Namisnak LH, Khoshnevis S, Diller KR. A Conformable Two-Dimensional Resistance Temperature Detector for Measuring Average Skin Temperature.
J Med Device 2021;
15:031010. [PMID:
34336080 DOI:
10.1115/1.4051442]
[Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/31/2021] [Indexed: 11/08/2022] Open
Abstract
Thermoregulation research and various medical procedures are accomplished by manipulating skin temperature in a nonuniform pattern. Skin temperature monitoring is essential to assess conformance to protocol specifications and to prevent thermal injury. Existing solutions for skin temperature monitoring include single point sensors, such as thermocouples, and two-dimensional methods of sensing surface temperature, such as infrared thermography, and wearable technology. Single point sensors cannot detect the average temperature and consequently their measurements cannot be representative of average surface temperature in a nonuniform temperature field. Infrared thermography requires optical access, and existing ambulatory sensors may require complex manufacturing processes and impede the heat exchange with a source by including a structural substrate layer. Our solution is a two-dimensional resistance temperature detector (two-dimensional (2D) RTD) created by knitting copper magnet wire into custom shapes. The 2D RTDs were calibrated, compared to one-dimensional sensors and wearable sensors, and analyzed for hysteresis, repeatability, and surface area conformation. Resistance and temperature were correlated with an R2 of 0.99. The 2D RTD proved to be a superior device for measuring average skin temperature over a defined area exposed to a nonuniform temperature boundary in the absence of optical access such as when a full body thermal control garment is worn.
Collapse