the length scale of network assembly. Fibril diameters ranged from 7 to 110 nm and varied by zone. The articular surface was composed of a fine mesh that was woven through thin layers of larger fibrils. The fibrous zone was composed of approximately orthogonal lamellae of aligned fibrils. Fibrocyte processes surrounded collagen bundles forming extracellular compartments. The proliferative, mature, and hypertrophic zones were composed of a branched network that was progressively remodeled to accommodate chondrocyte hypertrophy. Osteoid fibrils were woven around osteoblast cytoplasmic processes to create numerous canals similar in size to canaliculi of mature bone. CONCLUSION This multiscale investigation advances our foundational understanding of the complex, layered 3D architecture of the MCC collagen network.
Collapse
Affiliation(s)
- Wendy S. Vanden Berg-Foels
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
- Department of Bioengineering, Clemson University, Clemson, SC, USA
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
34
|
Gaut C, Sugaya K. Critical review on the physical and mechanical factors involved in tissue engineering of cartilage. Regen Med 2015; 10:665-79. [DOI: 10.2217/rme.15.31] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Articular cartilage defects often progress to osteoarthritis, which negatively impacts quality of life for millions of people worldwide and leads to high healthcare expenditures. Tissue engineering approaches to osteoarthritis have concentrated on proliferation and differentiation of stem cells by activation and suppression of signaling pathways, and by using a variety of scaffolding techniques. Recent studies indicate a key role of environmental factors in the differentiation of mesenchymal stem cells to mature cartilage-producing chondrocytes. Therapeutic approaches that consider environmental regulation could optimize chondrogenesis protocols for regeneration of articular cartilage. This review focuses on the effect of scaffold structure and composition, mechanical stress and hypoxia in modulating mesenchymal stem cell fate and the current use of these environmental factors in tissue engineering research.
Collapse
Affiliation(s)
- Carrie Gaut
- INDICASAT-AIP, Ciudad de Saber, Clayton, Apartado 0843-01103, Panama, Rep. de Panama
- Department of Biotechnology, Acharya Nagarjuna University, Guntur, Andhra Pradesh 522510, India
| | - Kiminobu Sugaya
- Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32827, USA
| |
Collapse
|
35
|
Griffin DJ, Bonnevie ED, Lachowsky DJ, Hart JC, Sparks HD, Moran N, Matthews G, Nixon AJ, Cohen I, Bonassar LJ. Mechanical characterization of matrix-induced autologous chondrocyte implantation (MACI®) grafts in an equine model at 53 weeks. J Biomech 2015; 48:1944-9. [DOI: 10.1016/j.jbiomech.2015.04.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 01/17/2023]
|
36
|
Bartell LR, Fortier LA, Bonassar LJ, Cohen I. Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer. J Biomech 2015; 48:3440-6. [PMID: 26150096 DOI: 10.1016/j.jbiomech.2015.05.035] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/11/2015] [Accepted: 05/26/2015] [Indexed: 10/23/2022]
Abstract
Articular cartilage is a heterogeneous soft tissue that dissipates and distributes loads in mammalian joints. Though robust, cartilage is susceptible to damage from loading at high rates or magnitudes. Such injurious loads have been implicated in degenerative changes, including chronic osteoarthritis (OA), which remains a leading cause of disability in developed nations. Despite decades of research, mechanisms of OA initiation after trauma remain poorly understood. Indeed, although bulk cartilage mechanics are measurable during impact, current techniques cannot access microscale mechanics at those rapid time scales. We aimed to address this knowledge gap by imaging the microscale mechanics and corresponding acute biological changes of cartilage in response to rapid loading. In this study, we utilized fast-camera and confocal microscopy to achieve roughly 85 µm spatial resolution of both the cartilage deformation during a rapid (~3 ms), localized impact and the chondrocyte death following impact. Our results showed that, at these high rates, strain and chondrocyte death were highly correlated (p<0.001) with a threshold of 8% microscale strain norm before any cell death occurred. Additionally, chondrocyte death had developed by two hours after impact, suggesting a time frame for clinical therapeutics. Moreover, when the superficial layer was removed, strain - and subsequently chondrocyte death - penetrated deeper into the samples (p<0.001), suggesting a protective role for the superficial layer of articular cartilage. Combined, these results provide insight regarding the detailed biomechanics that drive early chondrocyte damage after trauma and emphasize the importance of understanding cartilage and its mechanics on the microscale.
Collapse
Affiliation(s)
- Lena R Bartell
- School of Applied and Engineering Physics, C7 Clark Hall, Cornell University, Ithaca, NY 14853, USA.
| | - Lisa A Fortier
- Department of Clinical Sciences, Cornell University, Ithaca, NY, USA
| | - Lawrence J Bonassar
- Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA; Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, USA
| | - Itai Cohen
- Department of Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
37
|
Griffin DJ, Vicari J, Buckley MR, Silverberg JL, Cohen I, Bonassar LJ. Effects of enzymatic treatments on the depth-dependent viscoelastic shear properties of articular cartilage. J Orthop Res 2014; 32:1652-7. [PMID: 25196502 DOI: 10.1002/jor.22713] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/14/2014] [Indexed: 02/04/2023]
Abstract
Osteoarthritis (OA) is a disease that involves the erosion and structural weakening of articular cartilage. OA is characterized by the degradation of collagen and proteoglycans in the extracellular matrix (ECM), particularly at the articular surface by proteinases including matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs).(1) Degradation of collagen and proteoglycans is known to alter shear mechanical properties of cartilage, but study of this phenomenon has been focused on bulk tissue properties. The purpose of this study was to assess microscale cartilage damage induced by trypsin or collagenase using a technique to measure the local shear viscoelastic properties. Safranin-O histology revealed a decrease in proteoglycans near the articular surface after collagenase and trypsin digestions, with proteoglycan depletion increasing in time. Similarly, confocal reflectance micrographs showed increasing collagen degradation in collagenase treated samples, although the collagen network remained intact after trypsin treatment. Both treatments induced changes in shear modulus that were confined to a narrow range (∼400µm) near tissue surface. In addition, collagenase altered the total energy dissipation distribution by up to a factor of 100, with longer digestion times corresponding to higher energy dissipation. The ability to detect local mechanical signatures in tissue composition and mechanics is an important tool for understanding the spatially non-uniform changes that occur in articular cartilage diseases such as OA.
Collapse
Affiliation(s)
- Darvin J Griffin
- Department of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | | | | | | | | |
Collapse
|
38
|
Silverberg JL, Barrett AR, Das M, Petersen PB, Bonassar LJ, Cohen I. Structure-function relations and rigidity percolation in the shear properties of articular cartilage. Biophys J 2014; 107:1721-30. [PMID: 25296326 PMCID: PMC4190603 DOI: 10.1016/j.bpj.2014.08.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 08/07/2014] [Accepted: 08/11/2014] [Indexed: 11/18/2022] Open
Abstract
Among mammalian soft tissues, articular cartilage is particularly interesting because it can endure a lifetime of daily mechanical loading despite having minimal regenerative capacity. This remarkable resilience may be due to the depth-dependent mechanical properties, which have been shown to localize strain and energy dissipation. This paradigm proposes that these properties arise from the depth-dependent collagen fiber orientation. Nevertheless, this structure-function relationship has not yet been quantified. Here, we use confocal elastography, quantitative polarized light microscopy, and Fourier-transform infrared imaging to make same-sample measurements of the depth-dependent shear modulus, collagen fiber organization, and extracellular matrix concentration in neonatal bovine articular cartilage. We find weak correlations between the shear modulus |G(∗)| and both the collagen fiber orientation and polarization. We find a much stronger correlation between |G(∗)| and the concentration of collagen fibers. Interestingly, very small changes in collagen volume fraction vc lead to orders-of-magnitude changes in the modulus with |G(∗)| scaling as (vc - v0)(ξ). Such dependencies are observed in the rheology of other biopolymer networks whose structure exhibits rigidity percolation phase transitions. Along these lines, we propose that the collagen network in articular cartilage is near a percolation threshold that gives rise to these large mechanical variations and localization of strain at the tissue's surface.
Collapse
Affiliation(s)
| | - Aliyah R Barrett
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Moumita Das
- School of Physics & Astronomy, Rochester Institute of Technology, Rochester, New York
| | - Poul B Petersen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York
| | - Lawrence J Bonassar
- Biomedical Engineering, Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Itai Cohen
- Physics Department, Cornell University, Ithaca, New York
| |
Collapse
|
39
|
Motavalli M, Akkus O, Mansour JM. Depth-dependent shear behavior of bovine articular cartilage: relationship to structure. J Anat 2014; 225:519-26. [PMID: 25146377 DOI: 10.1111/joa.12230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/30/2022] Open
Abstract
The mechanical behavior of bovine articular cartilage in shear was measured and related to its structure through the depth of the tissue. To make these measurements, we designed an apparatus that could apply controlled shear displacement and measure the resulting shear force on cartilage specimens. Shear displacement and shear strain were obtained from confocal images of photobleached lines on fluorescently stained deformed samples. Depth-dependent collagen structure was obtained using compensated polarized light microscopy. Depth-dependent shear behavior and structure of samples from two animals were measured (group A and B). Both animals were 18-24 months old, which is the range in which they are expected reach skeletal maturity. In mature samples (group A), the stiffest region was located beneath the superficial zone, and the most compliant region was found in the radial zone. In contrast, in samples that were in the process of maturing (group B) the most compliant region was located in the superficial zone. Compensated polarized light microscopy suggested that the animal from which the group A samples were obtained was skeletally mature, whereas the animal yielding the group B samples was in the process of maturing. Compensated polarized light microscopy was an important adjunct to the mechanical shear behavior in that it provided a means to reconcile differences in observed shear behavior in mature and immature cartilage. Although samples were harvested from two animals, there were clear differences in structure and shear mechanical behavior. Differences in the depth-dependent shear strain were consistent with previous studies on mature and immature samples and, based on the structural variation between mature and immature articular cartilage, their mechanical behavior differences can be tenable. These results suggest that age, as well as species and anatomic location, need to be considered when reporting mechanical behavior results.
Collapse
Affiliation(s)
- Mostafa Motavalli
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | |
Collapse
|
40
|
Silverberg JL, Dillavou S, Bonassar L, Cohen I. Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage. J Orthop Res 2013; 31:686-91. [PMID: 23280608 DOI: 10.1002/jor.22303] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/04/2012] [Indexed: 02/04/2023]
Abstract
Articular cartilage has well known depth-dependent structure and has recently been shown to have similarly non-uniform depth-dependent mechanical properties. Here, we study anatomic variation of the depth-dependent shear modulus and energy dissipation rate in neonatal bovine knees. The regions we specifically focus on are the patellofemoral groove, trochlea, femoral condyle, and tibial plateau. In every sample, we find a highly compliant region within the first 500 µm of tissue measured from the articular surface, where the local shear modulus is reduced by up to two orders of magnitude. Comparing measurements taken from different anatomic sites, we find statistically significant differences localized within the first 50 µm. Histological images reveal these anatomic variations are associated with differences in collagen density and fiber organization.
Collapse
Affiliation(s)
- Jesse L Silverberg
- Department of Physics, Cornell University, C10 Clark Hall, Ithaca, NY 14853-2501, USA.
| | | | | | | |
Collapse
|