1
|
Thomas CJH, Dogan F, Johnson CE. Experimental investigation of a viscoelastic liner to reduce under helmet overpressures and shock wave reflections. Front Bioeng Biotechnol 2024; 12:1455324. [PMID: 39280344 PMCID: PMC11392881 DOI: 10.3389/fbioe.2024.1455324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024] Open
Abstract
Introduction Shock wave overpressure exposures can result in blast-induced traumatic brain injury (bTBI) in warfighters. Although combat helmets provide protection against blunt impacts, the protection against blast waves is limited due to the observed high overpressures occurring underneath the helmet. One route to enhance these helmets is by incorporating viscoelastic materials into the helmet designs, reducing pressures imposed on the head. This study aims to further investigate this mitigation technique against under-helmet overpressures by adding a viscoelastic liner to the inside of a combat helmet. Methods The liner's effectiveness was evaluated by exposing it to free-field blasts of Composition C-4 at overpressures ranging from 27.5 to 165 kPa (4 - 24 psi) and comparing shock waveform parameters to an unlined helmet. Blasts were conducted using an instrumented manikin equipped with and without a helmet and then with a helmet modified to incorporate a viscoelastic liner. Evaluation of blast exposure results focused on the waveform parameters of peak pressure, impulse and positive phase duration. Results The results show that peak overpressure was higher when wearing a helmet compared to not wearing a helmet. However, the helmet with the viscoelastic liner reduced the average peak overpressures compared to the helmet alone. For the lowest overpressure tested, 27.5 kPa, the helmet liner decreased the overpressure on the top of the head by 37.6%, with reduction reaching 26% at the highest overpressure exposure of 165 kPa. Additionally, the inclusion of the viscoelastic material extended the shock waveforms' duration, reducing the rate the shock wave was applied to the head. The results of this study show the role a helmet and helmet design play in the level of blast exposure imposed on a wearer. The testing and evaluation of these materials hold promise for enhancing helmet design to better protect against bTBI.
Collapse
Affiliation(s)
- Cody J H Thomas
- Mining and Explosives Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States
| | - Fatih Dogan
- Materials Science and Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States
| | - Catherine E Johnson
- Mining and Explosives Engineering Department, Missouri University of Science and Technology, Rolla, MO, United States
| |
Collapse
|
2
|
Duan S, Wang Z, Zhang W, Lu Y, Ma G. Effect of blast orientation, multi-point blasts, and repetitive blasts on brain injury. Med Eng Phys 2024; 127:104163. [PMID: 38692763 DOI: 10.1016/j.medengphy.2024.104163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
Explosions in the battlefield can result in brain damage. Research on the effects of shock waves on brain tissue mainly focuses on the effects of single-orientation blast waves, while there have been few studies on the dynamic response of the human brain to directional explosions in different planes, multi-point explosions and repetitive explosions. Therefore, the brain tissue response and the intracranial pressure (ICP) caused by different blast loadings were numerically simulated using the CONWEP method. In the study of the blast in different directions, the lateral explosion blast wave was found to cause greater ICP than did blasts from other directions. When multi-point explosions occurred in the sagittal plane simultaneously, the ICP in the temporal lobe increased by 37.8 % and the ICP in the parietal lobe decreased by 17.6 %. When multi-point explosions occurred in the horizontal plane, the ICP in the frontal lobe increased by 61.8 % and the ICP in the temporal lobe increased by 12.2 %. In a study of repetitive explosions, the maximum ICP of the second blast increased by 40.6 % over that of the first blast, and that of the third blast increased by 61.2 % over that of the second blast. The ICP on the brain tissue from repetitive blasts can exceed 200 % of that of a single explosion blast wave.
Collapse
Affiliation(s)
- Shuhuai Duan
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Zhidong Wang
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China
| | - Wei Zhang
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China; State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian, China
| | - Yongtao Lu
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China; DUT-BSU joint Institute, Dalian University of Technology, Dalian, China
| | - Guojun Ma
- School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian, China; DUT-BSU joint Institute, Dalian University of Technology, Dalian, China; State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian, China.
| |
Collapse
|
3
|
Li Y, Vakiel P, Adanty K, Ouellet S, Vette AH, Raboud D, Dennison CR. Evaluating the Intracranial Pressure Biofidelity and Response Repeatability of a Physical Head-Brain Model in Frontal Impacts. Ann Biomed Eng 2023; 51:1816-1833. [PMID: 37095278 DOI: 10.1007/s10439-023-03198-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/15/2023] [Indexed: 04/26/2023]
Abstract
Headforms are widely used in head injury research and headgear assessment. Common headforms are limited to replicating global head kinematics, although intracranial responses are crucial to understanding brain injuries. This study aimed to evaluate the biofidelity of intracranial pressure (ICP) and the repeatability of head kinematics and ICP of an advanced headform subjected to frontal impacts. Pendulum impacts were performed on the headform using various impact velocities (1-5 m/s) and impactor surfaces (vinyl nitrile 600 foam, PCM746 urethane, and steel) to simulate a previous cadaveric experiment. Head linear accelerations and angular rates in three axes, cerebrospinal fluid ICP (CSFP), and intraparenchymal ICP (IPP) at the front, side, and back of the head were measured. The head kinematics, CSFP, and IPP demonstrated acceptable repeatability with coefficients of variation generally being less than 10%. The BIPED front CSFP peaks and back negative peaks were within the range of the scaled cadaver data (between the minimum and maximum values reported by Nahum et al.), while side CSFPs were 30.9-92.1% greater than the cadaver data. CORrelation and Analysis (CORA) ratings evaluating the closeness of two time histories demonstrated good biofidelity of the front CSFP (0.68-0.72), while the ratings for the side (0.44-0.70) and back CSFP (0.27-0.66) showed a large variation. The BIPED CSFP at each side was linearly related to head linear accelerations with coefficients of determination greater than 0.96. The slopes for the BIPED front and back CSFP-acceleration linear trendlines were not significantly different from cadaver data, whereas the slope for the side CSFP was significantly greater than cadaver data. This study informs future applications and improvements of a novel head surrogate.
Collapse
Affiliation(s)
- Yizhao Li
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Paris Vakiel
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada.
| | - Kevin Adanty
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Simon Ouellet
- Weapons Effects and Protection Section, Defence R&D Valcartier Research Center, Quebec, Canada
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
- Glenrose Rehabilitation Hospital, Alberta Health Services, Edmonton, AB, T5G 0B7, Canada
| | - Donald Raboud
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Christopher R Dennison
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8P 5C2, Canada
| |
Collapse
|
4
|
Rowson B, Duma SM. A Review of Head Injury Metrics Used in Automotive Safety and Sports Protective Equipment. J Biomech Eng 2022; 144:1140295. [PMID: 35445266 DOI: 10.1115/1.4054379] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/08/2022]
Abstract
Despite advances in the understanding of human tolerances to brain injury, injury metrics used in automotive safety and protective equipment standards have changed little since they were first implemented nearly a half-century ago. Although numerous metrics have been proposed as improvements over the ones currently used, evaluating the predictive capability of these metrics is challenging. The purpose of this review is to summarize existing head injury metrics that have been proposed for both severe head injuries, such as skull fractures and traumatic brain injuries (TBI), and mild traumatic brain injuries (mTBI) including concussions. Metrics have been developed based on head kinematics or intracranial parameters such as brain tissue stress and strain. Kinematic metrics are either based on translational motion, rotational motion, or a combination of the two. Tissue-based metrics are based on finite element model simulations or in vitro experiments. This review concludes with a discussion of the limitations of current metrics and how improvements can be made in the future.
Collapse
Affiliation(s)
- Bethany Rowson
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, 437 Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| | - Stefan M Duma
- Institute for Critical Technology and Applied Science (ICTAS), Virginia Tech, 410H Kelly Hall, 325 Stanger Street, Blacksburg, VA 24061
| |
Collapse
|
5
|
Xu S, Brannen M, Ouellet S, Brownridge R, Petel OE. In Situ Strain Measurements Within Helmet Padding During Linear Impact Testing. Ann Biomed Eng 2022; 50:1689-1700. [DOI: 10.1007/s10439-022-03071-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
|
6
|
Sundar S, Ponnalagu A. Biomechanical Analysis of Head Subjected to Blast Waves and the Role of Combat Protective Headgear Under Blast Loading: A Review. J Biomech Eng 2021; 143:100801. [PMID: 33954580 DOI: 10.1115/1.4051047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Indexed: 01/10/2023]
Abstract
Blast-induced traumatic brain injury (bTBI) is a rising health concern of soldiers deployed in modern-day military conflicts. For bTBI, blast wave loading is a cause, and damage incurred to brain tissue is the effect. There are several proposed mechanisms for the bTBI, such as direct cranial entry, skull flexure, thoracic compression, blast-induced acceleration, and cavitation that are not mutually exclusive. So the cause-effect relationship is not straightforward. The efficiency of protective headgears against blast waves is relatively unknown as compared with other threats. Proper knowledge about standard problem space, underlying mechanisms, blast reconstruction techniques, and biomechanical models are essential for protective headgear design and evaluation. Various researchers from cross disciplines analyze bTBI from different perspectives. From the biomedical perspective, the physiological response, neuropathology, injury scales, and even the molecular level and cellular level changes incurred during injury are essential. From a combat protective gear designer perspective, the spatial and temporal variation of mechanical correlates of brain injury such as surface overpressure, acceleration, tissue-level stresses, and strains are essential. This paper outlines the key inferences from bTBI studies that are essential in the protective headgear design context.
Collapse
Affiliation(s)
- Shyam Sundar
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Alagappan Ponnalagu
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
7
|
Li Y, Ouellet S, Vette AH, Raboud D, Martin A, Dennison CR. Evaluation of the Kinematic Biofidelity and Inter-Test Repeatability of Global Accelerations and Brain Parenchyma Pressure for a Head-Brain Physical Model. J Biomech Eng 2021; 143:1106231. [PMID: 33817744 DOI: 10.1115/1.4050752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 11/08/2022]
Abstract
Head surrogates are widely used in biomechanical research and headgear assessment. They are designed to approximate the inertial and mechanical properties of the head and are instrumented to measure global head kinematics. Due to the recent interest in studying disruption to the brain, some head models include internal fluid layers and brain tissue, and instrumentation to measure head intracranial biomechanics. However, it is unknown whether such models exhibit realistic human responses. Therefore, this study aims to assess the biofidelity and repeatability of a head model, the Blast Injury Protection Evaluation Device (BIPED), that can measure both global head kinematics and intraparenchymal pressure (IPP) for application in blunt impact, a common loading scenario in civilian life. Drop tests were conducted with the BIPED and the widely used Hybrid III headform. BIPED measures were compared to the Hybrid III data and published cadaveric data, and the biofidelity level of the global linear acceleration was quantified using CORrelation and Analysis (CORA) ratings. The repeatability of the acceleration and IPP measurements in multiple impact scenarios was evaluated via the coefficient of variation (COV) of the magnitudes and pulse durations. BIPED acceleration peaks were generally not significantly different from cadaver and Hybrid III data. The CORA ratings for the BIPED and Hybrid III accelerations ranged from 0.50 to 0.61 and 0.51 to 0.77, respectively. The COVs of acceleration and IPP were generally below 10%. This study is an important step toward a biofidelic head surrogate measuring both global kinematics and IPP in blunt impact.
Collapse
Affiliation(s)
- Yizhao Li
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Simon Ouellet
- Weapons Effects and Protection Section, Defence R&D Valcartier Research Center, Quebec City, PQ G3J 1X5, Canada
| | - Albert H Vette
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Don Raboud
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Ashton Martin
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Christopher R Dennison
- Biomedical Instrumentation Lab, Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|