1
|
Fan L, Yao D, Fan Z, Zhang T, Shen Q, Tong F, Qian X, Xu L, Jiang C, Dong N. Beyond VICs: Shedding light on the overlooked VECs in calcific aortic valve disease. Biomed Pharmacother 2024; 178:117143. [PMID: 39024838 DOI: 10.1016/j.biopha.2024.117143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024] Open
Abstract
Calcific aortic valve disease (CAVD) is prevalent in developed nations and has emerged as a pressing global public health concern due to population aging. The precise etiology of this disease remains uncertain, and recent research has primarily focused on examining the role of valvular interstitial cells (VICs) in the development of CAVD. The predominant treatment options currently available involve open surgery and minimally invasive interventional surgery, with no efficacious pharmacological treatment. This article seeks to provide a comprehensive understanding of valvular endothelial cells (VECs) from the aspects of valvular endothelium-derived nitric oxide (NO), valvular endothelial mechanotransduction, valvular endothelial injury, valvular endothelial-mesenchymal transition (EndMT), and valvular neovascularization, which have received less attention, and aims to establish their role and interaction with VICs in CAVD. The ultimate goal is to provide new perspectives for the investigation of non-invasive treatment options for this disease.
Collapse
Affiliation(s)
- Lin Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dingyi Yao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengfeng Fan
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tailong Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuqiang Tong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingyu Qian
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chen Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Shen R, Pan C, Yi G, Li Z, Dong C, Yu J, Zhang J, Dong Q, Yu K, Zeng Q. Type 2 Diabetes, Circulating Metabolites, and Calcific Aortic Valve Stenosis: A Mendelian Randomization Study. Metabolites 2024; 14:385. [PMID: 39057708 PMCID: PMC11278608 DOI: 10.3390/metabo14070385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/26/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Epidemiological studies have shown an association between type 2 diabetes (T2D) and calcific aortic valve stenosis (CAVS), but the potential causal relationship and underlying mechanisms remain unclear. Therefore, we conducted a two-sample and two-step Mendelian randomization (MR) analysis to evaluate the association of T2D with CAVS and the mediating effects of circulating metabolites and blood pressure using genome-wide association study (GWAS) summary statistics. The inverse variance weighted (IVW) method was used for the primary MR analysis, and comprehensive sensitivity analyses were performed to validate the robustness of the results. Our results showed that genetically predicted T2D was associated with increased CAVS risk (OR 1.153, 95% CI 1.096-1.214, p < 0.001), and this association persisted even after adjusting for adiposity traits in multivariable MR analysis. Furthermore, the two-step MR analysis identified 69 of 251 candidate mediators that partially mediated the effect of T2D on CAVS, including total branched-chain amino acids (proportion mediated: 23.29%), valine (17.78%), tyrosine (9.68%), systolic blood pressure (8.72%), the triglyceride group (6.07-11.99%), the fatty acid group (4.78-12.82%), and the cholesterol group (3.64-11.56%). This MR study elucidated the causal impact of T2D on CAVS risk independently of adiposity and identified potential mediators in this association pathways. Our findings shed light on the pathogenesis of CAVS and suggest additional targets for the prevention and intervention of CAVS attributed to T2D.
Collapse
Affiliation(s)
- Rui Shen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengliang Pan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guiwen Yi
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyang Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chen Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiangmei Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (R.S.); (C.P.); (G.Y.); (Z.L.); (C.D.); (J.Y.); (J.Z.); (Q.D.)
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Deslandes M, Paquin A, Guzzetti E, Beaudoin J, Barriault A, Salaun E, Clavel MA. Sex-specific correlates of valvular and arterial calcification burden in patients with moderate aortic stenosis. Open Heart 2022; 9:openhrt-2022-002139. [PMID: 36455993 PMCID: PMC9716845 DOI: 10.1136/openhrt-2022-002139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION There are significant sex differences in the prevalence and severity of cardiac calcifying processes. Women harbour more severe mitral annular calcification (MAC), while men exhibit worse aortic valve (AVC) and coronary artery (CAC) calcification. To better understand these differences, we investigated the correlates of cardiac calcification according to sex. METHODS We conducted a cross-sectional study of 406 patients with ≥mild aortic stenosis (AS) defined by an aortic valve area ≤1.5 cm2, a peak aortic jet velocity >2.0 m/s, or a mean transvalvular gradient >15 mm Hg. Doppler-echocardiography and non-contrast multidetector CT were performed concomitantly to assess AS and cardiac calcifications. RESULTS Mean age was 71±11 years and 33% were women. The AS haemodynamics were not significantly different between sexes (all p>0.50), with a mean indexed aortic valve area of 0.59±0.21 cm2/m2, peak aortic jet velocity of 2.78 (2.37-3.68) m/s, and mean gradient of 17.9 (12.8-31.3) mm Hg for the whole cohort. Compared with men, women harboured lower AVC (480 (222-1191) vs 1003 (484-2329) Agatston unit, AU; p<0.0001) and CAC (366 (50-914) vs 618 (167-1357) AU; p=0.007), but more severe MAC (60 (1-887) vs 48 (0-351) AU; p=0.08) and ascending aorta calcification (227 (43-863) vs 142 (7-493) AU; p=0.03). After comprehensive adjustment, sex remained an independent predictor of each cardiac calcification subtype (all p<0.02) except for the ascending aorta (p=0.32). In multivariable analysis, certain variables, like age or bicuspid aortic valve, were associated with the calcification scores in both sexes. Sex-specific predictors of calcification burden were absence of angiotensin receptor blockers (β=-0.26; p=0.007) and renal impairment (β=0.26; p=0.003) for AVC, and bisphosphonates (β=0.20; p=0.05) for CAC in women; coronary artery disease (β=0.25; p=0.001) for AVC, and angiotensin receptor blockers (β=0.19; p=0.02) and calcium/vitamin D (β=0.15; p=0.02) for MAC in men. CONCLUSION In AS, factors associated with cardiac valvular and arterial calcification differ between sexes, suggesting an important contributory role of sex in the pathophysiology of these calcifying processes.
Collapse
Affiliation(s)
- Marianne Deslandes
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Québec, Québec, Canada
| | - Amélie Paquin
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Québec, Québec, Canada,Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Ezequiel Guzzetti
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Québec, Québec, Canada
| | - Jonathan Beaudoin
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Québec, Québec, Canada
| | - Alexandra Barriault
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Québec, Québec, Canada
| | - Erwan Salaun
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Québec, Québec, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et de pneumologie de Quebec, Université Laval, Québec, Québec, Canada
| |
Collapse
|
4
|
Vogl BJ, Niemi NR, Griffiths LG, Alkhouli MA, Hatoum H. Impact of calcific aortic valve disease on valve mechanics. Biomech Model Mechanobiol 2021; 21:55-77. [PMID: 34687365 DOI: 10.1007/s10237-021-01527-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
The aortic valve is a highly dynamic structure characterized by a transvalvular flow that is unsteady, pulsatile, and characterized by episodes of forward and reverse flow patterns. Calcific aortic valve disease (CAVD) resulting in compromised valve function and increased pressure overload on the ventricle potentially leading to heart failure if untreated, is the most predominant valve disease. CAVD is a multi-factorial disease involving molecular, tissue and mechanical interactions. In this review, we aim at recapitulating the biomechanical loads on the aortic valve, summarizing the current and most recent research in the field in vitro, in-silico, and in vivo, and offering a clinical perspective on current strategies adopted to mitigate or approach CAVD.
Collapse
Affiliation(s)
- Brennan J Vogl
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Nicholas R Niemi
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA
| | - Leigh G Griffiths
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Hoda Hatoum
- Biomedical Engineering Department, Michigan Technological University, 1400 Townsend Dr, Houghton, MI, 49931, USA. .,Health Research Institute, Michigan Technological University, Houghton, MI, USA. .,Center of Biocomputing and Digital Health, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
5
|
Oury C, Côté N, Clavel MA. Biomarkers Associated with Aortic Stenosis and Structural Bioprosthesis Dysfunction. Cardiol Clin 2019; 38:47-54. [PMID: 31753176 DOI: 10.1016/j.ccl.2019.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prediction of patients at risk of aortic valve stenosis (AS), AS progression rate, and aortic bioprosthesis dysfunction are of major importance for clinical management and/or prevention. Many imaging modalities may be used; however, they may not be conclusive or available for all patients. Circulating biomarkers are easily available and may be related to a disease or process such as aortic valve calcification or associated with a risk factor of the disease. This article reviews current blood biomarkers associated with aortic valve stenosis/calcification and bioprosthesis dysfunction.
Collapse
Affiliation(s)
- Cécile Oury
- Laboratory of Cardiology, Department of Cardiology, GIGA-Cardiovascular Sciences, University of Liège Hospital, University of Liège, CHU du Sart Tilman, Domaine Universitaire du Sart Tilman, Batiment B35, Liège 4000, Belgium.
| | - Nancy Côté
- Institut universitaire de cardiologie et de Pneumologie de Québec, 2725, Chemin Sainte-Foy, A-2047, Québec, Québec G1V 4G5, Canada
| | - Marie-Annick Clavel
- Institut universitaire de cardiologie et de Pneumologie de Québec, 2725, Chemin Sainte-Foy, A-2047, Québec, Québec G1V 4G5, Canada
| |
Collapse
|
6
|
Ohukainen P, Ruskoaho H, Rysa J. Cellular Mechanisms of Valvular Thickening in Early and Intermediate Calcific Aortic Valve Disease. Curr Cardiol Rev 2018; 14:264-271. [PMID: 30124158 PMCID: PMC6300797 DOI: 10.2174/1573403x14666180820151325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 01/23/2023] Open
Abstract
Background: Calcific aortic valve disease is common in an aging population. It is an ac-tive atheroinflammatory process that has an initial pathophysiology and similar risk factors as athero-sclerosis. However, the ultimate disease phenotypes are markedly different. While coronary heart dis-ease results in rupture-prone plaques, calcific aortic valve disease leads to heavily calcified and ossi-fied valves. Both are initiated by the retention of low-density lipoprotein particles in the subendotheli-al matrix leading to sterile inflammation. In calcific aortic valve disease, the process towards calcifica-tion and ossification is preceded by valvular thickening, which can cause the first clinical symptoms. This is attributable to the accumulation of lipids, inflammatory cells and subsequently disturbances in the valvular extracellular matrix. Fibrosis is also increased but the innermost extracellular matrix layer is simultaneously loosened. Ultimately, the pathological changes in the valve cause massive calcifica-tion and bone formation - the main reasons for the loss of valvular function and the subsequent myo-cardial pathology. Conclusion: Calcification may be irreversible, and no drug treatments have been found to be effec-tive, thus it is imperative to emphasize lifestyle prevention of the disease. Here we review the mecha-nisms underpinning the early stages of the disease.
Collapse
Affiliation(s)
- Pauli Ohukainen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Heikki Ruskoaho
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, Helsinki, Finland
| | - Jaana Rysa
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| |
Collapse
|