1
|
Abstract
Tendons link muscle to bone and transfer forces necessary for normal movement. Tendon injuries can be debilitating and their intrinsic healing potential is limited. These challenges have motivated the development of model systems to study the factors that regulate tendon formation and tendon injury. Recent advances in understanding of embryonic and postnatal tendon formation have inspired approaches that aimed to mimic key aspects of tendon development. Model systems have also been developed to explore factors that regulate tendon injury and healing. We highlight current model systems that explore developmentally inspired cellular, mechanical, and biochemical factors in tendon formation and tenogenic stem cell differentiation. Next, we discuss in vivo, in vitro, ex vivo, and computational models of tendon injury that examine how mechanical loading and biochemical factors contribute to tendon pathologies and healing. These tendon development and injury models show promise for identifying the factors guiding tendon formation and tendon pathologies, and will ultimately improve regenerative tissue engineering strategies and clinical outcomes.
Collapse
Affiliation(s)
- Sophia K Theodossiou
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| | - Nathan R Schiele
- Biological Engineering, University of Idaho, 875 Perimeter Dr. MS 0904, Moscow, ID 83844, USA
| |
Collapse
|
2
|
Mienaltowski MJ, Dunkman AA, Buckley MR, Beason DP, Adams SM, Birk DE, Soslowsky LJ. Injury response of geriatric mouse patellar tendons. J Orthop Res 2016; 34:1256-63. [PMID: 26704368 PMCID: PMC4919222 DOI: 10.1002/jor.23144] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 12/22/2015] [Indexed: 02/04/2023]
Abstract
Injury adversely impacts the structure and mechanical properties of a tendon, thus causing pain and disability. Previously, we demonstrated that patellar tendons in mature (P150) and aged (P300) mice do not recover original functionality, even 6 weeks after injury, and that uninjured geriatric tendons (P570) are functionally inferior to uninjured mature tendons. In this study, we hypothesized that the repair response in injured geriatric mice would be further compromised, thus undermining patellar tendon function post-injury. Patellar tendons from wild-type mice were injured at 540 days. At 3 and 6 weeks post-surgery, structural, mechanical, and biochemical analyses were performed and compared to uninjured controls. Mechanical properties of geriatric tendons failed to improve after injury. When compared to mature and aged tendons post-injury, it was determined that at no age was there a suitable repair response. In previous studies, we were able to associate the absence of SLRPs with phenotypic changes both early and late in repair. Here we found that SLRPs were significantly decreased after injury, thus offering a possible explanation for why geriatric tendons were unable to mount an adequate repair response. Thus, we conclude that regardless of age after maturity, tendon healing ultimately results in a substandard outcome. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1256-1263, 2016.
Collapse
Affiliation(s)
- Michael J. Mienaltowski
- Department of Animal Science, University of California Davis, 2211 Meyer Hall, One Shields Ave, Davis, CA 95616, USA,Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 8, Tampa FL, 33612 The McKay
| | - Andrew A. Dunkman
- Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Mark R. Buckley
- Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA,Department of Biomedical Engineering, University of Rochester, 321 Goergen Hall, Intercampus Drive, Rochester, NY 14627, USA
| | - David P. Beason
- Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Sheila M. Adams
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 8, Tampa FL, 33612 The McKay
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 8, Tampa FL, 33612 The McKay
| | - Louis J. Soslowsky
- Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA,Corresponding Author: Louis J. Soslowsky, McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, Tel.: (215) 898-8653; Fax: (215) 573-2133;
| |
Collapse
|
3
|
Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model. J Biomech 2015; 48:2110-5. [PMID: 25888014 DOI: 10.1016/j.jbiomech.2015.02.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/08/2023]
Abstract
Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice.
Collapse
|
4
|
Abstract
Tendinopathy is a debilitating musculoskeletal
condition which can cause significant pain and lead to complete rupture
of the tendon, which often requires surgical repair. Due in part
to the large spectrum of tendon pathologies, these disorders continue
to be a clinical challenge. Animal models are often used in this
field of research as they offer an attractive framework to examine
the cascade of processes that occur throughout both tendon pathology and
repair. This review discusses the structural, mechanical, and biological
changes that occur throughout tendon pathology in animal models,
as well as strategies for the improvement of tendon healing. Cite this article: Bone Joint Res 2014;3:193–202.
Collapse
Affiliation(s)
- M W Hast
- University of Pennsylvania, McKay Orthopaedic Research Laboratory, 424 Stemmler Hall 36th Street and Hamilton Walk, Philadelphia, 19104-6081, USA
| | - A Zuskov
- University of Pennsylvania, McKay Orthopaedic Research Laboratory, 424 Stemmler Hall 36th Street and Hamilton Walk, Philadelphia, 19104-6081, USA
| | - L J Soslowsky
- University of Pennsylvania, McKay Orthopaedic Research Laboratory, 424 Stemmler Hall 36th Street and Hamilton Walk, Philadelphia, 19104-6081, USA
| |
Collapse
|
5
|
Biomechanical and structural response of healing Achilles tendon to fatigue loading following acute injury. J Biomech 2013; 47:2028-34. [PMID: 24280564 DOI: 10.1016/j.jbiomech.2013.10.054] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/06/2013] [Accepted: 10/28/2013] [Indexed: 12/16/2022]
Abstract
Achilles tendon injuries affect both athletes and the general population, and their incidence is rising. In particular, the Achilles tendon is subject to dynamic loading at or near failure loads during activity, and fatigue induced damage is likely a contributing factor to ultimate tendon failure. Unfortunately, little is known about how injured Achilles tendons respond mechanically and structurally to fatigue loading during healing. Knowledge of these properties remains critical to best evaluate tendon damage induction and the ability of the tendon to maintain mechanical properties with repeated loading. Thus, this study investigated the mechanical and structural changes in healing mouse Achilles tendons during fatigue loading. Twenty four mice received bilateral full thickness, partial width excisional injuries to their Achilles tendons (IACUC approved) and twelve tendons from six uninjured mice were used as controls. Tendons were fatigue loaded to assess mechanical and structural properties simultaneously after 0, 1, 3, and 6 weeks of healing using an integrated polarized light system. Results showed that the number of cycles to failure decreased dramatically (37-fold, p<0.005) due to injury, but increased throughout healing, ultimately recovering after 6 weeks. The tangent stiffness, hysteresis, and dynamic modulus did not improve with healing (p<0.005). Linear regression analysis was used to determine relationships between mechanical and structural properties. Of tendon structural properties, the apparent birefringence was able to best predict dynamic modulus (R(2)=0.88-0.92) throughout healing and fatigue life. This study reinforces the concept that fatigue loading is a sensitive metric to assess tendon healing and demonstrates potential structural metrics to predict mechanical properties.
Collapse
|
6
|
Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Kumar A, Beason DP, Iozzo RV, Birk DE, Soslowsky LJ. The injury response of aged tendons in the absence of biglycan and decorin. Matrix Biol 2013; 35:232-8. [PMID: 24157578 DOI: 10.1016/j.matbio.2013.10.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 10/14/2013] [Accepted: 10/14/2013] [Indexed: 12/13/2022]
Abstract
Recent studies have demonstrated that the small leucine-rich proteoglycans (SLRPs) biglycan and decorin impact tendon development, aging and healing in mature mice. However, despite the increased risk of tendon injury in the elderly, the role of SLRPs in tendon repair has not been investigated in aged animals. Therefore, our objective was to elucidate the influences of bigylcan and decorin on tendon healing in aged mice to relate our findings to previous work in mature mice. Since the processes of aging and healing are known to interact, our hypothesis was that aging mediates the role of biglycan and decorin on tendon healing. Patellar tendons from wild-type, biglycan-null and decorin-null mice were injured at 270 days using an established model. At 3 and 6 weeks post-surgery, structural, mechanical and biochemical analyses were performed and compared to uninjured controls. Early stage healing was inferior in biglycan-null and decorin-null mice as compared to wild type. However, tendons of all genotypes failed to exhibit improved mechanical properties between 3 and 6 weeks post-injury. In contrast, in a previous investigation of tendon healing in mature (i.e., 120 day-old) mice, only biglycan-null mice were deficient in early stage healing while decorin-null mice were deficient in late-stage healing. These results confirm that the impact of SLRPs on tendon healing is mediated by age and could inform future age-specific therapies for enhancing tendon healing.
Collapse
Affiliation(s)
- Andrew A Dunkman
- The McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Mark R Buckley
- The McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Michael J Mienaltowski
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL 33612, USA
| | - Sheila M Adams
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL 33612, USA
| | - Stephen J Thomas
- The McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Akash Kumar
- The McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - David P Beason
- The McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, 1020 Locust Street, Jefferson Alumni Hall, Suite 249, Philadelphia, PA 19107, USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, University of South Florida Morsani College of Medicine, 12901 Bruce B. Downs Blvd, MDC 8, Tampa, FL 33612, USA
| | - Louis J Soslowsky
- The McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L, Kumar A, Pathmanathan L, Beason DP, Iozzo RV, Birk DE, Soslowsky LJ. The tendon injury response is influenced by decorin and biglycan. Ann Biomed Eng 2013; 42:619-30. [PMID: 24072490 DOI: 10.1007/s10439-013-0915-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/16/2013] [Indexed: 11/24/2022]
Abstract
Defining the constituent regulatory molecules in tendon is critical to understanding the process of tendon repair and instructive to the development of novel treatment modalities. The purpose of this study is to define the structural, expressional, and mechanical changes in the tendon injury response, and elucidate the roles of two class I small leucine-rich proteoglycans (SLRPs). We utilized biglycan-null, decorin-null and wild type mice with an established patellar tendon injury model. Mechanical testing demonstrated functional changes associated with injury and the incomplete recapitulation of mechanical properties after 6 weeks. In addition, SLRP deficiency influenced the mechanical properties with a marked lack of improvement between 3 and 6 weeks in decorin-null tendons. Morphological analyses of the injury response and role of SLRPs demonstrated alterations in cell density and shape as well as collagen alignment and fibril structure resulting from injury. SLRP gene expression was studied using RT-qPCR with alterations in expression associated with the injured tendons. Our results show that in the absence of biglycan initial healing may be impaired while in the absence of decorin later healing is clearly diminished. This suggests that biglycan and decorin may have sequential roles in the tendon response to injury.
Collapse
Affiliation(s)
- Andrew A Dunkman
- The McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|