1
|
Eda Y, Asai R, Kohyama S, Ikumi A, Totoki Y, Yoshii Y. Three-Dimensional Morphometric Analysis of the Volar Cortical Shape of the Lunate Facet of the Distal Radius. Diagnostics (Basel) 2024; 14:1802. [PMID: 39202290 PMCID: PMC11353463 DOI: 10.3390/diagnostics14161802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
In cases of distal radius fractures, the fixation of the volar lunate facet fragment is crucial for preventing volar subluxation of the carpal bones. This study aims to clarify the sex differences in the volar morphology of the lunate facet of the distal radius and its relationship with the transverse diameter of the distal radius. Sixty-four CT scans of healthy wrists (30 males and 34 females) were evaluated. Three-dimensional (3D) images of the distal radius were reconstructed from the CT data. We defined reference point 1 as the starting point of the inclination toward the distal volar edge, reference point 2 as the volar edge of the joint on the bone axis, and reference point 3 as the volar edge of the distal radius lunate facet. From the 3D coordinates of reference points 1 to 3, the bone axis distance, volar-dorsal distance, radial-ulnar distance, 3D straight-line distance, and inclination angle were measured. The transverse diameter of the radius was measured, and its correlations with the parameters were evaluated. It was found that in males, compared to females, the transverse diameter of the radius is larger and the protrusion of the volar lunate facet is greater. This suggests that the inclination of the volar surface is steeper in males and that the volar locking plate may not fit properly with the volar cortical bone of the lunate facet, necessitating additional fixation.
Collapse
Affiliation(s)
- Yusuke Eda
- Department of Orthopaedic Surgery, Tsukuba Medical Center Hospital, 1-3-1, Amakubo, Tsukuba 305-8576, Japan
- Department of Orthopedic Surgery, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Japan;
| | - Reo Asai
- Department of Orthopedic Surgery, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Japan;
| | - Sho Kohyama
- Department of Orthopedic Surgery, Kikkoman General Hospital, Noda 278-0005, Japan
| | - Akira Ikumi
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan (Y.T.)
| | - Yasukazu Totoki
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan (Y.T.)
| | - Yuichi Yoshii
- Department of Orthopedic Surgery, Tokyo Medical University Ibaraki Medical Center, Ami 300-0395, Japan;
| |
Collapse
|
2
|
Dinescu AT, Zhou B, Hu YJ, Agarwal S, Shane E, Guo XDE. Individual trabecula segmentation validation in first- and second-generation high-resolution peripheral computed tomography compared to micro-computed tomography in the distal radius and tibia. JBMR Plus 2024; 8:ziae007. [PMID: 38505220 PMCID: PMC10945717 DOI: 10.1093/jbmrpl/ziae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 03/21/2024] Open
Abstract
High-resolution peripheral quantitative computed tomography (HR-pQCT) has been used for in vivo 3D visualization of trabecular microstructure. Second-generation HR-pQCT (HR-pQCT II) has been shown to have good agreement with first generation HR-pQCT (HR-pQCT I). Advanced Individual Trabecula Segmentation (ITS) decomposes the trabecula network into individual plates and rods. ITS based on HR-pQCT I showed a strong correlation to ITS based on micro-computed tomography (μCT) and identified trabecular changes in metabolic bone diseases. ITS based on HR-pQCT II has new potential because of the enhanced resolution but has yet to be validated. The objective of this study was to assess the agreement between ITS based on HR-pQCT I, HR-pQCT II, and μCT to assess the capability of ITS on HR-pQCT images as a tool for studying bone structure. Freshly frozen tibia and radius bones were scanned in the distal region using HR-pQCT I at 82 μm, HR-pQCT II at 60.7 μm, and μCT at 37 μm. Images were registered, binarized, and ITS analysis was performed. Bone volume fraction (pBV/TV, rBV/TV), number density (pTb.N, rTb.N), thickness (pTb.Th, rTb.Th), and plate-to-rod (PR) ratio (pBV/rBV) of trabecular plates and rods were obtained. Paired Student's t-tests with post hoc Bonferroni analysis were used to examine the differences. Linear regression was used to determine the correlation coefficient. The HR-pQCT I parameters were different from the μCT measurements. The HR-pQCT II parameters were different from the μCT measurements except for rTb.N, and the HR-pQCT I parameters were different from the HR-pQCT II measurements except for pTb.Th. The strong correlation between HR-pQCT II and μCT microstructural analysis (R2 = 0.55-0.94) suggests that HR-pQCT II can be used to assess changes in plate and rod microstructure and that values from HR-pQCT I can be corrected.
Collapse
Affiliation(s)
- Andreea Teodora Dinescu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States
| | - Bin Zhou
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States
| | - Yizhong Jenny Hu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States
| | - Sanchita Agarwal
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, 10032, United States
| | - Elizabeth Shane
- Division of Endocrinology, Department of Medicine, Columbia University, New York, NY, 10032, United States
| | - Xiang-Dong Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY, 10027, United States
| |
Collapse
|
3
|
Haverfield ZA, Agnew AM, Hunter RL. Differential Cortical Volumetric Bone Mineral Density within the Human Rib. J Clin Densitom 2023; 26:101358. [PMID: 36710221 DOI: 10.1016/j.jocd.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
INTRODUCTION The human rib provides a vital role in the protection of thoracic contents. Rib fractures are linked to injuries and health complications that can be fatal. Current clinical methods to assess fracture risk and bone quality are insufficient to quantify intra-element differences in bone mineral density (BMD) or to identify at-risk populations. Utilizing quantitative computed tomography (QCT) provides accurate measures of volumetric BMD (vBMD) along the length of the rib which can help delineate factors influencing differential fracture risk. METHODOLOGY One mid-level rib was obtained from 54 post-mortem human subjects (PMHS) and scanned using QCT. Volumes of interest (VOIs) were created for sites at 30%, 50%, and 75% of rib total curve length. Mean Hounsfield units (HU) from each VOI were converted to vBMD using a scan-specific cortical phantom calibration curve. Additionally, rib and lumbar areal BMD (aBMD) were obtained from a sub-sample of 33 PMHS. RESULTS Significant differences in vBMD were found between all sites within the rib (p<0.01). When analyzed by sex, vBMD between the 30% and 50% site were no longer different in either males or females (p>0.05). Separating the sample into discrete age groups demonstrated the relative differences in vBMD between sites diminished with age. Further, age as a continuous variable significantly predicted rib vBMD at all sites (p<0.05), but with little practical or clinical utility (R2, 14.7- 22.8%). Similarly, only small amounts of variation in rib vBMD were explained from DXA lumbar and rib aBMD (R2 , 1.1-21.8%). CONCLUSIONS vBMD significantly decreased from the posterior (30%) site to the anterior (75%) site within the rib which may represent adaptation to localized mechanical loading. These differences could result in differential fracture risk across the rib. As thoracic injury can be fatal, using comprehensive assessments of bone quality that accounts for variation within the rib may provide more accurate identification of at-risk populations.
Collapse
Affiliation(s)
- Zachary A Haverfield
- Injury Biomechanics Research Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States.
| | - Amanda M Agnew
- Injury Biomechanics Research Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Randee L Hunter
- Injury Biomechanics Research Center, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Miller T, Qin L, Hung VWY, Ying MTC, Tsang CSL, Ouyang H, Chung RCK, Pang MYC. Gait speed and spasticity are independently associated with estimated failure load in the distal tibia after stroke: an HR-pQCT study. Osteoporos Int 2022; 33:713-724. [PMID: 34636938 DOI: 10.1007/s00198-021-06191-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 10/04/2021] [Indexed: 12/17/2022]
Abstract
UNLABELLED This HR-pQCT study was conducted to examine bone properties of the distal tibia post-stroke and to identify clinical outcomes that were associated with these properties at this site. It was found that spasticity and gait speed were independently associated with estimated failure load in individuals with chronic stroke. PURPOSE (1) To examine the influence of stroke on distal tibia bone properties and (2) the association between these properties and clinical outcomes in people with chronic stroke. METHODS Sixty-four people with stroke (age, 60.8 ± 7.7 years; time since stroke, 5.7 ± 3.9 years) and 64 controls (age: 59.4 ± 7.8 years) participated in this study. High-resolution peripheral quantitative computed tomography (HR-pQCT) was used to scan the bilateral distal tibia, and estimated failure load was calculated by automated finite element analysis. Echo intensity of the medial gastrocnemius muscle and blood flow of the popliteal artery were assessed with ultrasound. The 10-m walk test (10MWT), Fugl-Meyer Motor Assessment (FMA), and Composite Spasticity Scale (CSS) were also administered. RESULTS The percent side-to-side difference (%SSD) in estimated failure load, cortical area, thickness, and volumetric bone mineral density (vBMD), and trabecular and total vBMD were significantly greater in the stroke group than their control counterparts (Cohen's d = 0.48-1.51). Isometric peak torque and echo intensity also showed significant within- and between-groups differences (p ≤ 0.01). Among HR-pQCT variables, the %SSD in estimated failure load was empirically chosen as one example of the strong discriminators between the stroke group and control group, after accounting for other relevant factors. The 10MWT and CSS subscale for ankle clonus remained significantly associated with the %SSD in estimated failure load after adjusting for other relevant factors (p ≤ 0.05). CONCLUSION The paretic distal tibia showed more compromised vBMD, cortical area, cortical thickness, and estimated failure load than the non-paretic tibia. Gait speed and spasticity were independently associated with estimated failure load. As treatment programs focusing on these potentially modifiable stroke-related impairments are feasible to administer, future studies are needed to determine the efficacy of such intervention strategies for improving bone strength in individuals with chronic stroke.
Collapse
Affiliation(s)
- Tiev Miller
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Ling Qin
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Vivian W Y Hung
- Bone Quality and Health Centre, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Michael T C Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Charlotte S L Tsang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Huixi Ouyang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Raymond C K Chung
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Hong Kong.
| |
Collapse
|
5
|
Revel M, Bermond F, Duboeuf F, Mitton D, Follet H. Influence of loading conditions in finite element analysis assessed by HR-pQCT on ex vivo fracture prediction. Bone 2022; 154:116206. [PMID: 34547523 DOI: 10.1016/j.bone.2021.116206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Many fractures occur in individuals with normal areal Bone Mineral Density (aBMD) measured by Dual X-ray Absorptiometry (DXA). High Resolution peripheral Quantitative Computed Tomography (HR-pQCT) allows for non-invasive evaluation of bone stiffness and strength through micro finite element (μFE) analysis at the tibia and radius. These μFE outcomes are strongly associated with fragility fractures but do not provide clear enhancement compared with DXA measurements. The objective of this study was to establish whether a change in loading conditions in standard μFE analysis assessed by HR-pQCT enhance the discrimination of low-trauma fractured radii (n = 11) from non-fractured radii (n = 16) obtained experimentally throughout a mechanical test reproducing a forward fall. Micro finite element models were created using HR-pQCT images, and linear analyses were performed using four different types of loading conditions (axial, non-axial with two orientations and torsion). No significant differences were found between the failure load assessed with the axial and non-axial models. The different loading conditions tested presented the same area under the receiver operating characteristic (ROC) curves of 0.79 when classifying radius fractures with an accuracy of 81.5%. In comparison, the area under the curve (AUC) is 0.77 from DXA-derived ultra-distal aBMD of the forearm with an accuracy of 85.2%. These results suggest that the restricted HR-pQCT scanned region seems not sensitive to loading conditions for the prediction of radius fracture risk based on ex vivo experiments (n = 27).
Collapse
Affiliation(s)
- M Revel
- Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France; Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, F69622 Lyon, France
| | - F Bermond
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, F69622 Lyon, France
| | - F Duboeuf
- Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France
| | - D Mitton
- Univ Lyon, Univ Gustave Eiffel, Univ Claude Bernard Lyon 1, LBMC UMR_T9406, F69622 Lyon, France
| | - H Follet
- Univ Lyon, Univ Claude Bernard Lyon 1, INSERM, LYOS UMR1033, F69008 Lyon, France.
| |
Collapse
|
6
|
Ohs N, Collins CJ, Atkins PR. Validation of HR-pQCT against micro-CT for morphometric and biomechanical analyses: A review. Bone Rep 2020; 13:100711. [PMID: 33392364 PMCID: PMC7772687 DOI: 10.1016/j.bonr.2020.100711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/29/2020] [Accepted: 08/19/2020] [Indexed: 12/26/2022] Open
Abstract
High-resolution peripheral quantitative computed-tomography (HR-pQCT) has the potential to become a powerful clinical assessment and diagnostic tool. Given the recent improvements in image resolution, from 82 to 61 μm, this technology may be used to accurately quantify in vivo bone microarchitecture, a key biomarker of degenerative bone diseases. However, computational methods to assess bone microarchitecture were developed for micro computed tomography (micro-CT), a higher-resolution technology only available for ex vivo studies, and validation of these computational analysis techniques against the gold-standard micro-CT has been inconsistent and incomplete. Herein, we review methods for segmentation of bone compartments and microstructure, quantification of bone morphology, and estimation of mechanical strength using finite-element analysis, highlighting the need throughout for improved standardization across the field. Studies have relied on homogenous datasets for validation, which does not allow for robust comparisons between methods. Consequently, the adaptation and validation of novel segmentation approaches has been slow to non-existent, with most studies still using the manufacturer's segmentation for morphometric analysis despite the existence of better performing alternative approaches. The promising accuracy of HR-pQCT for capturing morphometric indices is overshadowed by considerable variability in outcomes between studies. For finite element analysis (FEA) methods, the use of disparate material models and FEA tools has led to a fragmented ability to assess mechanical bone strength with HR-pQCT. Further, the scarcity of studies comparing 62 μm HR-pQCT to the gold standard micro-CT leaves the validation of this imaging modality incomplete. This review revealed that without standardization, the capabilities of HR-pQCT cannot be adequately assessed. The need for a public, extendable, heterogeneous dataset of HR-pQCT and corresponding gold-standard micro-CT images, which would allow HR-pQCT users to benchmark existing and novel methods and select optimal methods depending on the scientific question and data at hand, is now evident. With more recent advancements in HR-pQCT, the community must learn from its past and provide properly validated technologies to ensure that HR-pQCT can truly provide value in patient diagnosis and care.
Collapse
Affiliation(s)
- Nicholas Ohs
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Penny R. Atkins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Osteoporosis, Inselspital, Bern, Switzerland
| |
Collapse
|