1
|
Sun J, Huang X, Chen J, Xiang R, Ke X, Lin S, Xuan W, Liu S, Cao Z, Sun L. Recent advances in deformation-assisted microfluidic cell sorting technologies. Analyst 2023; 148:4922-4938. [PMID: 37743834 DOI: 10.1039/d3an01150j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Cell sorting is an essential prerequisite for cell research and has great value in life science and clinical studies. Among the many microfluidic cell sorting technologies, label-free methods based on the size of different cell types have been widely studied. However, the heterogeneity in size for cells of the same type and the inevitable size overlap between different types of cells would result in performance degradation in size-based sorting. To tackle such challenges, deformation-assisted technologies are receiving more attention recently. Cell deformability is an inherent biophysical marker of cells that reflects the changes in their internal structures and physiological states. It provides additional dimensional information for cell sorting besides size. Therefore, in this review, we summarize the recent advances in deformation-assisted microfluidic cell sorting technologies. According to how the deformability is characterized and the form in which the force acts, the technologies can be divided into two categories: (1) the indirect category including transit-time-based and image-based methods, and (2) the direct category including microstructure-based and hydrodynamics-based methods. Finally, the separation performance and the application scenarios of each method, the existing challenges and future outlook are discussed. Deformation-assisted microfluidic cell sorting technologies are expected to realize greater potential in the label-free analysis of cells.
Collapse
Affiliation(s)
- Jingjing Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiwei Huang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Jin Chen
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Rikui Xiang
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Xiang Ke
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Siru Lin
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Weipeng Xuan
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| | - Shan Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, China
| | - Zhen Cao
- College of Information Science and Electronic Engineering, Zhejiang University, China
| | - Lingling Sun
- Ministry of Education Key Lab of RF Circuits and Systems, Hangzhou Dianzi University, China.
| |
Collapse
|
2
|
Chen H, Li Q, Hu Q, Jiao X, Ren W, Wang S, Peng G. Double spiral chip-embedded micro-trapezoid filters (SMT filters) for the sensitive isolation of CTCs of prostate cancer by spectral detection. NANOSCALE ADVANCES 2022; 4:5392-5403. [PMID: 36540122 PMCID: PMC9724689 DOI: 10.1039/d2na00503d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that are released from the original tumor and circulate in the blood vessels, carrying greatly similar constituents as the original tumor. Therefore, CTCs have a significant value in cancer prognosis, early diagnosis, and anti-cancer therapy. However, their rarity and heterogeneity make the isolation of CTCs an arduous task. In the present research, we propose a double spiral chip-embedded micro-trapezoid filter (SMT filter) for the sensitive isolation of the CTCs of prostate cancer by spectral detection. SMT filters were elongated to effectively capture CTCs and this distinctive design was conducive to their isolation and enrichment. The SMT filters were verified with tumor cells and artificial patient blood with a capture efficiency as high as 94% at a flow rate of 1.5 mL h-1. As a further validation, the SMT filters were validated in isolating CTCs from 10 prostate cancers and other cancers in 4 mL blood samples. Also, the CTCs tested positive for each patient blood sample, ranging from 83-114 CTCs. Significantly, we advanced hyperspectral imaging to detect the characteristic spectrum of CTCs both captured in situ on SMT filters and enriched after isolation. The CTCs could be positively identified by hyperspectral imaging with complete integrity of the cell morphology and an improved characteristic spectrum. This represents a breakthrough in the conventional surface-enhanced Raman scattering (SERS) spectroscopy of nanoparticles. Also, the characteristic spectrum of the CTCs would be highly beneficial for distinguishing the cancer type and accurate for enumerating tumor cells with varied intensities. Furthermore, a novel integrated flower-shaped microfilter was presented with all these aforementioned merits. The success of both the SMT filters and characteristic spectral detection indicated their feasibility for further clinical analysis, the evaluation of cancer therapy, and for potential application.
Collapse
Affiliation(s)
- Hongmei Chen
- School of Microelectronics and Data Science, Anhui University of Technology Maanshan 243002 P. R. China
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241 China
| | - Qingli Li
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241 China
| | - Qinghai Hu
- School of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 P. R. China
| | - Xiaodong Jiao
- Department of Medical Oncology, Changzheng Hospital Shanghai 200070 P.R. China
| | - Wenjie Ren
- Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University Shanghai 200241 China
| | - Shuangshou Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology Maanshan 243002 P. R. China
| | - Guosheng Peng
- School of Microelectronics and Data Science, Anhui University of Technology Maanshan 243002 P. R. China
| |
Collapse
|
3
|
Zhang Y, Li Y, Tan Z. A review of enrichment methods for circulating tumor cells: from single modality to hybrid modality. Analyst 2021; 146:7048-7069. [PMID: 34709247 DOI: 10.1039/d1an01422f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circulating tumor cell (CTC) analysis as a liquid biopsy can be used for early diagnosis of cancer, evaluating cancer progression, and assessing treatment efficacy. The enrichment of CTCs from patient blood is important for CTC analysis due to the extreme rarity of CTCs. This paper updates recent advances in CTC enrichment methods. We first review single-modality methods, including biophysical and biochemical methods. Hybrid-modality methods, combining at least two single-modality methods, are gaining increasing popularity for their improved performance. Then this paper reviews hybrid-modality methods, which are categorized into integrated and sequenced hybrid-modality methods. The state of the art indicates that the CTC capture efficiencies of integrated hybrid-modality methods can reach 85% or higher by taking advantage of the superimposed and enhanced capture effects from multiple single-modality methods. Moreover, a hybrid method integrating biophysical with biochemical methods is characterized by both high processing rate and high specificity.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| | - Yifu Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| | - Zhongchao Tan
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
4
|
Tsou PH, Chiang PH, Lin ZT, Yang HC, Song HL, Li BR. Rapid purification of lung cancer cells in pleural effusion through spiral microfluidic channels for diagnosis improvement. LAB ON A CHIP 2020; 20:4007-4015. [PMID: 32966477 DOI: 10.1039/d0lc00663g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lung cancer is one of the leading causes of death worldwide. Fifteen percent of lung cancer patients will present with malignant pleural effusion initially, and up to 50% will have malignant pleural effusion throughout the course of the disease. In this study, we developed a spiral microfluidic device that can rapidly isolate cancer cells and improve their purity through fluid dynamics. This label-free, high-throughput device continuously isolates cancer cells and other unrelated molecules from pleural effusion. Most of the background cells that affect interpretation are flushed to outlets 1 to 3, and cancer cells are hydrodynamically concentrated to outlet 4, with 90% of lung cancer cells flowing to this outlet. After processing, the purity of cancer cells identified in pleural effusion by CD45 and epithelial cell adhesion molecule (EpCAM) antibodies in flow cytometry will be increased by 6 to 24 times. The microfluidic device presented here has the advantages of rapid processing and low cost, which are conducive to rapid and accurate clinical diagnosis.
Collapse
Affiliation(s)
- Ping-Hsien Tsou
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | | | | | | | | | | |
Collapse
|
5
|
Palumbo J, Navi M, Tsai SSH, Spelt JK, Papini M. Lab on a rod: Size-based particle separation and sorting in a helical channel. BIOMICROFLUIDICS 2020; 14:064104. [PMID: 33224403 PMCID: PMC7661098 DOI: 10.1063/5.0030917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 06/11/2023]
Abstract
Size-based particle separation using inertial microfluidics in spiral channels has been well studied over the past decade. Though these devices can effectively separate particles, they require a relatively large device footprint with a typical outer channel radius of approximately 15 mm. In this paper, we describe a microfluidic device with a footprint diameter of 5.5 mm, containing a helical channel capable of inertial particle separation fabricated using abrasive jet micromachining. The separation of particles in several channel geometries was studied using wide-field fluorescence microscopy. A maximum separation efficiency of approximately 90% was achieved at a flow rate of 1.5 ml/min with a purity of approximately 95% at the outlet, where large particles were collected. An accompanying computational fluid dynamics model was developed to allow researchers to quickly assess the separation capability of their helical or spiral devices.
Collapse
Affiliation(s)
- Joshua Palumbo
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | | | | | - Jan K. Spelt
- Authors to whom correspondence should be addressed:, Tel.: +1 416 978 5435, Fax: +1 416 978 7753 and , Tel.: +1 416 979 5000 ext. 7655, Fax: +1 416 979 5265
| | - Marcello Papini
- Authors to whom correspondence should be addressed:, Tel.: +1 416 978 5435, Fax: +1 416 978 7753 and , Tel.: +1 416 979 5000 ext. 7655, Fax: +1 416 979 5265
| |
Collapse
|
6
|
Lei KF. A Review on Microdevices for Isolating Circulating Tumor Cells. MICROMACHINES 2020; 11:E531. [PMID: 32456042 PMCID: PMC7281722 DOI: 10.3390/mi11050531] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 01/17/2023]
Abstract
Cancer metastasis is the primary cause of high mortality of cancer patients. Enumeration of circulating tumor cells (CTCs) in the bloodstream is a very important indicator to estimate the therapeutic outcome in various metastatic cancers. The aim of this article is to review recent developments on the CTC isolation technologies in microdevices. Based on the categories of biochemical and biophysical isolation approaches, a literature review and in-depth discussion will be included to provide an overview of this challenging topic. The current excellent developments suggest promising CTC isolation methods in order to establish a precise indicator of the therapeutic outcome of cancer patients.
Collapse
Affiliation(s)
- Kin Fong Lei
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan 333, Taiwan; ; Tel.: +886-3-2118800 (ext. 5345)
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| |
Collapse
|
7
|
Chen H. Capturing and Clinical Applications of Circulating Tumor Cells with Wave Microfluidic Chip. Appl Biochem Biotechnol 2019; 190:1470-1483. [DOI: 10.1007/s12010-019-03199-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
|
8
|
Su Y, Tian Q, Pan D, Hui L, Chen Y, Zhang Q, Tian W, Yu J, Hu S, Gao Y, Qian D, Xie T, Wang B. Antibody-Functional Microsphere-Integrated Filter Chip with Inertial Microflow for Size-Immune-Capturing and Digital Detection of Circulating Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29569-29578. [PMID: 31361117 DOI: 10.1021/acsami.9b09655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Circulating tumor cells (CTCs) in blood is the direct cause of tumor metastasis. The isolation and detection of CTCs in the whole blood is very important and of clinical value in early diagnosis, postoperative review, and personalized treatment. It is difficult to separate all types of CTCs that efficiently rely on a single path due to cancer cell heterogenicity. Here, we designed a new kind of "filter chip" for the retention of CTCs with very high efficiency by integrating the effects of cell size and specific antigens on the surface of tumor cells. The filter chip consists of a semicircle arc and arrays and can separate large-scale CTC microspheres, which combined with CTCs automatically. We synthesized interfacial zinc oxide coating with nanostructure on the surface of the microsphere to increase the specific surface area to enhance the capturing efficiency of CTCs. Microspheres, trapped in the arrays, would entrap CTCs, too. The combination of the three kinds of strategies resulted in more than 90% capture efficiency of different tumor cell lines. Furthermore, it is easy to find and isolate the circulating tumor cells from the chip as tumor cells would be fixed inside the structure of a filter chip. To avoid the high background contamination when a few CTCs are surrounded by millions of nontarget cells, a digital detection method was applied to improve the detection sensitivity. The CTCs in the whole blood were specifically labeled by the antibody-DNA conjugates and detected via the DNA of the conjugates with a signal amplification. The strategy of the antibody-functional microsphere-integrated microchip for cell sorting and detection of CTCs may find broad implications that favor the fundamental cancer biology research, the precise diagnosis, and monitoring of cancer in the clinics.
Collapse
Affiliation(s)
- Yi Su
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
| | - Qingchang Tian
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
- Department of Medical Oncology, Holistic Integrative Oncology Institute and Holistic Integrative Pharmacy Institute, The Affiliated Hospital of Hangzhou Normal University, College of Medicine , Hangzhou Normal University , Hangzhou 311100 , China
| | - Dingyi Pan
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics , Zhejiang University , Hangzhou 310027 , China
| | - Lanlan Hui
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
| | - Yanni Chen
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou 310003 , China
| | | | - Jie Yu
- Hangzhou Watson Biotech. Inc. , Hangzhou 310051 , China
| | | | | | - Dahong Qian
- School of Biomedical Engineering , Shanghai Jiao Tong University , Shanghai 200030 , China
| | - Tian Xie
- Department of Medical Oncology, Holistic Integrative Oncology Institute and Holistic Integrative Pharmacy Institute, The Affiliated Hospital of Hangzhou Normal University, College of Medicine , Hangzhou Normal University , Hangzhou 311100 , China
| | - Ben Wang
- Institute of Translational Medicine , Zhejiang University , Hangzhou 310029 , China
| |
Collapse
|