1
|
Yadav RN, Sihota P, Uniyal P, Neradi D, Bose JC, Dhiman V, Karn S, Sharma S, Aggarwal S, Goni VG, Kumar S, Kumar Bhadada S, Kumar N. Prediction of mechanical properties of trabecular bone in patients with type 2 diabetes using damage based finite element method. J Biomech 2021; 123:110495. [PMID: 34004396 DOI: 10.1016/j.jbiomech.2021.110495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/24/2021] [Accepted: 04/28/2021] [Indexed: 11/26/2022]
Abstract
Type-2 diabetic (T2D) and osteoporosis (OP) suffered patients are more prone to fragile fracture though the nature of alteration in areal bone mineral density (aBMD) in these two cases are completely different. Therefore, it becomes crucial to compare the effect of T2D and OP on alteration in mechanical and structural properties of femoral trabecular bone. This study investigated the effect of T2D, OP, and osteopenia on bone structural and mechanical properties using micro-CT, nanoindentation and compression test. Further, a nanoscale finite element model (FEM) was developed to predict the cause of alteration in mechanical properties. Finally, a damage-based FEM was proposed to predict the pathological related alteration of bone's mechanical response. The obtained results demonstrated that the T2D group had lower volume fraction (-18.25%, p = 0.023), young's modulus (-23.47%, p = 0.124), apparent modulus (-37.15%, p = 0.02), and toughness (-40%, p = 0.001) than the osteoporosis group. The damage-based FE results were found in good agreement with the compression experiment results for all three pathological conditions. Also, nanoscale FEM results demonstrated that the elastic and failure properties of mineralised collagen fibril decreases with increase in crystal size. This study reveals that T2D patients are more prone to fragile fracture in comparison to OP and osteopenia patients. Also, the proposed damage-based FEM can help to predict the risk of fragility fracture for different pathological conditions.
Collapse
Affiliation(s)
- Ram Naresh Yadav
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Praveer Sihota
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Piyush Uniyal
- Center for Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Deepak Neradi
- Department of OrthopedicsPost Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Jagadeesh Chandra Bose
- Department of Internal MedicinePost Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vandana Dhiman
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Shailesh Karn
- Department of OrthopedicsPost Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sidhartha Sharma
- Department of OrthopedicsPost Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sameer Aggarwal
- Department of OrthopedicsPost Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Vijay G Goni
- Department of OrthopedicsPost Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sachin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Navin Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India.
| |
Collapse
|
2
|
Sabet FA, Koric S, Idkaidek A, Jasiuk I. High-Performance Computing Comparison of Implicit and Explicit Nonlinear Finite Element Simulations of Trabecular Bone. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 200:105870. [PMID: 33280935 DOI: 10.1016/j.cmpb.2020.105870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND OBJECTIVE Finite element models built from micro-computed tomography scans have become a powerful tool to investigate the mechanical properties of trabecular bone. There are two types of solving algorithms in the finite element method: implicit and explicit. Both of these methods have been utilized to study the trabecular bone. However, an investigation comparing the results obtained using the implicit and explicit solvers is lacking. Thus, in this paper, we contrast implicit and explicit procedures by analyzing trabecular bone samples as a case study. METHODS Micro-computed tomography-based finite element analysis of trabecular bone under a direct quasi-static compression was done using implicit and explicit methods. The differences in the predictions of mechanical properties and computational time of the two methods were studied using high-performance computing. RESULTS Our findings indicate that the results using implicit and explicit solvers are well comparable, given that similar problem set up is carefully utilized. Also, the parallel scalability of the two methods was similar, while the explicit solver performed about five times faster than the implicit method. Along with faster performance, the explicit method utilized significantly less memory for the analysis, which shows another benefit of using an explicit solver for this case study. CONCLUSIONS The comparison of the implicit and explicit methods for the simulation of trabecular bone samples should be highly valuable to the bone modeling community and researchers studying complex cellular and architectured materials.
Collapse
Affiliation(s)
- Fereshteh A Sabet
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seid Koric
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ashraf Idkaidek
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Iwona Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
3
|
Sabet FA, Jin O, Koric S, Jasiuk I. Nonlinear micro-CT based FE modeling of trabecular bone-Sensitivity of apparent response to tissue constitutive law and bone volume fraction. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2018; 34:e2941. [PMID: 29168345 DOI: 10.1002/cnm.2941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 09/29/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
In this study, the sensitivity of the apparent response of trabecular bone to different constitutive models at the tissue level was investigated using finite element (FE) modeling based on micro-computed tomography (micro-CT). Trabecular bone specimens from porcine femurs were loaded under a uniaxial compression experimentally and computationally. The apparent behaviors computed using von Mises, Drucker-Prager, and Cast Iron plasticity models were compared. Secondly, the effect of bone volume fraction was studied by changing the bone volume fraction of a trabecular bone sample while keeping the same basic architecture. Also, constitutive models' parameters of the tissue were calibrated for porcine bone, and the effects of different parameters on resulting apparent response were investigated through a parametric study. The calibrated effective tissue elastic modulus of porcine trabecular bone was 10±1.2 GPa, which is in the lower range of modulus values reported in the literature for human and bovine trabecular bones (4-23.8 GPa). It was also observed that, unlike elastic modulus, yield properties of tissue could not be uniquely calibrated by fitting an apparent response from simulations to experiments under a uniaxial compression. Our results demonstrated that using these 3 tissue constitutive models had only a slight effect on the apparent response. As expected, there was a significant change in the apparent response with varying bone volume fraction. Also, both apparent modulus and maximum stress had a linear relation with bone volume fraction.
Collapse
Affiliation(s)
- F A Sabet
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - O Jin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - S Koric
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - I Jasiuk
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Sanyal A, Scheffelin J, Keaveny TM. The quartic piecewise-linear criterion for the multiaxial yield behavior of human trabecular bone. J Biomech Eng 2015; 137:1937621. [PMID: 25401413 DOI: 10.1115/1.4029109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 11/17/2014] [Indexed: 11/08/2022]
Abstract
Prior multiaxial strength studies on trabecular bone have either not addressed large variations in bone volume fraction and microarchitecture, or have not addressed the full range of multiaxial stress states. Addressing these limitations, we utilized micro-computed tomography (lCT) based nonlinear finite element analysis to investigate the complete 3D multiaxial failure behavior of ten specimens (5mm cube) of human trabecular bone, taken from three anatomic sites and spanning a wide range of bone volume fraction (0.09–0.36),mechanical anisotropy (range of E3/E1¼3.0–12.0), and microarchitecture. We found that most of the observed variation in multiaxial strength behavior could be accounted for by normalizing the multiaxial strength by specimen-specific values of uniaxial strength (tension,compression in the longitudinal and transverse directions). Scatter between specimens was reduced further when the normalized multiaxial strength was described in strain space.The resulting multiaxial failure envelope in this normalized-strain space had a rectangular boxlike shape for normal–normal loading and either a rhomboidal box like shape or a triangular shape for normal-shear loading, depending on the loading direction. The finite element data were well described by a single quartic yield criterion in the 6D normalized strain space combined with a piecewise linear yield criterion in two planes for normalshear loading (mean error SD: 4.660.8% for the finite element data versus the criterion).This multiaxial yield criterion in normalized-strain space can be used to describe the complete 3D multiaxial failure behavior of human trabecular bone across a wide range of bone volume fraction, mechanical anisotropy, and microarchitecture.
Collapse
|