1
|
Karnibad M, Sharabi M, Lavon K, Morany A, Hamdan A, Haj-Ali R. The effect of the fibrocalcific pathological process on aortic valve stenosis in female patients: a finite element study. Biomed Phys Eng Express 2022; 8. [PMID: 35120335 DOI: 10.1088/2057-1976/ac5223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 11/11/2022]
Abstract
Calcific aortic valve disease (CAVD) is the most common heart valvular disease in the developed world. Most of the relevant research has been sex-blind, ignoring sex-related biological variables and thus under-appreciate sex differences. However, females present pronounced fibrosis for the same aortic stenosis (AS) severity compared with males, who exhibit more calcification. Herein, we present a computational model of fibrocalcific AV, aiming to investigate its effect on AS development. A parametric study was conducted to explore the influence of the total collagen fiber volume and its architecture on the aortic valve area (AVA). Towards that goal, computational models were generated for three females with stenotic AVs and different volumes of calcium. We have tested the influence of fibrosis on various parameters as fiber architecture, fibrosis location, and transvalvular pressure. We found that increased fiber volume with a low calcium volume could actively contribute to AS and reduce the AVA similarly to high calcium volume. Thus, the computed AVAs for our fibrocalcific models were 0.94 and 0.84 cm2and the clinical (Echo) AVAs were 0.82 and 0.8 cm2. For the heavily calcified model, the computed AVA was 0.8 cm2and the clinical AVA was 0.73 cm2. The proposed models demonstrated how collagen thickening influence the fibrocalcific-AS process in female patients. These models can assist in the clinical decision-making process and treatment development in valve therapy for female patients.
Collapse
Affiliation(s)
- Maya Karnibad
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Mirit Sharabi
- Ariel University, Department of Mechanical engineering and Mechatronics, Ariel, 407000, ISRAEL
| | - Karin Lavon
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Adi Morany
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| | - Ashraf Hamdan
- Tel Aviv University, Department of Cardiology, Rabin Medical Center, Tel Aviv, 69978, ISRAEL
| | - Rami Haj-Ali
- Tel Aviv University, School of Mechanical Engineering, Tel Aviv, 69978, ISRAEL
| |
Collapse
|
2
|
Sadrabadi MS, Eskandari M, Feigenbaum HP, Arzani A. Local and global growth and remodeling in calcific aortic valve disease and aging. J Biomech 2021; 128:110773. [PMID: 34628201 DOI: 10.1016/j.jbiomech.2021.110773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/31/2021] [Accepted: 09/22/2021] [Indexed: 11/19/2022]
Abstract
Aging and calcific aortic valve disease (CAVD) are the main factors leading to aortic stenosis. Both processes are accompanied by growth and remodeling pathways that play a crucial role in aortic valve pathophysiology. Herein, a computational growth and remodeling (G&R) framework was developed to investigate the effects of aging and calcification on aortic valve dynamics. Particularly, an algorithm was developed to couple the global growth and stiffening of the aortic valve due to aging and the local growth and stiffening due to calcification with the aortic valve transient dynamics. The aortic valve dynamics during baseline were validated with available data in the literature. Subsequently, the changes in aortic valve dynamic patterns during aging and CAVD progression were studied. The results revealed the patterns in geometric orifice area reduction and an increase in the valve stress during local and global growth and remodeling of the aortic valve. The proposed algorithm provides a framework to couple mechanobiology models of disease growth with tissue-scale transient structural mechanics models to study the biomechanical changes during cardiovascular disease growth and aging.
Collapse
Affiliation(s)
| | - Mona Eskandari
- Department of Mechanical Engineering, University of California Riverside, Riverside, CA, USA; BREATHE Center at the School of Medicine, University of California Riverside, Riverside, CA, USA; Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | - Heidi P Feigenbaum
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA
| | - Amirhossein Arzani
- Department of Mechanical Engineering, Northern Arizona University, Flagstaff, AZ, USA.
| |
Collapse
|
3
|
Yan W, Li J, Wang W, Wei L, Wang S. A Fluid-Structure Interaction Study of Different Bicuspid Aortic Valve Phenotypes Throughout the Cardiac Cycle. Front Physiol 2021; 12:716015. [PMID: 34381379 PMCID: PMC8350765 DOI: 10.3389/fphys.2021.716015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
The bicuspid aortic valve (BAV) is a congenital malformation of the aortic valve with a variety of structural features. The current research on BAV mainly focuses on the systolic phase, while ignoring the diastolic hemodynamic characteristics and valve mechanics. The purpose of this study is to compare the differences in hemodynamics and mechanical properties of BAV with different phenotypes throughout the cardiac cycle by means of numerical simulation. Based on physiological anatomy, we established an idealized tricuspid aortic valve (TAV) model and six phenotypes of BAV models (including Type 0 a-p, Type 0 lat, Type 1 L-R, Type 1 N-L, Type 1 R-N, and Type 2), and simulated the dynamic changes of the aortic valve during the cardiac cycle using the fluid-structure interaction method. The morphology of the leaflets, hemodynamic parameters, flow patterns, and strain were analyzed. Compared with TAV, the cardiac output and effective orifice area of different BAV phenotypes decreased certain degree, along with the peak velocity and mean pressure difference increased both. Among all BAV models, Type 2 exhibited the worst hemodynamic performance. During the systole, obvious asymmetric flow field was observed in BAV aorta, which was related to the orientation of BAV. Higher strain was generated in diastole for BAV models. The findings of this study suggests specific differences in the hemodynamic characteristics and valve mechanics of different BAV phenotypes, including different severity of stenosis, flow patterns, and leaflet strain, which may be critical for prediction of other subsequent aortic diseases and differential treatment strategy for certain BAV phenotype.
Collapse
Affiliation(s)
- Wentao Yan
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Jianming Li
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
| | - Wenshuo Wang
- Department of Vascular Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Lai Wei
- Department of Vascular Surgery, Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shengzhang Wang
- Department of Aeronautics and Astronautics, Fudan University, Shanghai, China
- Institute of Biomedical Engineering Technology, Academy for Engineering and Technology, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Predictors of calcification distribution in severe tricuspid aortic valve stenosis. Int J Cardiovasc Imaging 2021; 37:2791-2799. [PMID: 33877483 PMCID: PMC8390394 DOI: 10.1007/s10554-021-02248-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/14/2021] [Indexed: 11/01/2022]
Abstract
We investigated aortic valve calcification (AVC) distribution and predictors for leaflet calcification patterns in patients with severe tricuspid aortic valve stenosis undergoing transcatheter aortic valve replacement (TAVR). Patients undergoing routine multi-sliced computed tomography (MSCT) for procedural planning were enrolled. MSCT data were transferred to a dedicated workstation for evaluation (3mensio Structural Heart™, Pie Medical Imaging BV, Maastricht, The Netherlands) and analyzed. Participants were separated into asymmetrical (AC) and symmetrical (SC) leaflet calcification and potential predictors for calcification distribution were identified with univariate and multivariate regression analysis. 567 Participants with severe tricuspid AS were divided into asymmetrical (AC, n = 443; 78.1%) and symmetrical (SC, n = 124; 21.9%) AVC. In AC, the non-coronary cusp was the most calcified cusp (n = 238; 57.7%). SC is more common in females (AC/SC: 49.2% vs. 67.7%; p < 0.0001). AVC was more severe in patients with AC, who also have larger aortic root dimensions. Multivariate analysis depicted, inter alia, left ventricular outflow tract (LVOT) calcification < 25 Agatston units (OR 1.81 [1.09-3.00], p = 0.021), a mean pressure gradient < 36 mmHg (OR 1.77 [1.03-3.05], p = 0.039), and an annulo-apical angle > 67° (OR 1.68 [1.00-2.80], p = 0.049) as predictors for SC, although with only moderate predictive value. Data from this retrospective analysis indicate that SC occurs more frequently in females. The cumulative leaflet calcification burden is higher in patients with AC, who also present with larger aortic root dimensions. The predictive value for prominent calcification of different aortic valve cusps in AC patients was only low to moderate.Trial registration number: NCT01805739.
Collapse
|
5
|
Kruithof BPT, van de Pol V, Los T, Lodder K, Gourabi BM, DeRuiter MC, Goumans MJ, Ajmone Marsan N. New calcification model for intact murine aortic valves. J Mol Cell Cardiol 2021; 156:95-104. [PMID: 33744308 DOI: 10.1016/j.yjmcc.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
Calcific aortic valve disease (CAVD) is a common progressive disease of the aortic valves, for which no medical treatment exists and surgery represents currently the only therapeutic solution. The development of novel pharmacological treatments for CAVD has been hampered by the lack of suitable test-systems, which require the preservation of the complex valve structure in a mechanically and biochemical controllable system. Therefore, we aimed at establishing a model which allows the study of calcification in intact mouse aortic valves by using the Miniature Tissue Culture System (MTCS), an ex vivo flow model for whole mouse hearts. Aortic valves of wild-type mice were cultured in the MTCS and exposed to osteogenic medium (OSM, containing ascorbic acid, β-glycerophosphate and dexamethasone) or inorganic phosphates (PI). Osteogenic calcification occurred in the aortic valve leaflets that were cultured ex vivo in the presence of PI, but not of OSM. In vitro cultured mouse and human valvular interstitial cells calcified in both OSM and PI conditions, revealing in vitro-ex vivo differences. Furthermore, endochondral differentiation occurred in the aortic root of ex vivo cultured mouse hearts near the hinge of the aortic valve in both PI and OSM conditions. Dexamethasone was found to induce endochondral differentiation in the aortic root, but to inhibit calcification and the expression of osteogenic markers in the aortic leaflet, partly explaining the absence of calcification in the aortic valve cultured with OSM. The osteogenic calcifications in the aortic leaflet and the endochondral differentiation in the aortic root resemble calcifications found in human CAVD. In conclusion, we have established an ex vivo calcification model for intact wild-type murine aortic valves in which the initiation and progression of aortic valve calcification can be studied. The in vitro-ex vivo differences found in our studies underline the importance of ex vivo models to facilitate pre-clinical translational studies.
Collapse
Affiliation(s)
- Boudewijn P T Kruithof
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands; Netherlands Heart Institute, Utrecht, The Netherlands.
| | - Vera van de Pol
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tamara Los
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kirsten Lodder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Babak Mousavi Gourabi
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C DeRuiter
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nina Ajmone Marsan
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Ross procedure: What can we learn from the nonstenotic pulmonary autografts? J Thorac Cardiovasc Surg 2019; 159:e167-e168. [PMID: 31653423 DOI: 10.1016/j.jtcvs.2019.08.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/06/2023]
|