1
|
Akhbari B, Shah KN, Morton AM, Molino J, Moore DC, Wolfe SW, Weiss APC, Crisco JJ. Total Wrist Arthroplasty Alignment and Its Potential Association with Clinical Outcomes. J Wrist Surg 2021; 10:308-315. [PMID: 34381634 PMCID: PMC8328540 DOI: 10.1055/s-0041-1725172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/21/2021] [Indexed: 10/21/2022]
Abstract
Purpose There is a lack of quantitative research that describes the alignment and, more importantly, the effects of malalignment on total wrist arthroplasty (TWA). The main goal of this pilot study was to assess the alignment of TWA components in radiographic images and compare them with measures computed by three-dimensional analysis. Using these measures, we then determined if malalignment is associated with range of motion (ROM) or clinical outcomes (PRWHE, PROMIS, QuickDash, and grip strength). Methods Six osteoarthritic patients with a single type of TWA were recruited. Radiographic images, computed tomography images, and clinical outcomes of the wrists were recorded. Using posteroanterior and lateral radiographs, alignment measurements were defined for the radial and carpal components. Radiographic measurements were validated with models reconstructed from computed tomography images using Bland-Altman analysis. Biplanar videoradiography (<1mm and <1 degree accuracy) was used to capture and compute ROM of the TWA components. Linear regression assessed the associations between alignment and outcomes. Results Radiographic measures had a 95% limit-of-agreement (mean difference ± 1.96 × SD) of 3 degrees and 3mm with three-dimensional values, except for the measures of the carpal component in the lateral view. In our small cohort, wrist flexion-extension and radial-ulnar deviation were correlated with volar-dorsal tilt and volar-dorsal offset of the radial component and demonstrated a ROM increase of 3.7 and 1.6 degrees per degree increase in volar tilt, and 10.8 and 4.2 degrees per every millimeter increase in volar offset. The carpal component's higher volar tilt was also associated with improvements in patient-reported pain. Conclusions We determined metrics describing the alignment of TWA, and found the volar tilt and volar offset of the radial component could potentially influence the replaced wrist's ROM. Clinical Relevance TWA component alignment can be measured reliably in radiographs, and may be associated with clinical outcomes. Future studies must evaluate its role in a larger cohort.
Collapse
Affiliation(s)
- Bardiya Akhbari
- Department of Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kalpit N. Shah
- Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Amy M. Morton
- Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Janine Molino
- Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Douglas C. Moore
- Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Scott W. Wolfe
- Hand and Upper Extremity Center, Hospital for Special Surgery, New York, New York
- Weill Medical College of Cornell University, New York, New York
| | - Arnold-Peter C. Weiss
- Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
- Division of Hand, Upper Extremity & Microvascular Surgery, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Joseph J. Crisco
- Department of Biomedical Engineering, Brown University, Providence, Rhode Island
- Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
2
|
Akhbari B, Shah KN, Morton AM, Moore DC, Weiss APC, Wolfe SW, Crisco JJ. Biomechanics of the Distal Radioulnar Joint During In Vivo Forearm Pronosupination. J Wrist Surg 2021; 10:208-215. [PMID: 34109063 PMCID: PMC8169167 DOI: 10.1055/s-0040-1722334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/12/2020] [Indexed: 10/22/2022]
Abstract
Background Ulnar variance (UV) and center of rotation (COR) location at the level of the distal radioulnar joint (DRUJ) change with forearm rotation. Nevertheless, these parameters have not been assessed dynamically during active in vivo pronosupination. This assessment could help us to improve our diagnosis and treatment strategies. Questions/purposes We sought to (1) mathematically model the UV change, and (2) determine the dynamic COR's location during active pronosupination. Methods We used biplanar videoradiography to study DRUJ during in vivo pronation and supination in nine healthy subjects. UV was defined as the proximal-distal distance of ulnar fovea with respect to the radial sigmoid notch, and COR was calculated using helical axis of motion parameters. The continuous change of UV was evaluated using a generalized linear regression model. Results A second-degree polynomial with R 2 of 0.85 was able to model the UV changes. Maximum negative UV occurred at 38.0 degrees supination and maximum positive UV occurred at maximum pronation. At maximum pronation, the COR was located 0.5 ± 1.8 mm ulnarly and 0.6 ± 0.8 mm volarly from the center of the ulnar fovea, while at maximum supination, the COR was located 0.2 ± 0.6 mm radially and 2.0 ± 0.5 mm volarly. Conclusion Changes in UV and volar translation of the COR are nonlinear at the DRUJ during pronosupination. Clinical Relevance Understanding the dynamic nature of UV as a function of pronosupination can help guide accurate evaluation and treatment of wrist pathology where the UV is an important consideration. The dynamic behavior of COR might be useful in designing DRUJ replacement implants to match the anatomical motion.
Collapse
Affiliation(s)
- Bardiya Akhbari
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
| | - Kalpit N. Shah
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Amy M. Morton
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Douglas C. Moore
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Arnold-Peter C. Weiss
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
- Division of Hand, Upper Extremity & Microvascular Surgery, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| | - Scott W. Wolfe
- Hand and Upper Extremity Center, Hospital for Special Surgery, New York, New York
- Department of Orthopaedic Surgery, Weill Medical College of Cornell University, New York, New York
| | - Joseph J. Crisco
- Center for Biomedical Engineering, Brown University, Providence, Rhode Island
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
3
|
Akhbari B, Morton AM, Shah KN, Molino J, Moore DC, Weiss APC, Wolfe SW, Crisco JJ. In vivo articular contact pattern of a total wrist arthroplasty design. J Biomech 2021; 121:110420. [PMID: 33895657 PMCID: PMC8130596 DOI: 10.1016/j.jbiomech.2021.110420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/26/2021] [Accepted: 03/25/2021] [Indexed: 11/20/2022]
Abstract
Total wrist arthroplasty (TWA) designs suffer from relatively high complication rates when compared to other arthroplasties. Understanding the contact pattern of hip and knee replacement has improved their design and function; however, the in vivo contact pattern of TWA has not yet been examined and is thus the aim of this study. We hypothesized that the center of contact (CoC) is located at the geometric centers of the carpal component and radial component in the neutral posture and that the CoC moves along the principal arcs of curvature throughout primary anatomical motions. Wrist motion and implant kinematics of six patients with the Freedom® total wrist implant were studied during various tasks using biplanar videoradiography. The location of the CoC of the components was investigated by calculating distance fields between the articular surfaces. We found the CoC at the neutral posture was not at the geometric centers but was located 3.5 mm radially on the carpal component and 1.2 mm ulnarly on the radial component. From extension to flexion, the CoC moved 10.8 mm from dorsal to volar side on the carpal component (p < 0.0001) and 7.2 mm from volar to dorsal on the radial component (p = 0.0009). From radial to ulnar deviation, the CoC moved 12.4 mm from radial to ulnar on the carpal component (p < 0.0001), and 5.6 mm from ulnar to radial on the radial component (p = 0.009). The findings of this study may eventually improve TWA success by advancing future designs through a more accurate understating of their kinematic performance in vivo.
Collapse
Affiliation(s)
- Bardiya Akhbari
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, United States.
| | - Amy M Morton
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, United States.
| | - Kalpit N Shah
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, United States.
| | - Janine Molino
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, United States.
| | - Douglas C Moore
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, United States.
| | - Arnold-Peter C Weiss
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, United States; Division of Hand, Upper Extremity & Microvascular Surgery, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02912, United States.
| | - Scott W Wolfe
- Hand and Upper Extremity Center, Hospital for Special Surgery, New York, NY 10021, United States; Weill Medical College of Cornell University, New York, NY 10021, United States.
| | - Joseph J Crisco
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, United States; Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, United States.
| |
Collapse
|
4
|
McHugh B, Akhbari B, Morton AM, Moore DC, Crisco JJ. Optical motion capture accuracy is task-dependent in assessing wrist motion. J Biomech 2021; 120:110362. [PMID: 33752132 DOI: 10.1016/j.jbiomech.2021.110362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/24/2021] [Accepted: 02/22/2021] [Indexed: 11/18/2022]
Abstract
Optical motion capture (OMC) systems are commonly used to capture in-vivo three-dimensional joint kinematics. However, the skin-based markers may not reflect the underlying bone movement, a source of error known as soft tissue artifact (STA). This study examined STA during wrist motion by evaluating the agreement between OMC and biplanar videoradiography (BVR). Nine subjects completed 7 different wrist motion tasks: doorknob rotation to capture supination and pronation, radial-ulnar deviation, flexion-extension, circumduction, hammering, and pitcher pouring. BVR and OMC captured the motion simultaneously. Wrist kinematics were quantified using helical motion parameters of rotation and translation, and Bland-Altman analysis quantified the mean difference (bias) and 95% limit of agreement (LOA). The rotational bias of doorknob pronation, a median bias of -4.9°, was significantly larger than the flexion-extension (0.7°, p < 0.05) and radial-ulnar deviation (1.8°, p < 0.01) tasks. The rotational LOA range was significantly smaller in the flexion-extension task (5.9°) compared to pitcher (11.6°, p < 0.05) and doorknob pronation (17.9°, p < 0.05) tasks. The translation bias did not differ between tasks. The translation LOA range was significantly larger in circumduction (9.8°) compared to the radial-ulnar deviation (6.3°, p < 0.05) and pitcher (3.4°, p < 0.05) tasks. While OMC technology has a wide-range of successful applications, we demonstrated it has relatively poor agreement with BVR in tracking wrist motion, and that the agreement depends on the nature and direction of wrist motion.
Collapse
Affiliation(s)
- Brian McHugh
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, United States.
| | - Bardiya Akhbari
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, United States.
| | - Amy M Morton
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, United States.
| | - Douglas C Moore
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, United States.
| | - Joseph J Crisco
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912, United States; Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903, United States.
| |
Collapse
|
5
|
Akhbari B, Morton AM, Moore DC, Crisco JJ. Biplanar Videoradiography to Study the Wrist and Distal Radioulnar Joints. J Vis Exp 2021:10.3791/62102. [PMID: 33616093 PMCID: PMC8182367 DOI: 10.3791/62102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Accurate measurement of skeletal kinematics in vivo is essential for understanding normal joint function, the influence of pathology, disease progression, and the effects of treatments. Measurement systems that use skin surface markers to infer skeletal motion have provided important insight into normal and pathological kinematics, however, accurate arthrokinematics cannot be attained using these systems, especially during dynamic activities. In the past two decades, biplanar videoradiography (BVR) systems have enabled many researchers to directly study the skeletal kinematics of the joints during activities of daily living. To implement BVR systems for the distal upper extremity, videoradiographs of the distal radius and the hand are acquired from two calibrated X-ray sources while a subject performs a designated task. Three-dimensional (3D) rigid-body positions are computed from the videoradiographs via a best-fit registrations of 3D model projections onto to each BVR view. The 3D models are density-based image volumes of the specific bone derived from independently acquired computed-tomography data. Utilizing graphics processor units and high-performance computing systems, this model-based tracking approach is shown to be fast and accurate in evaluating the wrist and distal radioulnar joint biomechanics. In this study, we first summarized the previous studies that have established the submillimeter and subdegree agreement of BVR with an in vitro optical motion capture system in evaluating the wrist and distal radioulnar joint kinematics. Furthermore, we used BVR to compute the center of rotation behavior of the wrist joint, to evaluate the articulation pattern of the components of the implant upon one another, and to assess the dynamic change of ulnar variance during pronosupination of the forearm. In the future, carpal bones may be captured in greater detail with the addition of flat panel X-ray detectors, more X-ray sources (i.e., multiplanar videoradiography), or advanced computer vision algorithms.
Collapse
Affiliation(s)
| | - Amy M Morton
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital
| | - Douglas C Moore
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital
| | - Joseph J Crisco
- Center for Biomedical Engineering, Brown University; Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital
| |
Collapse
|
6
|
Akhbari B, Morton AM, Shah KN, Molino J, Moore DC, Weiss APC, Wolfe SW, Crisco JJ. Proximal-distal shift of the center of rotation in a total wrist arthroplasty is more than twice of the healthy wrist. J Orthop Res 2020; 38:1575-1586. [PMID: 32401391 PMCID: PMC7336861 DOI: 10.1002/jor.24717] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/02/2020] [Accepted: 05/08/2020] [Indexed: 02/04/2023]
Abstract
Reproduction of healthy wrist biomechanics should minimize the abnormal joint forces that could potentially result in the failure of a total wrist arthroplasty (TWA). To date, the in vivo kinematics of TWA have not been measured and it is unknown if TWA preserves healthy wrist kinematics. Therefore, the purpose of this in vivo study was to determine the center of rotation (COR) for a current TWA design and to compare its location to the healthy wrist. The wrist COR for six patients with TWA and 10 healthy subjects were calculated using biplane videoradiography as the subjects performed various range-of-motion and functional tasks that included coupled wrist motions. An open-source registration software, Autoscoper, was used for model-based tracking and kinematics analysis. It was demonstrated that the COR was located near the centers of curvatures of the carpal component for the anatomical motions of flexion-extension and radial-ulnar deviation. When compared to healthy wrists, the COR of TWAs was located more distal in both pure radial deviation (P < .0001) and pure ulnar deviation (P = .07), while there was no difference in its location in pure flexion or extension (P = .99). Across all coupled motions, the TWA's COR shifted more than two times that of the healthy wrists in the proximal-distal direction (17.1 vs 7.2 mm). We postulate that the mismatch in the COR location and behavior may be associated with increased loading of the TWA components, leading to an increase in the risk of component and/or interface failure.
Collapse
Affiliation(s)
- Bardiya Akhbari
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912
| | - Amy M. Morton
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Kalpit N. Shah
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Janine Molino
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Douglas C. Moore
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Arnold-Peter C. Weiss
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Scott W. Wolfe
- Hand and Upper Extremity Center, Hospital for Special Surgery, New York, NY 10021,Weill Medical College of Cornell University, New York, NY 10021
| | - Joseph J. Crisco
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912,Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| |
Collapse
|
7
|
McHugh BP, Morton AM, Akhbari B, Molino J, Crisco JJ. Accuracy of an electrogoniometer relative to optical motion tracking for quantifying wrist range of motion. J Med Eng Technol 2020; 44:49-54. [PMID: 31997679 DOI: 10.1080/03091902.2020.1713240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Methods for capturing wrist range of motion (RoM) vary in complexity, cost, and sensitivity. Measures by manual goniometer, though an inexpensive modality, provide neither dynamic nor objective motion data. Conversely, optical motion capture systems are widely used in three-dimensional scientific motion capture studies but are complex and expensive. The electrogoniometer bridges the gap between portability and objective measurement. Our study aims to evaluate the accuracy of a 2 degree of freedom electrogoniometer using optical motion capture as the reference for in vivo wrist motion. First, a mechanical system constructed from two plastic pipes and a universal joint mimicked a human wrist to assess the inherent accuracy of the electrogoniometer. Simulations of radial/ulnar deviation (R/U), flexion/extension (F/E) and circumduction were evaluated. Second, six subjects performed three RoM tasks of R/U deviation, F/E, and circumduction for evaluation of the in vivo accuracy. Bland-Altman analysis quantified the accuracy. The mechanical experiment reported greater accuracy than the in vivo study with mean difference values less than ±1°. The in vivo accuracy varied across RoM tasks, with mean differences greatest in the F/E task (7.2°). Smaller mean differences values were reported in the R/U deviation task (-0.8°) and the circumduction task (1.2°).
Collapse
Affiliation(s)
- Brian P McHugh
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Amy M Morton
- Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Bardiya Akhbari
- Center for Biomedical Engineering, Brown University, Providence, RI, USA
| | - Janine Molino
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.,Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| | - Joseph J Crisco
- Center for Biomedical Engineering, Brown University, Providence, RI, USA.,Bioengineering Laboratory, Department of Orthopaedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI, USA
| |
Collapse
|
8
|
Akhbari B, Moore DC, Laidlaw DH, Weiss APC, Akelman E, Wolfe SW, Crisco JJ. Predicting Carpal Bone Kinematics Using an Expanded Digital Database of Wrist Carpal Bone Anatomy and Kinematics. J Orthop Res 2019; 37:2661-2670. [PMID: 31378991 PMCID: PMC7376386 DOI: 10.1002/jor.24435] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/24/2019] [Indexed: 02/04/2023]
Abstract
The wrist can be considered a 2 degrees-of-freedom joint with all movements reflecting the combination of flexion-extension and radial-ulnar deviation. Wrist motions are accomplished by the kinematic reduction of the 42 degrees-of-freedom of the individual carpal bones. While previous studies have demonstrated the minimal motion of the scaphoid and lunate as the wrist moves along the dart-thrower's path or small relative motion between hamate-capitate-trapezoid, an understanding of the kinematics of the complete carpus across all wrist motions remains lacking. To address this, we assembled an open-source database of in vivo carpal motions and developed mathematical models of the carpal kinematics as a function of wrist motion. Quadratic surfaces were trained for each of the 42-carpal bone degrees-of-freedom and the goodness of fits were evaluated. Using the models, paths of wrist motion that generated minimal carpal rotations or translations were determined. Model predictions were best for flexion-extension, radial-ulnar deviation, and volar-dorsal translations for all carpal bones with R 2 > 0.8, while the estimates were least effective for supination-pronation with R 2 < 0.6. The wrist path of motion's analysis indicated that the distal row of carpal bones moves rigidly together (<3° motion), along the anatomical axis of wrist motion, while the bones in the proximal row undergo minimal motion when the wrist moves in a path oblique to the main axes. The open-source dataset along with its graphical user interface and mathematical models should facilitate clinical visualization and enable new studies of carpal kinematics and function. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2661-2670, 2019.
Collapse
Affiliation(s)
- Bardiya Akhbari
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912
| | - Douglas C. Moore
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - David H. Laidlaw
- Department of Computer Science, Brown University, Providence, RI 02912
| | - Arnold-Peter C. Weiss
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Edward Akelman
- Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| | - Scott W. Wolfe
- Hand and Upper Extremity Center, Hospital for Special Surgery, New York, NY 10021
| | - Joseph J. Crisco
- Center for Biomedical Engineering and School of Engineering, Brown University, Providence, RI 02912,Department of Orthopedics, The Warren Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02903
| |
Collapse
|
9
|
Akhbari B, Morton AM, Moore DC, Weiss APC, Wolfe SW, Crisco JJ. Accuracy of biplane videoradiography for quantifying dynamic wrist kinematics. J Biomech 2019; 92:120-125. [PMID: 31174845 DOI: 10.1016/j.jbiomech.2019.05.040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 04/26/2019] [Accepted: 05/26/2019] [Indexed: 10/26/2022]
Abstract
Accurately assessing the dynamic kinematics of the skeletal wrist could advance our understanding of the normal and pathological wrist. Biplane videoradiography (BVR) has allowed investigators to study dynamic activities in the knee, hip, and shoulder joint; however, currently, BVR has not been utilized for the wrist joint because of the challenges associated with imaging multiple overlapping bones. Therefore, our aim was to develop a BVR procedure and to quantify its accuracy for evaluation of wrist kinematics. BVR was performed on six cadaveric forearms for one neutral static and six dynamic tasks, including flexion-extension, radial-ulnar deviation, circumduction, pronation, supination, and hammering. Optical motion capture (OMC) served as the gold standard for assessing accuracy. We propose a feedforward tracking methodology, which uses a combined model of metacarpals (second and third) for initialization of the third metacarpal (MC3). BVR-calculated kinematic parameters were found to be consistent with the OMC-calculated parameters, and the BVR/OMC agreement had submillimeter and sub-degree biases in tracking individual bones as well as the overall joint's rotation and translation. All dynamic tasks (except pronation task) showed a limit of agreement within 1.5° for overall rotation, and within 1.3 mm for overall translations. Pronation task had a 2.1° and 1.4 mm limit of agreement for rotation and translation measurement. The poorest precision was achieved in calculating the pronation-supination angle, and radial-ulnar and volar-dorsal translational components, although they were sub-degree and submillimeter. The methodology described herein may assist those interested in examining the complexities of skeletal wrist function during dynamic tasks.
Collapse
Affiliation(s)
- Bardiya Akhbari
- Department of Biomedical Engineering, Brown University, Providence, RI 02912, United States
| | - Amy M Morton
- Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02912, United States
| | - Douglas C Moore
- Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02912, United States
| | - Arnold-Peter C Weiss
- Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02912, United States
| | - Scott W Wolfe
- Hand and Upper Extremity Center, Hospital for Special Surgery, New York, NY 10021, United States
| | - Joseph J Crisco
- Department of Biomedical Engineering, Brown University, Providence, RI 02912, United States; Department of Orthopedics, Alpert Medical School of Brown University and Rhode Island Hospital, Providence, RI 02912, United States.
| |
Collapse
|