1
|
Henke P, Meier J, Ruehrmund L, Brendle SA, Krueger S, Grupp TM, Lutter C, Woernle C, Bader R, Kebbach M. Modeling of the native knee with kinematic data derived from experiments using the VIVO™ joint simulator: a feasibility study. Biomed Eng Online 2024; 23:85. [PMID: 39180061 PMCID: PMC11342559 DOI: 10.1186/s12938-024-01279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Despite advances in total knee arthroplasty, many patients are still unsatisfied with the functional outcome. Multibody simulations enable a more efficient exploration of independent variables compared to experimental studies. However, to what extent numerical models can fully reproduce knee joint kinematics is still unclear. Hence, models must be validated with different test scenarios before being applied to biomechanical questions. METHODS In our feasibility study, we analyzed a human knee specimen on a six degree of freedom joint simulator, applying a passive flexion and different laxity tests with sequential states of ligament resection while recording the joint kinematics. Simultaneously, we generated a subject-specific multibody model of the native tibiofemoral joint considering ligaments and contact between articulating cartilage surfaces. RESULTS Our experimental data on the sequential states of ligament resection aligned well with the literature. The model-based knee joint kinematics during passive flexion showed good agreement with the experiment, with root-mean-square errors of less than 1.61 mm for translations and 2.1° for knee joint rotations. During laxity tests, the experiment measured up to 8 mm of anteroposterior laxity, while the numerical model allowed less than 3 mm. CONCLUSION Although the multibody model showed good agreement to the experimental kinematics during passive flexion, the validation showed that ligament parameters used in this feasibility study are too stiff to replicate experimental laxity tests correctly. Hence, more precise subject-specific ligament parameters have to be identified in the future through model optimization.
Collapse
Affiliation(s)
- Paul Henke
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057, Rostock, Germany.
| | - Johanna Meier
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057, Rostock, Germany.
| | - Leo Ruehrmund
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057, Rostock, Germany
| | - Saskia A Brendle
- Research and Development, Aesculap AG, Am Aesculap-Platz, 8532, Tuttlingen, Germany
- Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Campus Grosshadern, Ludwig Maximilians University, Munich, Germany
| | - Sven Krueger
- Research and Development, Aesculap AG, Am Aesculap-Platz, 8532, Tuttlingen, Germany
| | - Thomas M Grupp
- Research and Development, Aesculap AG, Am Aesculap-Platz, 8532, Tuttlingen, Germany
- Department of Orthopaedic and Trauma Surgery, Musculoskeletal University Center Munich (MUM), Campus Grosshadern, Ludwig Maximilians University, Munich, Germany
| | - Christoph Lutter
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057, Rostock, Germany
| | - Christoph Woernle
- Chair of Technical Mechanics, University of Rostock, Justus-Von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Rainer Bader
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057, Rostock, Germany
| | - Maeruan Kebbach
- Department of Orthopaedics, Rostock University Medical Center, Doberaner Straße 142, 18057, Rostock, Germany
| |
Collapse
|
2
|
Berube EE, Xiang W, Manzi JE, Mayman DJ, Westrich GH, Wright TM, Chalmers BP, Imhauser CW, Sculco PK, Kahlenberg CA. Anterior-Posterior Laxity in Midflexion After Posterior-Stabilized TKA Is Sensitive to MCL Tension in Passive Flexion: An in Vitro Biomechanical Study. J Bone Joint Surg Am 2024; 106:1486-1492. [PMID: 38870269 DOI: 10.2106/jbjs.23.01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
BACKGROUND Knee instability in midflexion may contribute to patient dissatisfaction following total knee arthroplasty (TKA). Midflexion instability involves abnormal motions and tissue loading in multiple planes. Therefore, we quantified and compared the tensions carried by the medial and lateral collateral ligaments (MCL and LCL) following posterior-stabilized (PS) TKA through knee flexion, and then compared these tensions with those carried by the native knee. Finally, we examined the relationships between collateral ligament tensions and anterior tibial translation (ATT). METHODS Eight cadaveric knees (from 5 male and 3 female donors with a mean age of 62.6 years and standard deviation of 10.9 years) underwent PS TKA. Each specimen was mounted to a robotic manipulator and flexed to 90°. ATT was quantified by applying 30 N of anterior force to the tibia. Tensions carried by the collateral ligaments were determined via serial sectioning. Robotic testing was also conducted on a cohort of 15 healthy native cadaveric knees (from 9 male and 6 female donors with a mean age of 36 years and standard deviation of 11 years). Relationships between collateral ligament tensions during passive flexion and ATT were assessed via linear and nonlinear regressions. RESULTS MCL tensions were greater following PS TKA than in the native knee at 15° and 30° of passive flexion, by a median of ≥27 N (p = 0.002), while the LCL tensions did not differ. Median tensions following PS TKA were greater in the MCL than in the LCL at 15°, 30°, and 90° of flexion, by ≥4 N (p ≤ 0.02). Median tensions in the MCL of the native knee were small (≤11 N) and did not exceed those in the LCL (p ≥ 0.25). A logarithmic relationship was identified between MCL tension and ATT following TKA. CONCLUSIONS MCL tensions were greater following PS TKA with this typical nonconforming PS implant than in the native knee. Anterior laxity at 30° of flexion was highly sensitive to MCL tension during passive flexion following PS TKA but not in the native knee. CLINICAL RELEVANCE Surgeons face competing objectives when performing PS TKA: they can either impart supraphysiological MCL tension to reduce anterior-posterior laxity or maintain native MCL tensions that lead to heightened anterior-posterior laxity, as shown in this study.
Collapse
Affiliation(s)
- Erin E Berube
- Department of Biomechanics, Hospital for Special Surgery, New York, NY
| | - William Xiang
- Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY
| | - Joseph E Manzi
- Department of Biomechanics, Hospital for Special Surgery, New York, NY
| | - David J Mayman
- Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY
| | - Geoffrey H Westrich
- Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY
| | - Timothy M Wright
- Department of Biomechanics, Hospital for Special Surgery, New York, NY
| | - Brian P Chalmers
- Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, NY
| | - Peter K Sculco
- Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY
| | - Cynthia A Kahlenberg
- Adult Reconstruction and Joint Replacement Service, Hospital for Special Surgery, New York, NY
| |
Collapse
|
3
|
Pourmodheji R, Chalmers BP, Debbi EM, Long WJ, Wright TM, Westrich GH, Mayman DJ, Imhauser CW, Sculco PK, Kahlenberg CA. Impact of Selective Posterior Cruciate Ligament Fiber Release on Femoral Rollback in Cruciate-Retaining Total Knee Arthroplasty: A Computational Study. J Arthroplasty 2024; 39:S347-S352.e2. [PMID: 38599529 DOI: 10.1016/j.arth.2024.03.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Partial or total release of the posterior cruciate ligament (PCL) is often performed intraoperatively in cruciate-retaining total knee arthroplasty (CR-TKA) to alleviate excessive femoral rollback. However, the effect of the release of selected fibers of the PCL on femoral rollback in CR-TKA is not well understood. Therefore, we used a computational model to quantify the effect of selective PCL fiber releases on femoral rollback in CR-TKA. METHODS Computational models of 9 cadaveric knees (age: 63 years, range 47 to 79) were virtually implanted with a CR-TKA. Passive flexion was simulated with the PCL retained and after serially releasing each individual fiber of the PCL, starting with the one located most anteriorly and laterally on the femoral notch and finishing with the one located most posteriorly on the medial femoral condyle. The experiment was repeated after releasing only the central PCL fiber. The femoral rollback of each condyle was defined as the anterior-posterior distance between tibiofemoral contact points at 0° and 90° of flexion. RESULTS Release of the central PCL fiber in combination with the anterolateral (AL) fibers, reduced femoral rollback a median of 1.5 [0.8, 2.1] mm (P = .01) medially and by 2.0 [1.2, 2.5] mm (P = .04) laterally. Releasing the central fiber alone reduced the rollback by 0.7 [0.4, 1.1] mm (P < .01) medially and by 1.0 [0.5, 1.1] mm (P < .01) laterally, accounting for 47 and 50% of the reduction when released in combination with the AL fibers. CONCLUSIONS Releasing the central fibers of the PCL had the largest impact on reducing femoral rollback, either alone or in combination with the release of the entire AL bundle. Thus, our findings provide clinical guidance regarding the regions of the PCL that surgeons should target to reduce femoral rollback in CR-TKA.
Collapse
Affiliation(s)
- Reza Pourmodheji
- Department of Biomechanics, Hospital for Special Surgery, New York, New York
| | - Brian P Chalmers
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Eytan M Debbi
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - William J Long
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Timothy M Wright
- Department of Biomechanics, Hospital for Special Surgery, New York, New York
| | - Geoffrey H Westrich
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - David J Mayman
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, New York
| | - Peter K Sculco
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| | - Cynthia A Kahlenberg
- Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York
| |
Collapse
|
4
|
Wheatley MGA, Pearle AD, Shamritsky DZ, Hirth JM, Nawabi DH, Wickiewicz TL, Beynnon BD, Imhauser CW. Statistical shape analysis and computational modeling reveal novel relationships between tibiofemoral bony geometry and knee mechanics in young, female athletes. J Biomech 2024; 167:112030. [PMID: 38583375 DOI: 10.1016/j.jbiomech.2024.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 12/30/2023] [Accepted: 02/29/2024] [Indexed: 04/09/2024]
Abstract
Young female athletes participating in sports requiring rapid changes of direction are at heightened risk of suffering traumatic knee injury, especially noncontact rupture of the anterior cruciate ligament (ACL). Clinical studies have revealed that geometric features of the tibiofemoral joint are associated with increased risk of suffering noncontact ACL injury. However, the relationship between three-dimensional (3D) tibiofemoral geometry and knee mechanics in young female athletes is not well understood. We developed a statistically augmented computational modeling workflow to determine relationships between 3D geometry of the knee and tibiofemoral kinematics and ACL force in response to an applied loading sequence of compression, valgus, and anterior force, which is known to load the ACL. This workflow included 3D characterization of tibiofemoral bony geometry via principal component analysis and multibody dynamics models incorporating subject-specific knee geometries. A combination of geometric features of both the tibia and the femur that spanned all three anatomical planes was related to increased ACL force and to increased kinematic coupling (i.e., anterior, medial, and distal tibial translations and internal tibial rotation) in response to the applied loads. In contrast, a uniplanar measure of tibiofemoral geometry that is associated with ACL injury risk, sagittal plane slope of the lateral tibial plateau subchondral bone, was not related to ACL force. Thus, our workflow may aid in developing mechanics-based ACL injury screening tools for young, active females based on a unique combination of bony geometric features that are related to increased ACL loading.
Collapse
Affiliation(s)
| | - Andrew D Pearle
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY, USA
| | - David Z Shamritsky
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Jacob M Hirth
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Danyal H Nawabi
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY, USA
| | | | - Bruce D Beynnon
- Department of Orthopaedics and Rehabilitation, McClure Musculoskeletal Research Center, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA.
| |
Collapse
|
5
|
Imhauser CW, Baumann AP, (Cheryl) Liu X, Bischoff JE, Verdonschot N, Fregly BJ, Elmasry SS, Abdollahi NN, Hume DR, Rooks NB, Schneider MTY, Zaylor W, Besier TF, Halloran JP, Shelburne KB, Erdemir A. Reproducibility in modeling and simulation of the knee: Academic, industry, and regulatory perspectives. J Orthop Res 2023; 41:2569-2578. [PMID: 37350016 PMCID: PMC11345941 DOI: 10.1002/jor.25652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/23/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023]
Abstract
Stakeholders in the modeling and simulation (M&S) community organized a workshop at the 2019 Annual Meeting of the Orthopaedic Research Society (ORS) entitled "Reproducibility in Modeling and Simulation of the Knee: Academic, Industry, and Regulatory Perspectives." The goal was to discuss efforts among these stakeholders to address irreproducibility in M&S focusing on the knee joint. An academic representative from a leading orthopedic hospital in the United States described a multi-institutional, open effort funded by the National Institutes of Health to assess model reproducibility in computational knee biomechanics. A regulatory representative from the United States Food and Drug Administration indicated the necessity of standards for reproducibility to increase utility of M&S in the regulatory setting. An industry representative from a major orthopedic implant company emphasized improving reproducibility by addressing indeterminacy in personalized modeling through sensitivity analyses, thereby enhancing preclinical evaluation of joint replacement technology. Thought leaders in the M&S community stressed the importance of data sharing to minimize duplication of efforts. A survey comprised 103 attendees revealed strong support for the workshop and for increasing emphasis on computational modeling at future ORS meetings. Nearly all survey respondents (97%) considered reproducibility to be an important issue. Almost half of respondents (45%) tried and failed to reproduce the work of others. Two-thirds of respondents (67%) declared that individual laboratories are most responsible for ensuring reproducible research whereas 44% thought that journals are most responsible. Thought leaders and survey respondents emphasized that computational models must be reproducible and credible to advance knee M&S.
Collapse
Affiliation(s)
- Carl W. Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Andrew P. Baumann
- U.S. Food and Drug Administration, Center for Devices and Radiological Health, Office of Science and Engineering Laboratories, Division of Applied Mechanics, Silver Spring, MD
| | | | | | - Nico Verdonschot
- Technical Medical Institute at University of Twente, Enschede, The Netherlands
- Orthopaedic Research Lab, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Shady S. Elmasry
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
- Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Egypt
| | - Neda N. Abdollahi
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Donald R. Hume
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA
- Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - Nynke B. Rooks
- Auckland Bioengineering Institute, University of Auckland, Auckland, NZ
| | | | - William Zaylor
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Thor F. Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, NZ
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland, NZ
| | - Jason P. Halloran
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, WA, USA
| | - Kevin B. Shelburne
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA
- Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - Ahmet Erdemir
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, USA
| |
Collapse
|
6
|
Amirouche F, Solitro GF, Gligor BZ, Hutchinson M, Koh J. Investigating the effect of autograft diameter for quadriceps and patellar tendons use in anterior cruciate ligament reconstruction: a biomechanical analysis using a simulated Lachman test. Front Surg 2023; 10:1122379. [PMID: 37886636 PMCID: PMC10598649 DOI: 10.3389/fsurg.2023.1122379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Introduction Current clinical practice suggests using patellar and quadriceps tendon autografts with a 10 mm diameter for ACL reconstruction. This can be problematic for patients with smaller body frames. Our study objective was to determine the minimum diameter required for these grafts. We hypothesize that given the strength and stiffness of these respective tissues, they can withstand a significant decrease in diameter before demonstrating mechanical strength unviable for recreating the knee's stability. Methods We created a finite element model of the human knee with boundary conditions characteristic of the Lachman test, a passive accessory movement test of the knee performed to identify the integrity of the anterior cruciate ligament (ACL). The Mechanical properties of the model's grafts were directly obtained from cadaveric testing and the literature. Our model estimated the forces required to displace the tibia from the femur with varying graft diameters. Results The 7 mm diameter patellar and quadriceps tendon grafts could withstand 55-60 N of force before induced tibial displacement. However, grafts of 5.34- and 3.76-mm diameters could only withstand upwards of 47 N and 40 N, respectively. Additionally, at a graft diameter of 3.76 mm, the patellar tendon experienced 234% greater stiffness than the quadriceps tendon, with similar excesses of stiffness demonstrated for the 5.34- and 7-mm diameter grafts. Conclusions The patellar tendon provided a stronger graft for knee reconstruction at all diameter sizes. Additionally, it experienced higher maximum stress, meaning it dissociates force better across the graft than the quadriceps tendon. Significantly lower amounts of force were required to displace the tibia for the patellar and quadriceps tendon grafts at 3.76- and 5.34-mm graft diameters. Based on this point, we conclude that grafts below the 7 mm diameter have a higher chance of failure regardless of graft selection.
Collapse
Affiliation(s)
- Farid Amirouche
- Department of Orthopaedics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
- Department of Orthopaedics, Northshore University Health System, Evanston, IL, United States
| | - Giovanni Francesco Solitro
- Department of Orthopaedics, Louisiana State University College of Medicine, Shreveport, LA, United States
| | - Brandon Zachary Gligor
- Department of Orthopaedics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Mark Hutchinson
- Department of Orthopaedics, University of Illinois at Chicago College of Medicine, Chicago, IL, United States
| | - Jason Koh
- Department of Orthopaedics, Northshore University Health System, Evanston, IL, United States
| |
Collapse
|
7
|
Razu SS, Jahandar H, Zhu A, Berube EE, Manzi JE, Pearle AD, Nawabi DH, Wickiewicz TL, Santner TJ, Imhauser CW. Bayesian Calibration of Computational Knee Models to Estimate Subject-Specific Ligament Properties, Tibiofemoral Kinematics, and Anterior Cruciate Ligament Force With Uncertainty Quantification. J Biomech Eng 2023; 145:071003. [PMID: 36826392 PMCID: PMC10782874 DOI: 10.1115/1.4056968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/26/2023] [Accepted: 02/05/2023] [Indexed: 02/25/2023]
Abstract
High-grade knee laxity is associated with early anterior cruciate ligament (ACL) graft failure, poor function, and compromised clinical outcome. Yet, the specific ligaments and ligament properties driving knee laxity remain poorly understood. We described a Bayesian calibration methodology for predicting unknown ligament properties in a computational knee model. Then, we applied the method to estimate unknown ligament properties with uncertainty bounds using tibiofemoral kinematics and ACL force measurements from two cadaver knees that spanned a range of laxities; these knees were tested using a robotic manipulator. The unknown ligament properties were from the Bayesian set of plausible ligament properties, as specified by their posterior distribution. Finally, we developed a calibrated predictor of tibiofemoral kinematics and ACL force with their own uncertainty bounds. The calibrated predictor was developed by first collecting the posterior draws of the kinematics and ACL force that are induced by the posterior draws of the ligament properties and model parameters. Bayesian calibration identified unique ligament slack lengths for the two knee models and produced ACL force and kinematic predictions that were closer to the corresponding in vitro measurement than those from a standard optimization technique. This Bayesian framework quantifies uncertainty in both ligament properties and model outputs; an important step towards developing subject-specific computational models to improve treatment for ACL injury.
Collapse
Affiliation(s)
- Swithin S. Razu
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Hamidreza Jahandar
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Andrew Zhu
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Erin E. Berube
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Joseph E. Manzi
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Andrew D. Pearle
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY 10021
| | - Danyal H. Nawabi
- Sports Medicine Institute, Hospital for Special Surgery, New York, NY 10021
| | | | - Thomas J. Santner
- Department of Statistics, The Ohio State University, Columbus, OH 43210-1247
| | - Carl W. Imhauser
- Department of Biomechanics, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021
| |
Collapse
|
8
|
Halloran JP, Abdollahi Nohouji N, Hafez MA, Besier TF, Chokhandre SK, Elmasry S, Hume DR, Imhauser CW, Rooks NB, Schneider MTY, Schwartz A, Shelburne KB, Zaylor W, Erdemir A. Assessment of reporting practices and reproducibility potential of a cohort of published studies in computational knee biomechanics. J Orthop Res 2023; 41:325-334. [PMID: 35502762 PMCID: PMC9630164 DOI: 10.1002/jor.25358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/22/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023]
Abstract
Reproducible research serves as a pillar of the scientific method and is a foundation for scientific advancement. However, estimates for irreproducibility of preclinical science range from 75% to 90%. The importance of reproducible science has not been assessed in the context of mechanics-based modeling of human joints such as the knee, despite this being an area that has seen dramatic growth. Framed in the context of five experienced teams currently documenting knee modeling procedures, the aim of this study was to evaluate reporting and the perceived potential for reproducibility across studies the teams viewed as important contributions to the literature. A cohort of studies was selected by polling, which resulted in an assessment of nine studies as opposed to a broader analysis across the literature. Using a published checklist for reporting of modeling features, the cohort was evaluated for both "reporting" and their potential to be "reproduced," which was delineated into six major modeling categories and three subcategories. Logistic regression analysis revealed that for individual modeling categories, the proportion of "reported" occurrences ranged from 0.31, 95% confidence interval (CI) [0.23, 0.41] to 0.77, 95% CI: [0.68, 0.86]. The proportion of whether a category was perceived as "reproducible" ranged from 0.22, 95% CI: [0.15, 0.31] to 0.44, 95% CI: [0.35, 0.55]. The relatively low ratios highlight an opportunity to improve reporting and reproducibility of knee modeling studies. Ongoing efforts, including our findings, contribute to a dialogue that facilitates adoption of practices that provide both credibility and translation possibilities.
Collapse
Affiliation(s)
- Jason P Halloran
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, WA, USA,Corresponding author: Applied Sciences Laboratory, Institute for Shock Physics, 412 E Spokane Falls Blvd, Spokane, WA 99202, Phone: 509-358-7713,
| | - Neda Abdollahi Nohouji
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA,Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OHIO, USA
| | - Mhd Ammar Hafez
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA,Department of Civil Engineering, Cleveland State University, Cleveland, OH, USA
| | - Thor F Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, NZ,Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland, NZ
| | - Snehal K Chokhandre
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OHIO, USA,Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, USA
| | - Shady Elmasry
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Donald R Hume
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA,Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, NY, USA
| | - Nynke B Rooks
- Auckland Bioengineering Institute, University of Auckland, Auckland, NZ
| | | | - Ariel Schwartz
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OHIO, USA,Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, USA
| | - Kevin B Shelburne
- Department of Mechanical and Materials Engineering, University of Denver, Denver, CO, USA,Center for Orthopaedic Biomechanics, University of Denver, Denver, CO, USA
| | - William Zaylor
- Center for Human Machine Systems, Cleveland State University, Cleveland, OH, USA,Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Ahmet Erdemir
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OHIO, USA,Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, USA
| |
Collapse
|
9
|
Tanashi A, Haddara R, Haddara MM, Ferreira L, Lalone E. A method for measuring in vivo finger kinematics using electromagnetic tracking. Comput Methods Biomech Biomed Engin 2021; 25:1276-1287. [PMID: 34821518 DOI: 10.1080/10255842.2021.2007375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Accurate in vivo measurement of finger joint kinematics is important for evaluation of treatment methods, implant designs, and for the development and validation of computer models of the hand. The main objective of this project was to develop a standardized finger kinematic measurement system employing electromagnetic (EM) tracking to measure in vivo finger motion pathways. A landmark digitization protocol was developed and used in vivo, in a biomechanical study using EM trackers secured to the finger segments. In vivo results for finger flexion/extension showed no significant differences between EM and goniometer results, 5°±3°; p = 0.735.
Collapse
Affiliation(s)
- Ahmed Tanashi
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Raneem Haddara
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Mohammad M Haddara
- School of Biomedical Engineering, Western University, London, Ontario, Canada
| | - Louis Ferreira
- School of Biomedical Engineering, Western University, London, Ontario, Canada.,Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Emily Lalone
- School of Biomedical Engineering, Western University, London, Ontario, Canada.,Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| |
Collapse
|
10
|
Zaylor W, Halloran JP. WraptMor: Confirmation of an Approach to Estimate Ligament Fiber Length and Reactions With Knee-Specific Morphology. J Biomech Eng 2021; 143:081012. [PMID: 33825816 DOI: 10.1115/1.4050810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/24/2022]
Abstract
Knee ligament length can be used to infer ligament recruitment during functional activities and subject-specific morphology affects the interplay between ligament recruitment and joint motion. This study presents an approach that estimated ligament fiber insertion-to-insertion lengths with wrapping around subject-specific osseous morphology (WraptMor). This represents an advancement over previous work that utilized surrogate geometry to approximate ligament interaction with bone surfaces. Additionally, the reactions each ligament imparted onto bones were calculated by assigning a force-length relationship (kinetic WraptMor model), which assumed that the insertion-to-insertion lengths were independent of the assigned properties. Confirmation of the approach included comparing WraptMor predicted insertion-to-insertion length and reactions with an equivalent displacement-controlled explicit finite element model. Both models evaluated 10 ligament bundles at 16 different joint positions, which were repeated for five different ligament prestrain values for a total of 80 simulations per bundle. The WraptMor and kinetic WraptMor models yielded length and reaction predictions that were similar to the equivalent finite element model. With a few exceptions, predicted ligament lengths and reactions agreed to within 0.1 mm and 2.0 N, respectively, across all tested joint positions and prestrain values. The primary source of discrepancy between the models appeared to be caused by artifacts in the finite element model. The result is a relatively efficient approach to estimate ligament lengths and reactions that include wrapping around knee-specific bone surfaces.
Collapse
Affiliation(s)
- William Zaylor
- Department of Mechanical Engineering, Cleveland State University, Cleveland OH 44115
| | - Jason P Halloran
- Applied Sciences Laboratory, Institute for Shock Physics, Washington State University, Spokane, Washington, DC 99164
| |
Collapse
|
11
|
Chalmers BP, Elmasry SS, Kahlenberg CA, Mayman DJ, Wright TM, Westrich GH, Imhauser CW, Sculco PK, Cross MB. Additional distal femoral resection increases mid-flexion coronal laxity in posterior-stabilized total knee arthroplasty with flexion contracture : a computational study. Bone Joint J 2021; 103-B:87-93. [PMID: 34053287 DOI: 10.1302/0301-620x.103b6.bjj-2020-2444.r1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity. METHODS Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion. RESULTS With + 2 mm resection at 30° and 45° of flexion, mean coronal laxity increased by a mean of 3.1° (SD 0.18°) (p < 0.001) and 2.7° (SD 0.30°) (p < 0.001), respectively. With + 4 mm resection at 30° and 45° of flexion, mean coronal laxity increased by 6.5° (SD 0.56°) (p < 0.001) and 5.5° (SD 0.72°) (p < 0.001), respectively. Maximum increased coronal laxity for a + 4 mm resection occurred at a mean 15.7° (11° to 33°) of flexion with a mean increase of 7.8° (SD 0.2°) from baseline. CONCLUSION With joint line elevation in primary PS TKA, coronal laxity peaks early (about 16°) with a maximum laxity of 8°. Surgeons should restore the joint line if possible; however, if joint line elevation is necessary, we recommend assessment of coronal laxity at 15° to 30° of knee flexion to assess for mid-flexion instability. Further in vivo studies are warranted to understand if this mid-flexion coronal laxity has negative clinical implications. Cite this article: Bone Joint J 2021;103-B(6 Supple A):87-93.
Collapse
Affiliation(s)
- Brian P Chalmers
- Department of Orthopedic Surgery, Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York, USA
| | - Shady S Elmasry
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
| | - Cynthia A Kahlenberg
- Department of Orthopedic Surgery, Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York, USA
| | - David J Mayman
- Department of Orthopedic Surgery, Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York, USA
| | - Timothy M Wright
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
| | - Geoffrey H Westrich
- Department of Orthopedic Surgery, Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York, USA
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, New York, USA
| | - Peter K Sculco
- Department of Orthopedic Surgery, Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York, USA
| | - Michael B Cross
- Department of Orthopedic Surgery, Adult Reconstruction and Joint Replacement, Hospital for Special Surgery, New York, New York, USA
| |
Collapse
|
12
|
Elmasry SS, Chalmers BP, Kahlenberg CA, Mayman DJ, Wright TM, Westrich GH, Cross MB, Sculco PK, Imhauser CW. Simulation of preoperative flexion contracture in a computational model of total knee arthroplasty: Development and evaluation. J Biomech 2021; 120:110367. [PMID: 33887615 PMCID: PMC8183383 DOI: 10.1016/j.jbiomech.2021.110367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/29/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023]
Abstract
Preoperative flexion contracture is a risk factor for patient dissatisfaction following primary total knee arthroplasty (TKA). Previous studies utilizing surgical navigation technology and cadaveric models attempted to identify operative techniques to correct knees with flexion contracture and minimize undesirable outcomes such as knee instability. However, no consensus has emerged on a surgical strategy to treat this clinical condition. Therefore, the purpose of this study was to develop and evaluate a computational model of TKA with flexion contracture that can be used to devise surgical strategies that restore knee extension and to understand factors that cause negative outcomes. We developed six computational models of knees implanted with a posteriorly stabilized TKA using a measured resection technique. We incorporated tensions in the collateral ligaments representative of those achieved in TKA using reference data from a cadaveric experiment and determined tensions in the posterior capsule elements in knees with flexion contracture by simulating a passive extension exam. Subject-specific extension moments were calculated and used to evaluate the amount of knee extension that would be restored after incrementally resecting the distal femur. Model predictions of the extension angle after resecting the distal femur by 2 and 4 mm were within 1.2° (p ≥ 0.32) and 1.6° (p ≥ 0.25), respectively, of previous studies. Accordingly, the presented computational method could be a credible surrogate to study the mechanical impact of flexion contracture in TKA and to evaluate its surgical treatment.
Collapse
Affiliation(s)
- Shady S Elmasry
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA; Department of Mechanical Design and Production, Faculty of Engineering, Cairo University, Egypt.
| | - Brian P Chalmers
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Cynthia A Kahlenberg
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - David J Mayman
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Timothy M Wright
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Geoffrey H Westrich
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Michael B Cross
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Peter K Sculco
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| |
Collapse
|
13
|
Conconi M, Sancisi N, Parenti-Castelli V. Prediction of Individual Knee Kinematics From an MRI Representation of the Articular Surfaces. IEEE Trans Biomed Eng 2020; 68:1084-1092. [PMID: 32816671 DOI: 10.1109/tbme.2020.3018113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The knowledge of individual joint motion may help to understand the articular physiology and to design better treatments and medical devices. Measurements of in-vivo individual motion are nowadays invasive/ionizing (fluoroscopy) or imprecise (skin markers). We propose a new approach to derive the individual knee natural motion from a three-dimensional representation of articular surfaces. METHODS We hypothesize that tissue adaptation shapes articular surfaces to optimize load distribution. Thus, the knee natural motion is obtained as the envelope of tibiofemoral positions and orientations that minimize peak contact pressure, i.e. that maximize joint congruence. We investigated four in-vitro and one in-vivo knees. Articular surfaces were reconstructed from a reference MRI. Natural motion was computed by congruence maximization and results were validated versus experimental data, acquired through bone implanted markers, in-vitro, and single-plane fluoroscopy, in-vivo. RESULTS In two cases, one of which in-vivo, maximum mean absolute error stays below 2.2° and 2.7 mm for rotations and translations, respectively. The remaining knees showed differences in joint internal rotation between the reference MRI and experimental motion at 0° flexion, possibly due to some laxity. The same difference is found in the model predictions, which, however, still replicate the individual knee motion. CONCLUSION The proposed approach allows the prediction of individual joint motion based on non-ionizing MRI data. SIGNIFICANCE This method may help to characterize healthy and, by comparison, pathological knee behavior. Moreover, it may provide an individual reference motion for the personalization of musculoskeletal models, opening the way to their clinical application.
Collapse
|
14
|
Elmasry SS, Sculco PK, Kia M, Kahlenberg CA, Cross MB, Pearle AD, Mayman DJ, Wright TM, Westrich GH, Imhauser CW. A geometric ratio to predict the flexion gap in total knee arthroplasty. J Orthop Res 2020; 38:1637-1645. [PMID: 32410240 PMCID: PMC7345479 DOI: 10.1002/jor.24719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/17/2020] [Accepted: 04/29/2020] [Indexed: 02/04/2023]
Abstract
Measured resection is a common technique for obtaining symmetric flexion and extension gaps in posterior-stabilized (PS) total knee arthroplasty (TKA). A known limitation of measured resection, however, is its reliance on osseous landmarks to guide bone resection and component alignment while ignoring the geometry of the surrounding soft tissues such as the medial collateral ligament (MCL), a possible reason for knee instability. To address this clinical concern, we introduce a new geometric proportion, the MCL ratio, which incorporates features of condylar geometry and MCL anterior fibers. The goal of this study was to determine whether the MCL ratio can predict the flexion gaps and to determine whether a range of MCL ratio corresponds to balanced gaps. Six computational knee models each implanted with PS TKA were utilized. Medial and lateral gaps were measured in response to varus and valgus loads at extension and flexion. The MCL ratio was related to the measured gaps for each knee. We found that the MCL ratio was associated with the flexion gaps and had a stronger association with the medial gap (β = -7.2 ± 3.05, P < .001) than with the lateral gap (β = 3.9 ± 7.26, P = .04). In addition, an MCL ratio ranging between 1.1 and 1.25 corresponded to balanced flexion gaps in the six knee models. Future studies will focus on defining MCL ratio targets after accounting for variations in ligament properties in TKA patients. Our results suggest that the MCL ratio could help guide femoral bone resections in measured resection TKA, but further clinical validation is required.
Collapse
Affiliation(s)
- Shady S. Elmasry
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Peter K. Sculco
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Mohammad Kia
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Cynthia A. Kahlenberg
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Michael B. Cross
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Andrew D. Pearle
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - David J. Mayman
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Timothy M. Wright
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Geoffrey H. Westrich
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Carl W. Imhauser
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY, USA
| |
Collapse
|
15
|
Erdemir A, Besier TF, Halloran JP, Imhauser CW, Laz PJ, Morrison TM, Shelburne KB. Deciphering the "Art" in Modeling and Simulation of the Knee Joint: Overall Strategy. J Biomech Eng 2020; 141:2730179. [PMID: 31166589 DOI: 10.1115/1.4043346] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 12/26/2022]
Abstract
Recent explorations of knee biomechanics have benefited from computational modeling, specifically leveraging advancements in finite element analysis and rigid body dynamics of joint and tissue mechanics. A large number of models have emerged with different levels of fidelity in anatomical and mechanical representation. Adapted modeling and simulation processes vary widely, based on justifiable choices in relation to anticipated use of the model. However, there are situations where modelers' decisions seem to be subjective, arbitrary, and difficult to rationalize. Regardless of the basis, these decisions form the "art" of modeling, which impact the conclusions of simulation-based studies on knee function. These decisions may also hinder the reproducibility of models and simulations, impeding their broader use in areas such as clinical decision making and personalized medicine. This document summarizes an ongoing project that aims to capture the modeling and simulation workflow in its entirety-operation procedures, deviations, models, by-products of modeling, simulation results, and comparative evaluations of case studies and applications. The ultimate goal of the project is to delineate the art of a cohort of knee modeling teams through a publicly accessible, transparent approach and begin to unravel the complex array of factors that may lead to a lack of reproducibility. This manuscript outlines our approach along with progress made so far. Potential implications on reproducibility, on science, engineering, and training of modeling and simulation, on modeling standards, and on regulatory affairs are also noted.
Collapse
Affiliation(s)
- Ahmet Erdemir
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue (ND20), Cleveland, OH 44195 e-mail:
| | - Thor F Besier
- Department of Engineering Science, Auckland Bioengineering Institute, University of Auckland, Auckland 1010, New Zealand
| | - Jason P Halloran
- Department of Mechanical Engineering, Center for Human Machine Systems, Cleveland State University, Cleveland, OH 44115
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, New York, NY 10021
| | - Peter J Laz
- Department of Mechanical and Materials Engineering, Center for Orthopaedic Biomechanics, University of Denver, Denver, CO 80210
| | - Tina M Morrison
- Division of Applied Mechanics, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993
| | - Kevin B Shelburne
- Department of Mechanical and Materials Engineering, Center for Orthopaedic Biomechanics, University of Denver, Denver, CO 80210
| |
Collapse
|
16
|
Zaylor W, Stulberg BN, Halloran JP. Use of distraction loading to estimate subject-specific knee ligament slack lengths. J Biomech 2019; 92:1-5. [DOI: 10.1016/j.jbiomech.2019.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
17
|
Cone SG, Howe D, Fisher MB. Size and Shape of the Human Anterior Cruciate Ligament and the Impact of Sex and Skeletal Growth: A Systematic Review. JBJS Rev 2019; 7:e8. [PMID: 31246862 DOI: 10.2106/jbjs.rvw.18.00145] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND High rates of anterior cruciate ligament (ACL) injury and surgical reconstruction in both skeletally immature and mature populations have led to many studies investigating the size and shape of the healthy ligament. The purposes of the present study were to compile existing quantitative measurements of the geometry of the ACL, its bundles, and its insertion sites and to describe effects of common covariates such as sex and age. METHODS A search of the Web of Science was conducted for studies published from January 1, 1900, to April 11, 2018, describing length, cross-sectional area, volume, orientation, and insertion sites of the ACL. Two reviewers independently screened and reviewed the articles to collect quantitative data for each parameter. RESULTS Quantitative data were collected from 92 articles in this systematic review. In studies of adults, reports of average ACL length, cross-sectional area, and volume ranged from 26 to 38 mm, 30 to 53 mm, and 854 to 1,858 mm, respectively. Reported values were commonly found to vary according to sex and skeletal maturity as well as measurement technique. CONCLUSIONS Although the geometry of the ACL has been described widely in the literature, quantitative measurements can depend on sex, age, and measurement modality, contributing to variability between studies. As such, care must be taken to account for these factors. The present study condenses measurements describing the geometry of the ACL, its individual bundles, and its insertion sites, accounting for common covariates when possible, to provide a resource to the clinical and scientific communities. CLINICAL RELEVANCE Quantitative measures of ACL geometry are informative for developing clinical treatments such as ACL reconstruction. Age and sex can impact these parameters.
Collapse
Affiliation(s)
- Stephanie G Cone
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina-Chapel Hill, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Danielle Howe
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina-Chapel Hill, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina
| | - Matthew B Fisher
- Joint Department of Biomedical Engineering, North Carolina State University and the University of North Carolina-Chapel Hill, Raleigh, North Carolina.,Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina.,Department of Orthopaedics, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
18
|
Elmasry SS, Imhauser CW, Wright TM, Pearle AD, Cross MB, Mayman DJ, Westrich GH, Sculco PK. Neither Anterior nor Posterior Referencing Consistently Balances the Flexion Gap in Measured Resection Total Knee Arthroplasty: A Computational Analysis. J Arthroplasty 2019; 34:981-986.e1. [PMID: 30792170 DOI: 10.1016/j.arth.2019.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Whether anterior referencing (AR) or posterior referencing (PR) produces a more balanced flexion gap in total knee arthroplasty (TKA) using measured resection remains controversial. Our goal was to compare AR and PR in terms of (1) medial and lateral gaps at full extension and 90° of flexion, and (2) maximum medial and lateral collateral ligament (MCL and LCL) forces in flexion. METHODS Computational models of 6 knees implanted with posterior-stabilized TKA were virtually positioned with both AR and PR techniques. The ligament properties were standardized to achieve a balanced knee at full extension. Medial-lateral gaps were measured in response to varus and valgus loading at full extension and 90° of flexion; MCL and LCL forces were estimated during passive flexion. RESULTS At full extension, the maximum difference in the medial-lateral gap for both AR and PR was <1 mm in all 6 knee models. However, in flexion, only 3 AR and 3 PR models produced a difference in medial-lateral gap <2 mm. During passive flexion, the maximum MCL force ranged from 2 N to 87 N in AR and from 17 N to 127 N in PR models. The LCL was unloaded at >25° of flexion in all models. CONCLUSION In measured resection TKA, neither AR nor PR better balance the ligaments and produce symmetrical gaps in flexion. Alternative bone resection techniques and rotation alignment targets are needed to achieve more predictable knee balance.
Collapse
Affiliation(s)
- Shady S Elmasry
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Timothy M Wright
- Department of Biomechanics, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Andrew D Pearle
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Michael B Cross
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - David J Mayman
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Geoffrey H Westrich
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| | - Peter K Sculco
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Cornell Medicine of Cornell University, New York, NY
| |
Collapse
|
19
|
Lamberto G, Amin D, Solomon LB, Ding B, Reynolds KJ, Mazzà C, Martelli S. Personalised 3D knee compliance from clinically viable knee laxity measurements: A proof of concept ex vivo experiment. Med Eng Phys 2018; 64:80-85. [PMID: 30559084 DOI: 10.1016/j.medengphy.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 11/22/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
Personalised information of knee mechanics is increasingly used for guiding knee reconstruction surgery. We explored use of uniaxial knee laxity tests mimicking Lachman and Pivot-shift tests for quantifying 3D knee compliance in healthy and injured knees. Two healthy knee specimens (males, 60 and 88 years of age) were tested. Six-degree-of-freedom tibiofemoral displacements were applied to each specimen at 5 intermediate angles between 0° and 90° knee flexion. The force response was recorded. Six-degree-of-freedom and uniaxial tests were repeated after sequential resection of the anterior cruciate, posterior cruciate and lateral collateral ligament. 3D knee compliance (C6DOF) was calculated using the six-degrees-of-freedom measurements for both the healthy and ligament-deficient knees and validated using a leave-one-out cross-validation. 3D knee compliance (CCT) was also calculated using uniaxial measurements for Lachman and Pivot-shift tests both conjointly and separately. C6DOF and CCT matrices were compared component-by-component and using principal axes decomposition. Bland-Altman plots, median and 40-60th percentile range were used as measurements of bias and dispersion. The error on tibiofemoral displacements predicted using C6DOF was < 9.6% for every loading direction and after release of each ligament. Overall, there was good agreement between C6DOF and CCT components for both the component-by-component and principal component comparison. The dispersion of principal components (compliance coefficients, positions and pitches) based on both uniaxial tests was lower than that based on single uniaxial tests. Uniaxial tests may provide personalised information of 3D knee compliance.
Collapse
Affiliation(s)
- Giuliano Lamberto
- Department of Mechanical Engineering, University of Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, University of Sheffield, United Kingdom
| | - Dhara Amin
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, Australia
| | - Lucian Bogdan Solomon
- Centre for Orthopaedic and Trauma Research, The University of Adelaide, Adelaide, SA, Australia; Department of Orthopaedics and Trauma, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Boyin Ding
- School of Mechanical Engineering, University of Adelaide, Adelaide, SA 5005, Australia
| | - Karen J Reynolds
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, Australia
| | - Claudia Mazzà
- Department of Mechanical Engineering, University of Sheffield, United Kingdom; INSIGNEO Institute for in silico Medicine, University of Sheffield, United Kingdom
| | - Saulo Martelli
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Tonsley, SA, Australia.
| |
Collapse
|
20
|
Kia M, Warth LC, Lipman JD, Wright TM, Westrich GH, Cross MB, Mayman DJ, Pearle AD, Imhauser CW. Fixed-bearing medial unicompartmental knee arthroplasty restores neither the medial pivoting behavior nor the ligament forces of the intact knee in passive flexion. J Orthop Res 2018; 36:1868-1875. [PMID: 29244223 DOI: 10.1002/jor.23838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/26/2017] [Indexed: 02/04/2023]
Abstract
Medial unicompartmental knee arthroplasty (UKA) is an accepted treatment for isolated medial osteoarthritis. However, using an improper thickness for the tibial component may contribute to early failure of the prosthesis or disease progression in the unreplaced lateral compartment. Little is known of the effect of insert thickness on both knee kinematics and ligament forces. Therefore, a computational model of the tibiofemoral joint was used to determine how non-conforming, fixed bearing medial UKA affects tibiofemoral kinematics, and tension in the medial collateral ligament (MCL) and the anterior cruciate ligament (ACL) during passive knee flexion. Fixed bearing medial UKA could not maintain the medial pivoting that occurred in the intact knee from 0° to 30° of passive flexion. Abnormal anterior-posterior (AP) translations of the femoral condyles relative to the tibia delayed coupled internal tibial rotation, which occurred in the intact knee from 0° to 30° of flexion, but occurred from 30° to 90° of flexion following UKA. Increasing or decreasing tibial insert thickness following medial UKA also failed to restore the medial pivoting behavior of the intact knee despite modulating MCL and ACL forces. Reduced AP constraint in non-conforming medial UKA relative to the intact knee leads to abnormal condylar translations regardless of insert thickness even with intact cruciate and collateral ligaments. This finding suggests that the conformity of the medial compartment as driven by the medial meniscus and articular morphology plays an important role in controlling AP condylar translations in the intact tibiofemoral joint during passive flexion. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:1868-1875, 2018.
Collapse
Affiliation(s)
- Mohammad Kia
- Department of Biomechanics, Hospital for Special Surgery, 535 E. 70th St., New York, New York, 10021
| | - Lucian C Warth
- Orthopaedic Surgery, Indiana University Health, 200 Hawkins Dr., Iowa City, Iowa, 52242
| | - Joseph D Lipman
- Department of Biomechanics, Hospital for Special Surgery, 535 E. 70th St., New York, New York, 10021
| | - Timothy M Wright
- Department of Biomechanics, Hospital for Special Surgery, 535 E. 70th St., New York, New York, 10021
| | - Geoffrey H Westrich
- Adult Reconstruction and Joint Replacement Division, Hospital for Special Surgery, 535 E. 70th St., New York, New York, 10021
| | - Michael B Cross
- Adult Reconstruction and Joint Replacement Division, Hospital for Special Surgery, 535 E. 70th St., New York, New York, 10021
| | - David J Mayman
- Adult Reconstruction and Joint Replacement Division, Hospital for Special Surgery, 535 E. 70th St., New York, New York, 10021
| | - Andrew D Pearle
- Sports Medicine, Hospital for Special Surgery, 535 E. 70th St., New York, New York, 10021
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, 535 E. 70th St., New York, New York, 10021
| |
Collapse
|
21
|
Kent RN, Amirtharaj MJ, Hardy BM, Pearle AD, Wickiewicz TL, Imhauser CW. Anterior laxity, lateral tibial slope, and in situ ACL force differentiate knees exhibiting distinct patterns of motion during a pivoting event: A human cadaveric study. J Biomech 2018; 74:9-15. [PMID: 29752053 DOI: 10.1016/j.jbiomech.2018.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/26/2018] [Accepted: 04/01/2018] [Indexed: 01/13/2023]
Abstract
Knee instability following anterior cruciate ligament (ACL) rupture compromises function and increases risk of injury to the cartilage and menisci. To understand the biomechanical function of the ACL, previous studies have primarily reported the net change in tibial position in response to multiplanar torques, which generate knee instability. In contrast, we retrospectively analyzed a cohort of 13 consecutively tested cadaveric knees and found distinct motion patterns, defined as the motion of the tibia as it translates and rotates from its unloaded, initial position to its loaded, final position. Specifically, ACL-sectioned knees either subluxated anteriorly under valgus torque (VL-subluxating) (5 knees) or under a combination of valgus and internal rotational torques (VL/IR-subluxating) (8 knees), which were applied at 15 and 30° flexion using a robotic manipulator. The purpose of this study was to identify differences between these knees that could be driving the two distinct motion patterns. Therefore, we asked whether parameters of bony geometry and tibiofemoral laxity (known risk factors of non-contact ACL injury) as well as in situ ACL force, when it was intact, differentiate knees in these two groups. VL-subluxating knees exhibited greater sagittal slope of the lateral tibia by 3.6 ± 2.4° (p = 0.003); less change in anterior laxity after ACL-sectioning during a simulated Lachman test by 3.2 ± 3.2 mm (p = 0.006); and, at the peak applied valgus torque (no internal rotation torque), higher posteriorly directed, in situ ACL force by 13.4 ± 11.3 N and 12.0 ± 11.6 N at 15° and 30° of flexion, respectively (both p ≤ 0.03). These results may suggest that subgroups of knees depend more on their ACL to control lateral tibial subluxation in response to uniplanar valgus and multiplanar valgus and internal rotation torques as mediated by anterior laxity and bony morphology.
Collapse
Affiliation(s)
- Robert N Kent
- Department of Biomechanics, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY, United States.
| | - Mark J Amirtharaj
- Department of Biomechanics, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY, United States
| | - Brendan M Hardy
- Department of Biomechanics, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY, United States
| | - Andrew D Pearle
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY, United States
| | - Thomas L Wickiewicz
- Department of Orthopedic Surgery, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY, United States
| | - Carl W Imhauser
- Department of Biomechanics, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY, United States
| |
Collapse
|
22
|
Purevsuren T, Batbaatar M, Khuyagbaatar B, Kim K, Kim YH. Comparative Evaluation Between Anatomic and Nonanatomic Lateral Ligament Reconstruction Techniques in the Ankle Joint: A Computational Study. J Biomech Eng 2018; 140:2675124. [DOI: 10.1115/1.4039576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Indexed: 12/31/2022]
Abstract
Biomechanical studies have indicated that the conventional nonanatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis (OA). Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments (CaFL) have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular nonanatomic reconstruction techniques. An LAS injury, three popular nonanatomic reconstruction models (Watson-Jones, Evans, and Chrisman–Snook) and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 N·m inversion moment), internal rotational test (3 N·m internal rotation moment), and the combined loading test (9 N·m inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the nonanatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which is mainly observed in Watson-Jones and Chrisman–Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.
Collapse
Affiliation(s)
- Tserenchimed Purevsuren
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea e-mail:
| | - Myagmarbayar Batbaatar
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea e-mail:
| | - Batbayar Khuyagbaatar
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea e-mail:
| | - Kyungsoo Kim
- Department of Applied Mathematics, Kyung Hee University, Yongin 17104, South Korea e-mail:
| | - Yoon Hyuk Kim
- Department of Mechanical Engineering, Kyung Hee University, Yongin 17104, South Korea e-mail:
| |
Collapse
|
23
|
Femoral Component External Rotation Affects Knee Biomechanics: A Computational Model of Posterior-stabilized TKA. Clin Orthop Relat Res 2018; 476. [PMID: 29529625 PMCID: PMC5919232 DOI: 10.1007/s11999.0000000000000020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The correct amount of external rotation of the femoral component during TKA is controversial because the resulting changes in biomechanical knee function associated with varying degrees of femoral component rotation are not well understood. We addressed this question using a computational model, which allowed us to isolate the biomechanical impact of geometric factors including bony shapes, location of ligament insertions, and implant size across three different knees after posterior-stabilized (PS) TKA. QUESTIONS/PURPOSES Using a computational model of the tibiofemoral joint, we asked: (1) Does external rotation unload the medial collateral ligament (MCL) and what is the effect on lateral collateral ligament tension? (2) How does external rotation alter tibiofemoral contact loads and kinematics? (3) Does 3° external rotation relative to the posterior condylar axis align the component to the surgical transepicondylar axis (sTEA) and what anatomic factors of the femoral condyle explain variations in maximum MCL tension among knees? METHODS We incorporated a PS TKA into a previously developed computational knee model applied to three neutrally aligned, nonarthritic, male cadaveric knees. The computational knee model was previously shown to corroborate coupled motions and ligament loading patterns of the native knee through a range of flexion. Implant geometries were virtually installed using hip-to-ankle CT scans through measured resection and anterior referencing surgical techniques. Collateral ligament properties were standardized across each knee model by defining stiffness and slack lengths based on the healthy population. The femoral component was externally rotated from 0° to 9° relative to the posterior condylar axis in 3° increments. At each increment, the knee was flexed under 500 N compression from 0° to 90° simulating an intraoperative examination. The computational model predicted collateral ligament forces, compartmental contact forces, and tibiofemoral internal/external and varus-valgus rotation through the flexion range. RESULTS The computational model predicted that femoral component external rotation relative to the posterior condylar axis unloads the MCL and the medial compartment; however, these effects were inconsistent from knee to knee. When the femoral component was externally rotated by 9° rather than 0° in knees one, two, and three, the maximum force carried by the MCL decreased a respective 55, 88, and 297 N; the medial contact forces decreased at most a respective 90, 190, and 570 N; external tibial rotation in early flexion increased by a respective 4.6°, 1.1°, and 3.3°; and varus angulation of the tibia relative to the femur in late flexion increased by 8.4°, 8.0°, and 7.9°, respectively. With 3° of femoral component external rotation relative to the posterior condylar axis, the femoral component was still externally rotated by up to 2.7° relative to the sTEA in these three neutrally aligned knees. Variations in MCL force from knee to knee with 3° of femoral component external rotation were related to the ratio of the distances from the femoral insertion of the MCL to the posterior and distal cuts of the implant; the closer this ratio was to 1, the more uniform were the MCL tensions from 0° to 90° flexion. CONCLUSIONS A larger ratio of distances from the femoral insertion of the MCL to the posterior and distal cuts may cause clinically relevant increases in both MCL tension and compartmental contact forces. CLINICAL RELEVANCE To obtain more consistent ligament tensions through flexion, it may be important to locate the posterior and distal aspects of the femoral component with respect to the proximal insertion of the MCL such that a ratio of 1 is achieved.
Collapse
|
24
|
McDonald LS, Boorman-Padgett J, Kent R, Stone K, Wickiewicz TL, Pearle AD, Imhauser CW. ACL Deficiency Increases Forces on the Medial Femoral Condyle and the Lateral Meniscus with Applied Rotatory Loads. J Bone Joint Surg Am 2016; 98:1713-1721. [PMID: 27869622 DOI: 10.2106/jbjs.15.00878] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The articular surfaces and menisci act with the anterior cruciate ligament (ACL) to stabilize the knee joint. Their role in resisting applied rotatory loads characteristic of instability events is unclear despite commonly observed damage to these intra-articular structures in the acute and chronic ACL injury settings. METHODS Ten fresh-frozen human cadaveric knees were mounted to a robotic manipulator. Combined valgus and internal rotation torques were applied in the presence and absence of a 300-N compressive load. Forces carried by the individual menisci and via cartilage-to-cartilage contact on each femoral condyle in ACL-intact and ACL-sectioned states were measured using the principle of superposition. RESULTS In response to applied valgus and internal rotation torques in the absence of compression, sectioning of the ACL increased the net force carried by the lateral meniscus by at most 65.8 N (p < 0.001). Moreover, the anterior shear force carried by the lateral meniscus increased by 25.7 N (p < 0.001) and 36.5 N (p = 0.042) in the absence and presence of compression, respectively. In response to applied valgus and internal rotation torques, sectioning of the ACL increased the net force carried by cartilage-to-cartilage contact on the medial femoral condyle by at most 38.9 N (p = 0.006) and 46.7 N (p = 0.040) in the absence and presence of compression, respectively. Additionally, the lateral shear force carried by cartilage-to-cartilage contact on the medial femoral condyle increased by at most 21.0 N (p = 0.005) and by 28.0 N (p = 0.025) in the absence and presence of compression, respectively. Forces carried by the medial meniscus and by cartilage-to-cartilage contact on the lateral femoral condyle changed by <5 N as a result of ACL sectioning. CONCLUSIONS ACL sectioning increased the net forces carried by the lateral meniscus and medial femoral condyle-and the anterior shear and lateral shear forces, respectively-in response to multiplanar valgus and internal rotation torque. CLINICAL RELEVANCE These loading patterns provide a biomechanical rationale for clinical patterns of intra-articular derangement such as lateral meniscal injury and osseous remodeling of the medial compartment seen with ACL insufficiency.
Collapse
Affiliation(s)
- Lucas S McDonald
- Sports Medicine and Shoulder Service (L.S.M., T.L.W., and A.D.P.) and Biomechanics Department (J.B.-P., R.K., K.S., and C.W.I.), Hospital for Special Surgery, New York, NY
| | - James Boorman-Padgett
- Sports Medicine and Shoulder Service (L.S.M., T.L.W., and A.D.P.) and Biomechanics Department (J.B.-P., R.K., K.S., and C.W.I.), Hospital for Special Surgery, New York, NY
| | - Robert Kent
- Sports Medicine and Shoulder Service (L.S.M., T.L.W., and A.D.P.) and Biomechanics Department (J.B.-P., R.K., K.S., and C.W.I.), Hospital for Special Surgery, New York, NY
| | - Kyle Stone
- Sports Medicine and Shoulder Service (L.S.M., T.L.W., and A.D.P.) and Biomechanics Department (J.B.-P., R.K., K.S., and C.W.I.), Hospital for Special Surgery, New York, NY
| | - Thomas L Wickiewicz
- Sports Medicine and Shoulder Service (L.S.M., T.L.W., and A.D.P.) and Biomechanics Department (J.B.-P., R.K., K.S., and C.W.I.), Hospital for Special Surgery, New York, NY
| | - Andrew D Pearle
- Sports Medicine and Shoulder Service (L.S.M., T.L.W., and A.D.P.) and Biomechanics Department (J.B.-P., R.K., K.S., and C.W.I.), Hospital for Special Surgery, New York, NY
| | - Carl W Imhauser
- Sports Medicine and Shoulder Service (L.S.M., T.L.W., and A.D.P.) and Biomechanics Department (J.B.-P., R.K., K.S., and C.W.I.), Hospital for Special Surgery, New York, NY
| |
Collapse
|