1
|
Baker CE, Yu X, Lovell B, Tan R, Patel S, Ghajari M. How Well Do Popular Bicycle Helmets Protect from Different Types of Head Injury? Ann Biomed Eng 2024; 52:3326-3364. [PMID: 39294466 DOI: 10.1007/s10439-024-03589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/25/2024] [Indexed: 09/20/2024]
Abstract
Bicycle helmets are designed to protect against skull fractures and associated focal brain injuries, driven by helmet standards. Another type of head injury seen in injured cyclists is diffuse brain injuries, but little is known about the protection provided by bicycle helmets against these injuries. Here, we examine the performance of modern bicycle helmets in preventing diffuse injuries and skull fractures under impact conditions that represent a range of real-world incidents. We also investigate the effects of helmet technology, price, and mass on protection against these pathologies. 30 most popular helmets among UK cyclists were purchased within 9.99-135.00 GBP price range. Helmets were tested under oblique impacts onto a 45° anvil at 6.5 m/s impact speed and four locations, front, rear, side, and front-side. A new headform, which better represents the average human head's mass, moments of inertia and coefficient of friction than any other available headforms, was used. We determined peak linear acceleration (PLA), peak rotational acceleration (PRA), peak rotational velocity (PRV), and BrIC. We also determined the risk of skull fractures based on PLA (linear risk), risk of diffuse brain injuries based on BrIC (rotational risk), and their mean (overall risk). Our results show large variation in head kinematics: PLA (80-213 g), PRV (8.5-29.9 rad/s), PRA (1.6-9.7 krad/s2), and BrIC (0.17-0.65). The overall risk varied considerably with a 2.25 ratio between the least and most protective helmet. This ratio was 1.76 for the linear and 4.21 for the rotational risk. Nine best performing helmets were equipped with the rotation management technology MIPS, but not all helmets equipped with MIPS were among the best performing helmets. Our comparison of three tested helmets which have MIPS and no-MIPS versions showed that MIPS reduced rotational kinematics, but not linear kinematics. We found no significant effect of helmet price on exposure-adjusted injury risks. We found that larger helmet mass was associated with higher linear risk. This study highlights the need for a holistic approach, including both rotational and linear head injury metrics and risks, in helmet design and testing. It also highlights the need for providing information about helmet safety to consumers to help them make an informed choice.
Collapse
Affiliation(s)
- C E Baker
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK.
| | - X Yu
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, S10 2TN, UK
| | - B Lovell
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
| | - R Tan
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
| | - S Patel
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
| | - M Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
2
|
Schubert A, Campolettano ET, Scanlon JM, McMurry TL, Unger T. Bridging the gap: Mechanistic-based cyclist injury risk curves using two decades of crash data. TRAFFIC INJURY PREVENTION 2024; 25:S105-S115. [PMID: 39485677 DOI: 10.1080/15389588.2024.2400276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE Injury risk curves are vital in quantifying the relative safety consequences of real-world collisions. Previous injury risk curves for bicycle-passenger vehicle crashes have predominantly focused on frontal impacts. This creates a gap in cyclist injury risk assessment for other geometric crash configurations. The goal of this study was to create an "omnidirectional" injury risk model, informed by known injury causing mechanisms, that is applicable to most geometric configurations. METHODS We used data from years 1999-2022 of the German In-Depth Accident Study (GIDAS). We describe the pattern of injuries for cyclists involved in collisions with passenger vehicles, and we developed injury risk functions at various AIS levels for these collisions. A mechanistic-based approach accounting for biomechanically-relevant variables was used to select model parameters a priori. Cyclist age (including children) and sex were regarded as relevant predictors of injury risk. Speed and impact geometry were captured through a novel predictor, Effective Collision Speed, which transforms the vehicle and cyclist speeds into a single value and incorporates frictional considerations observed during side engagements. Cyclist engagement with the vehicle was captured with a variable demonstrating the potential for a normal projection. We additionally present analyses weighted toward German nationwide data. RESULTS We identified 6,576 cyclists involved in collisions with passenger vehicles. AIS3+ cyclist injuries occurred most often in the head, thorax, and lower extremities. Effective Collision Speed was a strong predictor of injury risk. Collisions with a potential for a normal projection were associated with increased risk, though this was only significant at the MAIS2+F severity level. Younger children had slightly higher injury risk compared to young adults, while elderly cyclists had the highest risk of AIS3+ injury. Sex was a significant predictor only for the MAIS2+F injury risk curves. SIGNIFICANCE U.S. cyclist fatalities increased 55% from 2010 to 2021. To reduce injuries and fatalities, it is crucial to understand cyclist injury risk. This study builds on previous analyses by including children, incorporating additional mechanistic predictors, broadening the scope of included crashes, and using weighting to generalize these estimates toward national German statistics.
Collapse
Affiliation(s)
- Angela Schubert
- VUFO - Traffic Accident Research Institute at TU Dresden, Dresden, Germany
| | | | | | | | - Thomas Unger
- VUFO - Traffic Accident Research Institute at TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Yu X, Singh G, Kaur A, Ghajari M. An Assessment of Sikh Turban's Head Protection in Bicycle Incident Scenarios. Ann Biomed Eng 2024; 52:946-957. [PMID: 38305930 PMCID: PMC10940469 DOI: 10.1007/s10439-023-03431-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Due to religious tenets, Sikh population wear turbans and are exempted from wearing helmets in several countries. However, the extent of protection provided by turbans against head injuries during head impacts remains untested. One aim of this study was to provide the first-series data of turbans' protective performance under impact conditions that are representative of real-world bicycle incidents and compare it with the performance of bicycle helmets. Another aim was to suggest potential ways for improving turban's protective performance. We tested five different turbans, distinguished by two wrapping styles and two fabric materials with a size variation in one of the styles. A Hybrid III headform fitted with the turban was dropped onto a 45 degrees anvil at 6.3 m/s and head accelerations were measured. We found large difference in the performance of different turbans, with up to 59% difference in peak translational acceleration, 85% in peak rotational acceleration, and 45% in peak rotational velocity between the best and worst performing turbans. For the same turban, impact on the left and right sides of the head produced very different head kinematics, showing the effects of turban layering. Compared to unprotected head impacts, turbans considerably reduce head injury metrics. However, turbans produced higher values of peak linear and rotational accelerations in front and left impacts than bicycle helmets, except from one turban which produced lower peak head kinematics values in left impacts. In addition, turbans produced peak rotational velocities comparable with bicycle helmets, except from one turban which produced higher values. The impact locations tested here were covered with thick layers of turbans and they were impacted against flat anvils. Turbans may not provide much protection if impacts occur at regions covered with limited amount of fabric or if the impact is against non-flat anvils, which remain untested. Our analysis shows that turbans can be easily compressed and bottom out creating spikes in the headform's translational acceleration. In addition, the high friction between the turban and anvil surface leads to higher tangential force generating more rotational motion. Hence, in addition to improving the coverage of the head, particularly in the crown and rear locations, we propose two directions for turban improvement: (i) adding deformable materials within the turban layers to increase the impact duration and reduce the risk of bottoming out; (ii) reducing the friction between turban layers to reduce the transmission of rotational motion to the head. Overall, the study assessed Turbans' protection in cyclist head collisions, with a vision that the results of this study can guide further necessary improvements for advanced head protection for the Sikh community.
Collapse
Affiliation(s)
- Xiancheng Yu
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, UK
- Department of Mechanical Engineering, University of Sheffield, Sheffield, UK
| | - Gurpreet Singh
- Department of Materials, Imperial College London, London, UK.
- Sikh Scientists Network, London, UK.
| | - Amritvir Kaur
- Sikh Scientists Network, London, UK
- Dr Kaur Projects Ltd, London, UK
| | - Mazdak Ghajari
- HEAD Lab, Dyson School of Design Engineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Singh A, Kumar D, Ganpule S. Biomechanical Response of Head Surrogate With and Without the Helmet. J Biomech Eng 2024; 146:031001. [PMID: 37470487 DOI: 10.1115/1.4062968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Measurements of brain deformations under injurious loading scenarios are actively sought. In this work, we report experimentally measured head kinematics and corresponding dynamic, two-dimensional brain simulant deformations in head surrogates under a blunt impact, with and without a helmet. Head surrogates used in this work consisted of skin, skull, dura, falx, tentorium, and brain stimulants. The head surrogate geometry was based on the global human body models consortium's head model. A base head surrogate consisting of skin-skull-brain was considered. In addition, the response of two other head surrogates, skin-skull-dura-brain, and skin-skull-dura-brain-falx-tentorium, was investigated. Head surrogate response was studied for sagittal and coronal plane rotations for impactor velocities of 1 and 3 m/s. Response of head surrogates was compared against strain measurements in PMHS. The strain pattern in the brain simulant was heterogenous, and peak strains were established within ∼30 ms. The choice of head surrogate affect the spatiotemporal evolution of strain. For no helmet case, peak MPS of ∼50-60% and peak MSS of ∼35-50% were seen in brain simulant corresponding to peak rotational accelerations of ∼5000-7000 rad/s2. Peak head kinematics and peak MPS have been reduced by up to 75% and 45%, respectively, with the conventional helmet and by up to 90% and 85%, respectively, with the helmet with antirotational pads. Overall, these results provide important, new data on brain simulant strains under a variety of loading scenarios-with and without the helmets.
Collapse
Affiliation(s)
- Abhilash Singh
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Devendra Kumar
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Shailesh Ganpule
- Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India; Department of Design, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
5
|
King ARA, Rovt J, Petel OE, Yu B, Quenneville CE. Evaluation of an Elastomeric Honeycomb Bicycle Helmet Design to Mitigate Head Kinematics in Oblique Impacts. J Biomech Eng 2024; 146:031010. [PMID: 38217114 DOI: 10.1115/1.4064475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/10/2024] [Indexed: 01/15/2024]
Abstract
Head impacts in bicycle accidents are typically oblique to the impact surface and transmit both normal and tangential forces to the head, causing linear and rotational head kinematics, respectively. Traditional expanded polystyrene (EPS) foam bicycle helmets are effective at preventing many head injuries, especially skull fractures and severe traumatic brain injuries (TBIs) (primarily from normal contact forces). However, the incidence of concussion from collisions (primarily from rotational head motion) remains high, indicating need for enhanced protection. An elastomeric honeycomb helmet design is proposed herein as an alternative to EPS foam to improve TBI protection and be potentially reusable for multiple impacts, and tested using a twin-wire drop tower. Small-scale normal and oblique impact tests showed honeycomb had lower oblique strength than EPS foam, beneficial for diffuse TBI protection by permitting greater shear deformation and had the potential to be reusable. Honeycomb helmets were developed based on the geometry of an existing EPS foam helmet, prototypes were three-dimensional-printed with thermoplastic polyurethane and full-scale flat and oblique drop tests were performed. In flat impacts, honeycomb helmets resulted in a 34% higher peak linear acceleration and 7% lower head injury criteria (HIC15) than EPS foam helmets. In oblique tests, honeycomb helmets resulted in a 30% lower HIC15 and 40% lower peak rotational acceleration compared to EPS foam helmets. This new helmet design has the potential to reduce the risk of TBI in a bicycle accident, and as such, reduce its social and economic burden. Also, the honeycomb design showed potential to be effective for repetitive impact events without the need for replacement, offering benefits to consumers.
Collapse
Affiliation(s)
- Annie R A King
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Jennifer Rovt
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Oren E Petel
- Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bosco Yu
- Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada; Department of Materials Science and Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - Cheryl E Quenneville
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada; Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| |
Collapse
|
6
|
Fournier M, Bailly N, Schäuble A, Petit Y. Head impact kinematics and injury risks during E-scooter collisions against a curb. Heliyon 2023; 9:e19254. [PMID: 37662814 PMCID: PMC10474420 DOI: 10.1016/j.heliyon.2023.e19254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/02/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
E-scooters as a mode of transportation is rapidly growing in popularity. This study evaluates head impact conditions and injury risk associated with E-scooter crashes. A multibody model of E-scooter falls induced by wheel-curb collision was built and compared with an experimental E-scooter crash test. A total of 162 crash scenarios were simulated to assess the effect of fall conditions (E-scooter initial speed and inclination, obstacle orientation, and user size) on the head impact kinematics. The forehead hit the ground first in 44% of simulations. The average tangential and normal impact speeds were 3.5 m/s and 4.8 m/s respectively. Nearly 100% of simulations identified a risk of concussion (linear acceleration peak >82 g and rotational acceleration peak >6383 rad/s2) and 90% of simulations suggested a risk of severe head injuries (HIC>700). This work provides preliminary data useful for the assessment and design of protective gears.
Collapse
Affiliation(s)
- Marion Fournier
- École de technologie supérieure, 1100 Rue Notre Dame O, Montréal, QC, H3C 1K3, Canada
- Research Center, CIUSSS Nord de L’île de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- ILab-Spine: International Laboratory on Spine Imaging and Biomechanics, France
| | - Nicolas Bailly
- Univ Gustave Eiffel, LBA, France, Bd Pierre Dramard, 13015, Marseille, France
- ILab-Spine: International Laboratory on Spine Imaging and Biomechanics, France
| | - Andreas Schäuble
- DEKRA Automobil GmbH, AG5 Unfallforschung Accident Research, HQ Stuttgart, Handwerkstraße 15, 70565, Stuttgart, Germany
| | - Yvan Petit
- École de technologie supérieure, 1100 Rue Notre Dame O, Montréal, QC, H3C 1K3, Canada
- Research Center, CIUSSS Nord de L’île de Montréal, 5400 Boul Gouin O, Montréal, QC, H4J 1C5, Canada
- Univ Gustave Eiffel, LBA, France, Bd Pierre Dramard, 13015, Marseille, France
- ILab-Spine: International Laboratory on Spine Imaging and Biomechanics, France
| |
Collapse
|
7
|
Bottlang M, DiGiacomo G, Tsai S, Madey S. Effect of helmet design on impact performance of industrial safety helmets. Heliyon 2022; 8:e09962. [PMID: 35982843 PMCID: PMC9379520 DOI: 10.1016/j.heliyon.2022.e09962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/15/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022] Open
|
8
|
Bonin SJ, DeMarco AL, Siegmund GP. The Effect of MIPS, Headform Condition, and Impact Orientation on Headform Kinematics Across a Range of Impact Speeds During Oblique Bicycle Helmet Impacts. Ann Biomed Eng 2022; 50:860-870. [PMID: 35441268 DOI: 10.1007/s10439-022-02961-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/28/2022] [Indexed: 01/25/2023]
Abstract
Bicycle helmets are designed to attenuate both the linear and rotational response of the head during an oblique impact. Here we sought to quantify how the effectiveness of one popular rotation-attenuating system (MIPS) varied across 3 test headform conditions (bare, covered in stockings, and hair), 3 oblique impact orientations, and 4 impact speeds. We conducted 72 freefall drop tests of a single helmet model with and without MIPS onto a 45° angled anvil and measured the peak linear (PLA) and angular acceleration (PAA) and computed the angular velocity change (PAV) and brain injury criterion (BrIC). Across all headform conditions, MIPS reduced PAA and PAV by 38.2 and 33.2% respectively during X-axis rotation, 47.4 and 38.1% respectively during Y-axis rotation, and 22.9 and 20.5% during a combined ZY-axis rotation. Across all impact orientations, PAA was reduced by 39% and PAV by 32.4% with the bare headform while adding stockings reduced PAA and PAV by 41.6 and 36% respectively and the hair condition reduced PAA and PAV by 30.2 and 24.4% respectively. In addition, our data reveal the importance of using consistent headform conditions when evaluating the effect of helmet systems designed to attenuate head rotations during oblique impacts.
Collapse
Affiliation(s)
- Stephanie J Bonin
- MEA Forensic Engineers & Scientists, 23281 Vista Grande Drive, Laguna Hills, CA, 92653, USA. .,Biosystems and Ag. Engr., University of Kentucky, Lexington, KY, USA.
| | | | - Gunter P Siegmund
- MEA Forensic Engineers & Scientists, 23281 Vista Grande Drive, Laguna Hills, CA, 92653, USA.,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Mojahed A, Abderezaei J, Ozkaya E, Bergman L, Vakakis A, Kurt M. Predictive Helmet Optimization Framework Based on Reduced-Order Modeling of the Brain Dynamics. Ann Biomed Eng 2022; 50:1661-1673. [DOI: 10.1007/s10439-022-02908-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 01/01/2022] [Indexed: 11/25/2022]
|
10
|
York S, Edwards ED, Jesunathadas M, Landry T, Piland SG, Plaisted TA, Kleinberger M, Gould TE. Influence of Friction at the Head-Helmet Interface on Advanced Combat Helmet (ACH) Blunt Impact Kinematic Performance. Mil Med 2022; 188:usab547. [PMID: 35043211 DOI: 10.1093/milmed/usab547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The purpose of this study was to compare the rotational blunt impact performance of an anthropomorphic test device (ATD: male 50% Hybrid III head and neck) headform donning an Advanced Combat Helmet (ACH) between conditions in which the coefficient of static friction (μs) at the head-to-helmet pad interface varied. MATERIALS AND METHODS Two ACHs (size large) were used in this study and friction was varied using polytetrafluoroethylene (PTFE), human hair, skullcap, and the native vinyl skin of the ATD. A condition in which hook and loop material adhered the headform to the liner system was also tested, resulting in a total of five conditions: PTFE, Human Hair, Skullcap, Vinyl, and Hook. Blunt impact tests with each helmet in each of the five conditions were conducted on a pneumatic linear impactor at 4.3 m/s. The ATD donning the ACH was impacted in seven locations (Crown, Front, Rear, Left Side, Right Side, Left Nape, and Right Nape). The peak resultant angular acceleration (PAA), velocity (PAV), and the Diffuse Axonal Multi-Axis, General Evaluation (DAMAGE) metric were compared between conditions. RESULTS No pairwise differences were observed between conditions for PAA. A positive correlation was observed between mean μs and PAA at the Front (τ = 0.28; P = .044) and Rear (τ = 0.31; P = .024) impact locations. The Hook condition had a mean PAV value that was often less than the other conditions (P ≤ .024). A positive correlation was observed between mean μs and PAV at the Front (τ = 0.32; P = .019) and Right Side (τ = 0.57; P < .001) locations. The Hook condition tended to have the lowest DAMAGE value compared to the other conditions (P ≤ .032). A positive correlation was observed between the mean μs and DAMAGE at the Rear (τ = 0.60; P < .001) location. A negative correlation was observed at the Left Side (τ = -0.28; P = .040), Right Side (τ = -0.58; P < .001) and Left Nape (τ = -0.56; P < .001) locations. CONCLUSIONS The results of this study indicate that at some impact locations kinematic responses can vary as a function of the friction at the head-to-helmet pad interface. However, a reduction in the coupling of the head-helmet pad interface did not consistently reduce head angular kinematics or measures of brain strain across impact locations. Thus, for the ACH during collision-type impacts, impact location as opposed to μs seems to have a greater influence on head kinematics and rotational-based measures of brain strain.
Collapse
|
11
|
Abderezaei J, Rezayaraghi F, Kain B, Menichetti A, Kurt M. An Overview of the Effectiveness of Bicycle Helmet Designs in Impact Testing. Front Bioeng Biotechnol 2021; 9:718407. [PMID: 34646816 PMCID: PMC8503260 DOI: 10.3389/fbioe.2021.718407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Cycling accidents are the leading cause of sports-related head injuries in the US. Conventional bicycle helmets typically consist of polycarbonate shell over Expanded Polystyrene (EPS) foam and are tested with drop tests to evaluate a helmet’s ability to reduce head kinematics. Within the last decade, novel helmet technologies have been proposed to mitigate brain injuries during bicycle accidents, which necessitates the evaluation of their effectiveness in impact testing as compared to conventional helmets. In this paper, we reviewed the literature to collect and analyze the kinematic data of drop test experiments carried out on helmets with different technologies. In order to provide a fair comparison across different types of tests, we clustered the datasets with respect to their normal impact velocities, impact angular momentum, and the type of neck apparatus. When we analyzed the data based on impact velocity and angular momentum clusters, we found that the bicycle helmets that used rotation damping based technology, namely MIPS, had significantly lower peak rotational acceleration (PRA) and Generalized Acceleration Model for Brain Injury Threshold (GAMBIT) as compared to the conventional EPS liner helmets (p < 0.01). SPIN helmets had a superior performance in PRA compared to conventional helmets (p < 0.05) in the impact angular momentum clustered group, but not in the impact-velocity clustered comparisons. We also analyzed other recently developed helmets that primarily use collapsible structures in their liners, such as WaveCel and Koroyd. In both of the impact velocity and angular momentum groups, helmets based on the WaveCel technology had significantly lower peak linear acceleration (PLA), PRA, and GAMBIT at low impact velocities as compared to the conventional helmets, respectively (p < 0.05). The protective gear with the airbag technology, namely Hövding, also performed significantly better compared to the conventional helmets in the analyzed kinematic-based injury metrics (p < 0.001), possibly due to its advantage in helmet size and stiffness. We also observed that the differences in the kinematic datasets strongly depend on the type of neck apparatus. Our findings highlight the importance and benefits of developing new technologies and impact testing standards for bicycle helmet designs for better prevention of traumatic brain injury (TBI).
Collapse
Affiliation(s)
- Javid Abderezaei
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Fargol Rezayaraghi
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Brigit Kain
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Andrea Menichetti
- Biomechanics Section, Mechanical Engineering Department, KU Leuven, Leuven, Belgium
| | - Mehmet Kurt
- Department of Mechanical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States.,BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, NewYork, NY, United States
| |
Collapse
|
12
|
Yount DL, Jesunathadas M, Plaisted TE, York S, Edwards ED, Gould TE, Chatham LS, Piland SG. Performance of a novel football helmet technology on head impact kinematics. SPORTS ENGINEERING 2021. [DOI: 10.1007/s12283-021-00355-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
DiGiacomo G, Tsai S, Bottlang M. Impact Performance Comparison of Advanced Snow Sport Helmets with Dedicated Rotation-Damping Systems. Ann Biomed Eng 2021; 49:2805-2813. [PMID: 33528683 PMCID: PMC8510952 DOI: 10.1007/s10439-021-02723-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023]
Abstract
Rotational acceleration of the head is a principal cause of concussion and traumatic brain injury. Several rotation-damping systems for helmets have been introduced to better protect the brain from rotational forces. But these systems have not been evaluated in snow sport helmets. This study investigated two snow sport helmets with different rotation-damping systems, termed MIPS and WaveCel, in comparison to a standard snow sport helmet without a rotation-damping system. Impact performance was evaluated by vertical drops of a helmeted Hybrid III head and neck onto an oblique anvil. Six impact conditions were tested, comprising two impact speeds of 4.8 and 6.2 m/s, and three impact locations. Helmet performance was quantified in terms of the linear and rotational kinematics, and the predicted probability of concussion. Both rotation-damping systems significantly reduced rotational acceleration under all six impact conditions compared to the standard helmet, but their effect on linear acceleration was less consistent. The highest probability of concussion for the standard helmet was 89%, while helmets with MIPS and WaveCel systems exhibited a maximal probability of concussion of 67 and 7%, respectively. In conclusion, rotation-damping systems of advanced snow sport helmets can significantly reduce rotational head acceleration and the associated concussion risk.
Collapse
Affiliation(s)
- Gina DiGiacomo
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, USA
| | - Stanley Tsai
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, USA
| | - Michael Bottlang
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, USA.
- Legacy Biomechanics Laboratory, 1225 NE 2nd Ave, Portland, OR, 97215, USA.
| |
Collapse
|
14
|
Laboratory Reconstructions of Real-world Bicycle Helmet Impacts. Ann Biomed Eng 2021; 49:2827-2835. [PMID: 34545462 PMCID: PMC8452122 DOI: 10.1007/s10439-021-02860-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023]
Abstract
The best way to prevent severe head injury when cycling is to wear a bike helmet. To reduce the rate of head injury in cycling, knowing the nature of real-world head impacts is crucial. Reverse engineering real-world bike helmet impacts in a laboratory setting is an alternative to measuring head impacts directly. This study aims to quantify bike helmet damage using computed tomography (CT) and reconstruct real-world damage with a custom, oblique test rig to recreate real-world impacts. Damaged helmets were borrowed from a helmet manufacturer who runs a helmet warranty program. Each helmet was CT-scanned and the damage metrics were quantified. Helmets of the same model and size were used for in-lab reconstructions of the damaged helmets where normal velocity, tangential velocity, peak linear acceleration (PLA) and peak rotational velocity (PRV) could be measured. The damage metrics of the in-lab dropped helmets were quantified using the same CT scanning process. For each case, a multiple linear regression (MLR) equation was created to define a relationship between the quantified damage metrics of the in-lab tested helmets and the associated measured impact velocities and kinematics. These equations were used to predict the impact kinematics and velocities from the corresponding real-world damaged helmet based on the damage metrics from the original damaged helmet. Average normal velocity (3.5 m/s), tangential velocity (2.5 m/s), PLA (108.0 g), PRV (15.7 rad/s) were calculated based on a sample of 23 helmets. Within these head impact cases, five notes reported a concussion. The difference between the average PLA and PRV for concussive cases versus other impacts were not significantly different, although the average impact kinematics for the concussive cases (PLA = 111.4 g, PRV = 18.5 rad/s) were slightly higher than the remaining cases (PLA = 107.1 g, PRV = 15.0 rad/s). The concussive cases were not indicative of high magnitude impact kinematics.
Collapse
|
15
|
Zouzias D, De Bruyne G, Ni Annaidh A, Trotta A, Ivens J. The effect of the scalp on the effectiveness of bicycle helmets' anti-rotational acceleration technologies. TRAFFIC INJURY PREVENTION 2020; 22:51-56. [PMID: 33252249 DOI: 10.1080/15389588.2020.1841179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 06/12/2023]
Abstract
OBJECTIVE Medical data has lead to the common understanding that bicycle helmets need to be improved to better protect against brain injuries resulting from rotational acceleration. Although many different technologies exist for reducing rotational acceleration during impacts, the lack of an official testing standard means that their evaluation is based on customized set-ups that may differ and not represent real accident conditions. Previously, the authors have shown that scalp tissue plays an important role during helmet testing by absorbing energy and creating a low friction interface between head and helmet, thus reducing rotational accelerations and velocities. However, no published study has yet examined the effectiveness of anti-rotational helmet technologies in the presence of a biofidelic scalp layer. The objective of this study is to address this gap. METHODS Three different commercially available helmet models, each one equipped with a different technology, were tested in the presence of scalp tissue, in two different scenarios; with and without the technology present. The effectiveness of each of these technologies is already documented in other studies, but only in the absence of a biofidelic scalp layer. Tests were carried out using HIII headform with porcine scalp attached to the outmost layer. Motion tracking was used to compare the impact kinematics of each helmet model in both scenarios. RESULTS Results showed that when a biofidelic scalp layer is present, there is no statistical difference between helmet models with and without the anti-rotational technology in terms of rotational acceleration, velocity, relative rotation, impact duration and injury risk. CONCLUSIONS Results suggest that the presence of the scalp can obscure the functionality of anti-rotational acceleration technologies. This could indicate that the effectiveness of technologies tested in previous studies, which have not tested anti-rotational acceleration technologies in the presence of a realistic scalp layer, may exaggerate the contribution of such technologies if compared with a more biofidelic set-up. The study supports the fact that headforms should be better designed by incorporating artificial skin layers that can better imitate scalp's behavior and, in addition, provides insights for the design of technologies against rotational acceleration.
Collapse
Affiliation(s)
- Dimitris Zouzias
- Department of Materials Engineering, KU Leuven Campus De Nayer, Sint-Katelijne Waver, Belgium
- LazerSport, Antwerp, Belgium
| | - Guido De Bruyne
- LazerSport, Antwerp, Belgium
- Faculty of Design Sciences, Product Development, University of Antwerp, Antwerp, Belgium
| | - Aisling Ni Annaidh
- School of Mechanical & Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Charles Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Antonia Trotta
- School of Mechanical & Materials Engineering, University College Dublin, Dublin, Ireland
| | - Jan Ivens
- Department of Materials Engineering, KU Leuven Campus De Nayer, Sint-Katelijne Waver, Belgium
| |
Collapse
|
16
|
Describing headform pose and impact location for blunt impact testing. J Biomech 2020; 109:109923. [PMID: 32807308 DOI: 10.1016/j.jbiomech.2020.109923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 11/22/2022]
Abstract
Reproduction of anthropomorphic test device (ATD) head impact test methods is a critical element needed to develop guidance and technologies that reduce the risk for brain injury in sport. However, there does not appear to be a consensus for reporting ATD pose and impact location for industry and researchers to follow. Thus, the purpose of this article is to explore the various methods used to report impact location and ATD head pose for sport-related head impact testing and provide recommendations for standardizing these descriptions. A database search and exclusion process identified 137 articles that met the review criteria. Only 4 of the 137 articles provided a description similar to the method we propose to describe ATD pose and impact location. We thus propose a method to unambiguously convey the impact location and pose of the ATD based on the sequence, quantifiable design, and articulation of ATD mount joints. This reporting method has been used to a limited extent in the literature, but we assert that adoption of this method will help to standardize the reporting of ATD headform pose and impact location as well as aid in the replication of impact test protocols across laboratories.
Collapse
|
17
|
|
18
|
Equestrian Helmet Standards: Do They Represent Real-World Accident Conditions? Ann Biomed Eng 2020; 48:2247-2267. [PMID: 32399843 DOI: 10.1007/s10439-020-02531-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/05/2020] [Indexed: 10/24/2022]
Abstract
The use of helmets in equestrian sports has reduced the occurrence of traumatic brain injuries although, despite improvements to helmets, concussion remains a common injury. Currently, equestrian helmets are designed to pass certification standards involving a linear drop test to a rigid surface, while most concussions in equestrian sports result from oblique impacts to a compliant surface. The purpose of this study was to: (1) Compare the head kinematics and brain tissue response of the current equestrian helmet standard (EN1) and proposed standard EN13087-11 (EN2) to those associated with reconstructions of real-world equestrian concussion accidents. (2) Design a test protocol that would reflect the real-world conditions associated with concussion in equestrian sports. (3) To assess the protective capacity of an equestrian helmet using the flat turf and 45° turf proposed test protocols. Results for reconstructions of real-world concussions were obtained from a previous study (Clark et al. in J. Sci. Med. Sport 23:222-236, 2020). Using one jockey helmet model, impact tests were conducted according to the EN1 and EN2 protocols. Additionally, helmeted and unhelmeted tests were conducted at 5.9 and 6.0 m/s on to flat turf and 45° turf anvils for front, front-boss and rear-boss impact locations. The results demonstrated EN1 and EN2 both had higher magnitude accelerations and shorter duration impacts than reconstructed real-world concussive impacts. Impacts to turf anvils, on the other hand, produced similar head kinematics compared to the reconstructed real-world concussive impacts. Additionally, this study demonstrated that helmeted impacts significantly decreased rotational kinematics and brain tissue response below what is associated with unhelmeted impacts for oblique falls. However, the head kinematics and brain tissue response associated with these helmeted falls were consistent with concussion, suggesting that scope exists to improve the capacity of equestrian helmets to protect against concussion.
Collapse
|
19
|
Bottlang M, Rouhier A, Tsai S, Gregoire J, Madey SM. Impact Performance Comparison of Advanced Bicycle Helmets with Dedicated Rotation-Damping Systems. Ann Biomed Eng 2020; 48:68-78. [PMID: 31342338 PMCID: PMC6928098 DOI: 10.1007/s10439-019-02328-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/17/2019] [Indexed: 01/07/2023]
Abstract
Bicycle helmets effectively mitigate skull fractures, but there is increasing concern on their effectiveness in mitigating traumatic brain injury (TBI) caused by rotational head acceleration. Bicycle falls typically involve oblique impacts that induce rotational head acceleration. Recently, bicycle helmet with dedicated rotation-damping systems have been introduced to mitigate rotational head acceleration. This study investigated the impact performance of four helmets with different rotation-damping systems in comparison to a standard bicycle helmet without a rotation-damping system. Impact performance was tested under oblique impact conditions by vertical drops of a helmeted headform onto an oblique anvil at 6.2 m/s impact speed. Helmet performance was quantified in terms of headform kinematics, corresponding TBI risk, and resulting brain strain. Of the four rotation-damping systems, two systems significantly reduced rotational head acceleration, TBI risk, and brain strain compared to the standard bicycle helmet. One system had no significant effect on impact performance compared to control helmets, and one system significantly increase linear and rotational head acceleration by 62 and 61%, respectively. In conclusion, results revealed significant differences in the effectiveness between rotation-damping systems, whereby some rotation-damping systems significantly reduced rotational head acceleration and associated TBI risk.
Collapse
Affiliation(s)
- Michael Bottlang
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, USA.
| | - Alexandra Rouhier
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, USA
| | - Stanley Tsai
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, USA
| | - Jordan Gregoire
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, USA
| | - Steven M Madey
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, USA
| |
Collapse
|
20
|
Deck C, Bourdet N, Meyer F, Willinger R. Protection performance of bicycle helmets. JOURNAL OF SAFETY RESEARCH 2019; 71:67-77. [PMID: 31862046 DOI: 10.1016/j.jsr.2019.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/19/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The evaluation of head protection systems needs proper knowledge of the head impact conditions in terms of impact speed and angle, as well as a realistic estimation of brain tolerance limits. In current bicycle helmet test procedures, both of these aspects should be improved. METHOD The present paper suggests a bicycle helmet evaluation methodology based on realistic impact conditions and consideration of tissue level brain injury risk, in addition to well known headform kinematic parameters. The method is then applied to a set of 32 existing helmets, leading to a total of 576 experimental impact tests followed by 576 numerical simulations of the brain response. RESULTS It is shown that the most critical impacts are the linear-lateral ones as well as the oblique impact leading to rotation around the vertical axis (ZRot), leading both to around 50% risks of moderate neurological injuries. Based on this test method, the study enables us to compare the protection capability of a given helmet and eventually to compare helmets via a dedicated rating system.
Collapse
Affiliation(s)
- Caroline Deck
- University of Strasbourg, Icube, UMR 7357 Multiscale Materials and Biomechanics, 2 rue Boussingault, Strasbourg 67000, France.
| | - Nicolas Bourdet
- University of Strasbourg, Icube, UMR 7357 Multiscale Materials and Biomechanics, 2 rue Boussingault, Strasbourg 67000, France.
| | - Frank Meyer
- University of Strasbourg, Icube, UMR 7357 Multiscale Materials and Biomechanics, 2 rue Boussingault, Strasbourg 67000, France.
| | - Rémy Willinger
- University of Strasbourg, Icube, UMR 7357 Multiscale Materials and Biomechanics, 2 rue Boussingault, Strasbourg 67000, France.
| |
Collapse
|
21
|
DeMarco AL, Chimich DD, Bonin SJ, Siegmund GP. Impact Performance of Certified Bicycle Helmets Below, On and Above the Test Line. Ann Biomed Eng 2019; 48:58-67. [PMID: 31768795 DOI: 10.1007/s10439-019-02422-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/19/2019] [Indexed: 11/28/2022]
Abstract
Bicycle helmets are effective in reducing many head injuries, but their effectiveness could be improved if they provided protection over a larger range of impact locations. We sought to quantify the impact performance of 12 helmet models below, on and above the CPSC prescribed test line. All helmets were drop tested at an impact speed of 6.2 m/s. One helmet adequately attenuated impacts below the CPSC limit of 300 g for all impact locations tested below, on and above the test line. Five helmets met this limit for impacts on or above the test line as required in the CPSC standard, but failed to meet it below the test line (not required in the standard). The remaining six helmets failed to meet the criterion on and/or above the test line. Our findings indicate that consumers should not assume that all portions of a helmet provide adequate and equivalent protection. Our findings also suggest that the CPSC's current system of self-regulation and self-testing by manufacturers does not prevent substandard bicycle helmets from being sold. Public availability of manufacturers' impact test data, an independent testing panel, and/or a wider distribution of impact locations are needed to better protect bicyclists.
Collapse
Affiliation(s)
- Alyssa L DeMarco
- MEA Forensic Engineers & Scientists, 11-11151 Horseshoe Way, Richmond, BC, V7A 4S5, Canada
| | - Dennis D Chimich
- MEA Forensic Engineers & Scientists, 11-11151 Horseshoe Way, Richmond, BC, V7A 4S5, Canada
| | - Stephanie J Bonin
- MEA Forensic Engineers & Scientists, 23281 Vista Grande Drive, Laguna Hills, CA, 92653, USA
| | - Gunter P Siegmund
- MEA Forensic Engineers & Scientists, 11-11151 Horseshoe Way, Richmond, BC, V7A 4S5, Canada. .,School of Kinesiology, University of British Columbia, 6081 University Blvd, Vancouver, BC, V6T 1Z1, Canada.
| |
Collapse
|
22
|
Bland ML, McNally C, Zuby DS, Mueller BC, Rowson S. Development of the STAR Evaluation System for Assessing Bicycle Helmet Protective Performance. Ann Biomed Eng 2019; 48:47-57. [PMID: 31372859 PMCID: PMC6928078 DOI: 10.1007/s10439-019-02330-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/18/2019] [Indexed: 11/29/2022]
Abstract
Cycling is a leading cause of mild traumatic brain injury in the US. While bicycle helmets help protect cyclists who crash, limited biomechanical data exist differentiating helmet protective capabilities. This paper describes the development of a bicycle helmet evaluation scheme based in real-world cyclist accidents and brain injury mechanisms. Thirty helmet models were subjected to oblique impacts at six helmet locations and two impact velocities. The summation of tests for the analysis of risk (STAR) equation, which condenses helmet performance from a range of tests into a single value, was used to summarize measured linear and rotational head kinematics in the context of concussion risk. STAR values varied between helmets (10.9–25.3), with lower values representing superior protection. Road helmets produced lower STAR values than urban helmets. Helmets with slip planes produced lower STAR values than helmets without. This bicycle helmet evaluation protocol can educate consumers on the relative impact performance of various helmets and stimulate safer helmet design.
Collapse
Affiliation(s)
- Megan L Bland
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Center for Injury Biomechanics, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA, 24061, USA.
| | - Craig McNally
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Center for Injury Biomechanics, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA, 24061, USA
| | - David S Zuby
- Insurance Institute for Highway Safety, 988 Dairy Road, Ruckersville, VA, 22968, USA
| | - Becky C Mueller
- Insurance Institute for Highway Safety, 988 Dairy Road, Ruckersville, VA, 22968, USA
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Center for Injury Biomechanics, 440 Kelly Hall, 325 Stanger Street, Blacksburg, VA, 24061, USA
| |
Collapse
|
23
|
Bliven E, Rouhier A, Tsai S, Willinger R, Bourdet N, Deck C, Madey SM, Bottlang M. Evaluation of a novel bicycle helmet concept in oblique impact testing. ACCIDENT; ANALYSIS AND PREVENTION 2019; 124:58-65. [PMID: 30634159 PMCID: PMC6743977 DOI: 10.1016/j.aap.2018.12.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 11/27/2018] [Accepted: 12/21/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND A novel bicycle helmet concept has been developed to mitigate rotational head acceleration, which is a predominant mechanism of traumatic brain injury (TBI). This WAVECEL concept employs a collapsible cellular structure that is recessed within the helmet to provide a rotational suspension. This cellular concept differs from other bicycle helmet technologies for mitigation of rotational head acceleration, such as the commercially available Multi-Directional Impact Protection System (MIPS) technology which employs a slip liner to permit sliding between the helmet and the head during impact. This study quantified the efficacy of both, the WAVECEL cellular concept, and a MIPS helmet, in direct comparison to a traditional bicycle helmet made of rigid expanded polystyrene (EPS). METHODS Three bicycle helmet types were subjected to oblique impacts in guided vertical drop tests onto an angled anvil: traditional EPS helmets (CONTROL group); helmets with a MIPS slip liner (SLIP group); and helmets with a WAVECEL cellular structure (CELL group). Helmet performance was evaluated using 4.8 m/s impacts onto anvils angled at 30°, 45°, and 60° from the horizontal plane. In addition, helmet performance was tested at a faster speed of 6.2 m/s onto the 45° anvil. Five helmets were tested under each of the four impact conditions for each of the three groups, requiring a total of 60 helmets. Headform kinematics were acquired and used to calculate an injury risk criterion for Abbreviated Injury Score (AIS) 2 brain injury. RESULTS Linear acceleration of the headform remained below 90 g and was not associated with the risk of skull fracture in any impact scenario and helmet type. Headform rotational acceleration in the CONTROL group was highest for 6.2 m/s impacts onto the 45° anvil (7.2 ± 0.6 krad/s2). In this impact scenario, SLIP helmets and CELL helmets reduced rotational acceleration by 22% (p = 0003) and 73% (p < 0.001), respectively, compared to CONTROL helmets. The CONTROL group had the highest AIS 2 brain injury risk of 59 ± 8% for 6.2 m/s impacts onto the 45° anvil. In this impact scenario, SLIP helmets and CELL helmets reduced the AIS 2 brain injury risk to 34.2% (p = 0.001) and 1.2% (p < 0.001), respectively, compared to CONTROL helmets. DISCUSSION Results of this study are limited to a narrow range of impact conditions, but demonstrated the potential that rotational acceleration and the associated brain injury risk can be significantly reduced by the cellular WAVECEL concept or a MIPS slip liner. Results obtained under specific impact angles and impact velocities indicated performance differences between these mechanisms. These differences emphasize the need for continued research and development efforts toward helmet technologies that further improve protection from brain injury over a wide range a realistic impact parameters.
Collapse
Affiliation(s)
- Emily Bliven
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, United States
| | - Alexandra Rouhier
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, United States
| | - Stanley Tsai
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, United States
| | - Rémy Willinger
- Institut de Mécanique des Fluides et des Solides, Université de Strasbourg, France
| | - Nicolas Bourdet
- Institut de Mécanique des Fluides et des Solides, Université de Strasbourg, France
| | - Caroline Deck
- Institut de Mécanique des Fluides et des Solides, Université de Strasbourg, France
| | - Steven M Madey
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, United States
| | - Michael Bottlang
- Biomechanics Laboratory, Legacy Research Institute, Portland, OR, 97232, United States.
| |
Collapse
|
24
|
Yu HY, Dennison C. A laboratory study on effects of cycling helmet fit on biomechanical measures associated with head and neck injury and dynamic helmet retention. J Biomech Eng 2018; 141:2694851. [PMID: 30098148 DOI: 10.1115/1.4040944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Indexed: 11/08/2022]
Abstract
There is a scant biomechanical literature that tests, in a laboratory setting, whether or not determinants of helmet fit affect biomechanical parameters associated with injury. Using conventional cycling helmets and repeatable models of the human head and neck, integrated into a guided drop impact experiment at speeds up to 6m/s, this study tests the hypothesis that fit affects head kinematics, neck kinetics, and the extent to which the helmet moves relative to the underlying head (an indicator of helmet positional stability). While there were a small subset of cases where head kinematics were statistically significantly altered by fit, when viewed as a whole our measures of head kinematics suggest that fit does not systematically alter kinematics of the head secondary to impact. Similarly, when viewed as a whole our data suggests that fit does not systematically alter resultant neck compression and resultant moment and associated biomechanical measures. Our data suggests that backward fit helmets exhibit the worst dynamic stability, in particular when the torso is impacted before the helmeted head is impacted, suggesting that the typical certification method of dynamical loading of a helmet to quantify retention may not be representative of highly plausible cycling incident scenarios where impact forces are first applied to the torso leading to loading of the neck prior to the head. Further study is warranted so that factors of fit that affect injury outcome are uncovered in both laboratory and real world settings.
Collapse
Affiliation(s)
- Henry Y Yu
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton AB Canada T6G 1H9
| | - Christopher Dennison
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton AB Canada T6G 1H9
| |
Collapse
|