1
|
Yao J, Crockett J, D'Souza M, A Day G, K Wilcox R, C Jones A, Mengoni M. Effect of meniscus modelling assumptions in a static tibiofemoral finite element model: importance of geometry over material. Biomech Model Mechanobiol 2024; 23:1055-1065. [PMID: 38349433 PMCID: PMC11101373 DOI: 10.1007/s10237-024-01822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/06/2024] [Indexed: 05/18/2024]
Abstract
Finite element studies of the tibiofemoral joint have increased use in research, with attention often placed on the material models. Few studies assess the effect of meniscus modelling assumptions in image-based models on contact mechanics outcomes. This work aimed to assess the effect of modelling assumptions of the meniscus on knee contact mechanics and meniscus kinematics. A sensitivity analysis was performed using three specimen-specific tibiofemoral models and one generic knee model. The assumptions in representing the meniscus attachment on the tibia (shape of the roots and position of the attachment), the material properties of the meniscus, the shape of the meniscus and the alignment of the joint were evaluated, creating 40 model instances. The values of material parameters for the meniscus and the position of the root attachment had a small influence on the total contact area but not on the meniscus displacement or the force balance between condyles. Using 3D shapes to represent the roots instead of springs had a large influence in meniscus displacement but not in knee contact area. Changes in meniscus shape and in knee alignment had a significantly larger influence on all outcomes of interest, with differences two to six times larger than those due to material properties. The sensitivity study demonstrated the importance of meniscus shape and knee alignment on meniscus kinematics and knee contact mechanics, both being more important than the material properties or the position of the roots. It also showed that differences between knees were large, suggesting that clinical interpretations of modelling studies using single geometries should be avoided.
Collapse
Affiliation(s)
- Jiacheng Yao
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - John Crockett
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Mathias D'Souza
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Gavin A Day
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Ruth K Wilcox
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Alison C Jones
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK
| | - Marlène Mengoni
- Institute of Medical and Biological Engineering, School of Mechanical Engineering, University of Leeds, Leeds, UK.
| |
Collapse
|
2
|
Chen W, Zhou Q, Tang J. Material Properties of Fiber Bundles of the Superficial Medial Collateral Ligament of the Knee Joint. J Biomech Eng 2024; 146:031003. [PMID: 38217110 DOI: 10.1115/1.4064476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/27/2023] [Indexed: 01/15/2024]
Abstract
The superficial medial collateral ligament (sMCL) of the human knee joint has functionally separate anterior and posterior fiber bundles. The two bundles are alternatively loaded as the knee flexion angle changes during walking. To date, the two bundles are usually not distinguished in knee ligament simulations because there has been little information about their material properties. In this study, we conducted quasi-static tensile tests on the sMCL of matured porcine stifle joints and obtained the material properties of the anterior bundle (AB), posterior bundle (PB), and whole ligament (WL). AB and PB have similar failure stress but different threshold strain, modulus, and failure strain. As a result, we recommend assigning different material properties (i.e., modulus and failure strain) to the two fiber bundles to realize biofidelic ligament responses in human body models. However, it is often inconvenient to perform tensile tests on AB and PB. Hence, we proposed a microstructural model-based approach to predict the material properties of AB and PB from the test results of WL. Such obtained modulus values of AB and PB had an error of 2% and 0.3%, respectively, compared with those measured from the tests. This approach can reduce the experimental cost for acquiring the needed mechanical property data for simulations.
Collapse
Affiliation(s)
- Wentao Chen
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Qing Zhou
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| | - Jisi Tang
- State Key Laboratory of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Kothurkar R, Lekurwale R, Gad M, Rathod CM. Finite element analysis of a healthy knee joint at deep squatting for the study of tibiofemoral and patellofemoral contact. J Orthop 2023; 40:7-16. [PMID: 37143926 PMCID: PMC10151221 DOI: 10.1016/j.jor.2023.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
Background In non-western countries, deep squatting is a daily activity, and prolonged deep squatting is common among occupational squatters. Household tasks, taking a bath, socializing, using toilets, and performing religious acts are among the activities frequently carried out while squatting by the Asian population. High knee loading is responsible for a knee injury and osteoarthritis. Finite element analysis is an effective tool to determine stresses on the knee joint. Methods Magnetic Resonance Imaging (MRI) and Computed Tomographic (CT) images were acquired of one adult without knee injuries. The CT images were acquired at the fully extended knee and one more set of images was acquired with the knee at a deeply flexed knee position. The MRI was acquired with the fully extended knee. 3-Dimensional models of bones were created using CT and soft tissue using MRI with the help of 3D Slicer software. Kinematics and finite element analysis of the knee was performed for standing and deep squatting posture using Ansys Workbench 2022. Results High peak stresses were observed at deep squatting compared to standing along with the reduction in the contact area. Peak von Mises stresses on femoral cartilage, tibial cartilage, patellar cartilage, and meniscus were increased from 3.3 MPa to 19.9 MPa, 2.9 MPa to 12.4 MPa, 1.5 MPa to 16.7 MPa and 15.8 MPa to 32.8 MPa respectively during deep squatting. Posterior translation of 7.01 mm, and 12.58 mm was observed for medial and lateral femoral condyle respectively from full extension to 153° knee flexion. Conclusions Increased stresses in the knee joint at deep squat posture may cause cartilage damage. A sustained deep squat posture should be avoided for healthy knee joints. More posterior translations of the medial femoral condyle at higher knee flexion angle warrant further investigation.
Collapse
Affiliation(s)
- Rohan Kothurkar
- Department of Mechanical Engineering, K. J. Somaiya College of Engineering, Mumbai, India
| | - Ramesh Lekurwale
- Department of Mechanical Engineering, K. J. Somaiya College of Engineering, Mumbai, India
| | - Mayuri Gad
- St. Xavier's Gait Lab, Xavier Institute of Engineering, Mumbai, India
| | - Chasanal M. Rathod
- St. Xavier's Gait Lab, Xavier Institute of Engineering, Mumbai, India
- Department of Orthopaedics, SRCC Children's Hospital, Haji Ali, Mumbai, India
| |
Collapse
|
4
|
Prebble M, Wei Q, Martin J, Eddo O, Lindsey B, Cortes N. Simulated Tibiofemoral Joint Reaction Forces for Three Previously Studied Gait Modifications in Healthy Controls. J Biomech Eng 2023; 145:041004. [PMID: 36196804 PMCID: PMC9791677 DOI: 10.1115/1.4055885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/07/2022] [Indexed: 12/30/2022]
Abstract
Gait modifications, such as lateral trunk lean (LTL), medial knee thrust (MKT), and toe-in gait (TIG), are frequently investigated interventions used to slow the progression of knee osteoarthritis. The Lerner knee model was developed to estimate the tibiofemoral joint reaction forces (JRF) in the medial and lateral compartments during gait. These models may be useful for estimating the effects on the JRF in the knee as a result of gait modifications. We hypothesized that all gait modifications would decrease the JRF compared to normal gait. Twenty healthy individuals volunteered for this study (26.7 ± 4.7 years, 1.75 ± 0.1 m, 73.4 ± 12.4 kg). Ten trials were collected for normal gait as well as for the three gait modifications: LTL, MKT, and TIG. The data were used to estimate the JRF in the first and second peaks for the medial and lateral compartments of the knee via opensim using the Lerner knee model. No significant difference from baseline was found for the first peak in the medial compartment. There was a decrease in JRF in the medial compartment during the loading phase of gait for TIG (6.6%) and LTL (4.9%) and an increasing JRF for MKT (2.6%). but none was statistically significant. A significant increase from baseline was found for TIG (5.8%) in the medial second peak. We found a large variation in individual responses to gait interventions, which may help explain the lack of statistically significant results. Possible factors influencing these wide ranges of responses to gait modifications include static alignment and the impacts of variation in muscle coordination strategies used, by participants, to implement gait modifications.
Collapse
Affiliation(s)
- Matt Prebble
- Sports Medicine, Assessment, Research, and Testing (SMART) Laboratory, School of Kinesiology, George Mason University, Manassas, VA 20109
| | - Qi Wei
- Department of Bioengineering, George Mason University, Fairfax, VA 22030
| | - Joel Martin
- Sports Medicine, Assessment, Research, and Testing (SMART) Laboratory, School of Kinesiology, George Mason University, Manassas, VA 20109
| | - Oladipo Eddo
- Sports Medicine, Assessment, Research, and Testing (SMART) Laboratory, College of Education, School of Kinesiology, George Mason University, Manassas, VA 20109
| | - Bryndan Lindsey
- Human Performance and Biomechanics Group Applied Physics Laboratory, The Johns Hopkins University, Laurel, MD 20723
| | - Nelson Cortes
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Wivenhoe Park, Colchester, Essex CO4 3SQ, UK
| |
Collapse
|
5
|
Farshidfar SS, Cadman J, Neri T, Parker D, Appleyard R, Dabirrahmani D. Towards a validated musculoskeletal knee model to estimate tibiofemoral kinematics and ligament strains: comparison of different anterolateral augmentation procedures combined with isolated ACL reconstructions. Biomed Eng Online 2023; 22:31. [PMID: 36973768 PMCID: PMC10044816 DOI: 10.1186/s12938-023-01094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Isolated ACL reconstructions (ACLR) demonstrate limitations in restoring native knee kinematics. This study investigates the knee mechanics of ACLR plus various anterolateral augmentations using a patient-specific musculoskeletal knee model. MATERIALS AND METHODS A patient-specific knee model was developed in OpenSim using contact surfaces and ligament details derived from MRI and CT data. The contact geometry and ligament parameters were varied until the predicted knee angles for intact and ACL-sectioned models were validated against cadaveric test data for that same specimen. Musculoskeletal models of the ACLR combined with various anterolateral augmentations were then simulated. Knee angles were compared between these reconstruction models to determine which technique best matched the intact kinematics. Also, ligament strains calculated by the validated knee model were compared to those of the OpenSim model driven by experimental data. The accuracy of the results was assessed by calculating the normalised RMS error (NRMSE); an NRMSE < 30% was considered acceptable. RESULTS All rotations and translations predicted by the knee model were acceptable when compared to the cadaveric data (NRMSE < 30%), except for the anterior/posterior translation (NRMSE > 60%). Similar errors were observed between ACL strain results (NRMSE > 60%). Other ligament comparisons were acceptable. All ACLR plus anterolateral augmentation models restored kinematics toward the intact state, with ACLR plus anterolateral ligament reconstruction (ACLR + ALLR) achieving the best match and the greatest strain reduction in ACL, PCL, MCL, and DMCL. CONCLUSION The intact and ACL-sectioned models were validated against cadaveric experimental results for all rotations. It is acknowledged that the validation criteria are very lenient; further refinement is required for improved validation. The results indicate that anterolateral augmentation moves the kinematics closer to the intact knee state; combined ACLR and ALLR provide the best outcome for this specimen.
Collapse
Affiliation(s)
- Sara Sadat Farshidfar
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW Australia
| | - Joseph Cadman
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW Australia
| | - Thomas Neri
- Sydney Orthopaedic Research Institute, Sydney, Australia
- Department of Orthopaedic Surgery, University Hospital of Saint Etienne, Saint Etienne, France
- EA 7424-Inter-University Laboratory of Human Movement Science, University Lyon-University Jean Monnet Saint Etienne, Saint Etienne, France
| | - David Parker
- Sydney Orthopaedic Research Institute, Sydney, Australia
| | - Richard Appleyard
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW Australia
| | - Danè Dabirrahmani
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW Australia
| |
Collapse
|
6
|
Thomeer LT, Guan S, Gray HA, Pandy MG. Articular contact motion at the knee during daily activities. J Orthop Res 2022; 40:1756-1769. [PMID: 34878691 DOI: 10.1002/jor.25222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/31/2021] [Accepted: 11/20/2021] [Indexed: 02/04/2023]
Abstract
We combined mobile biplane X-ray imaging and magnetic resonance imaging to measure the regions of articular cartilage contact and cartilage thickness at the tibiofemoral and patellofemoral joints during six functional activities: standing, level walking, downhill walking, stair ascent, stair descent, and open-chain (non-weight-bearing) knee flexion. The contact centers traced similar paths on the medial and lateral femoral condyles, femoral trochlea, and patellar facet in all activities while their locations on the tibial plateau were more varied. The translations of the contact centers on the femur and patella were tightly coupled to the tibiofemoral flexion angle in all activities (r2 > 0.95) whereas those on the tibia were only moderately related to the flexion angle (r2 > 0.62). The regions of contacting cartilage were significantly thicker than the regions of non-contacting cartilage on the patella, femoral trochlea, and the medial and lateral tibial plateaus in all activities (p < 0.001). There were no significant differences in thickness between contacting and non-contacting cartilage on the medial and lateral femoral condyles in all activities, except open-chain knee flexion. Our results provide partial support for the proposition that cartilage thickness is adapted to joint load and do not exclude the possibility that other factors, such as joint congruence, also play a role in regulating the structure and organization of healthy cartilage. The data obtained in this study may serve as a guide when evaluating articular contact motion in osteoarthritic and reconstructed knees.
Collapse
Affiliation(s)
- Lucas T Thomeer
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Shanyuanye Guan
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Hans A Gray
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Marcus G Pandy
- Department of Mechanical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
Rooks NB, Besier TF, Schneider MTY. A Parameter Sensitivity Analysis on Multiple Finite Element Knee Joint Models. Front Bioeng Biotechnol 2022; 10:841882. [PMID: 35694233 PMCID: PMC9178290 DOI: 10.3389/fbioe.2022.841882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
The reproducibility of computational knee joint modeling is questionable, with models varying depending on the modeling team. The influence of model variations on simulation outcomes should be investigated, since knowing the sensitivity of the model outcomes to model parameters could help determine which parameters to calibrate and which parameters could potentially be standardized, improving model reproducibility. Previous sensitivity analyses on finite element knee joint models have typically used one model, with a few parameters and ligaments represented as line segments. In this study, a parameter sensitivity analysis was performed using multiple finite element knee joint models with continuum ligament representations. Four previously developed and calibrated models of the tibiofemoral joint were used. Parameters of the ligament and meniscus material models, the cartilage contact formulation, the simulation control and the rigid cylindrical joints were studied. Varus-valgus simulations were performed, changing one parameter at a time. The sensitivity on model convergence, valgus kinematics, articulating cartilage contact pressure and contact pressure location were investigated. A scoring system was defined to categorize the parameters as having a “large,” “medium” or “small” influence on model output. Model outcomes were sensitive to the ligament prestretch factor, Young’s modulus and attachment condition parameters. Changes in the meniscus horn stiffness had a “small” influence. Of the cartilage contact parameters, the penalty factor and Augmented Lagrangian setting had a “large” influence on the cartilage contact pressure. In the rigid cylindrical joint, the largest influence on the outcome parameters was found by the moment penalty parameter, which caused convergence issues. The force penalty and gap tolerance had a “small” influence at most. For the majority of parameters, the sensitivity was model-dependent. For example, only two models showed convergence issues when changing the Quasi-Newton update method. Due to the sensitivity of the model parameters being model-specific, the sensitivity of the parameters found in one model cannot be assumed to be the same in other models. The sensitivity of the model outcomes to ligament material properties confirms that calibration of these parameters is critical and using literature values may not be appropriate.
Collapse
Affiliation(s)
- Nynke B. Rooks
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Thor F. Besier
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland, New Zealand
- *Correspondence: Thor F. Besier,
| | | |
Collapse
|
8
|
Variation of the Three-Dimensional Femoral J-Curve in the Native Knee. J Pers Med 2021; 11:jpm11070592. [PMID: 34201685 PMCID: PMC8303343 DOI: 10.3390/jpm11070592] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
The native femoral J-Curve is known to be a relevant determinant of knee biomechanics. Similarly, after total knee arthroplasty, the J-Curve of the femoral implant component is reported to have a high impact on knee kinematics. The shape of the native femoral J-Curve has previously been analyzed in 2D, however, the knee motion is not planar. In this study, we investigated the J-Curve in 3D by principal component analysis (PCA) and the resulting mean shapes and modes by geometric parameter analysis. Surface models of 90 cadaveric femora were available, 56 male, 32 female and two without respective information. After the translation to a bone-specific coordinate system, relevant contours of the femoral condyles were derived using virtual rotating cutting planes. For each derived contour, an extremum search was performed. The extremum points were used to define the 3D J-Curve of each condyle. Afterwards a PCA and a geometric parameter analysis were performed on the medial and lateral 3D J-Curves. The normalized measures of the mean shapes and the aspects of shape variation of the male and female 3D J-Curves were found to be similar. When considering both female and male J-Curves in a combined analysis, the first mode of the PCA primarily consisted of changes in size, highlighting size differences between female and male femora. Apart from changes in size, variation regarding aspect ratio, arc lengths, orientation, circularity, as well as regarding relative location of the 3D J-Curves was found. The results of this study are in agreement with those of previous 2D analyses on shape and shape variation of the femoral J-Curves. The presented 3D analysis highlights new aspects of shape variability, e.g., regarding curvature and relative location in the transversal plane. Finally, the analysis presented may support the design of (patient-specific) femoral implant components for TKA.
Collapse
|
9
|
A Conceptual Blueprint for Making Neuromusculoskeletal Models Clinically Useful. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052037] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The ultimate goal of most neuromusculoskeletal modeling research is to improve the treatment of movement impairments. However, even though neuromusculoskeletal models have become more realistic anatomically, physiologically, and neurologically over the past 25 years, they have yet to make a positive impact on the design of clinical treatments for movement impairments. Such impairments are caused by common conditions such as stroke, osteoarthritis, Parkinson’s disease, spinal cord injury, cerebral palsy, limb amputation, and even cancer. The lack of clinical impact is somewhat surprising given that comparable computational technology has transformed the design of airplanes, automobiles, and other commercial products over the same time period. This paper provides the author’s personal perspective for how neuromusculoskeletal models can become clinically useful. First, the paper motivates the potential value of neuromusculoskeletal models for clinical treatment design. Next, it highlights five challenges to achieving clinical utility and provides suggestions for how to overcome them. After that, it describes clinical, technical, collaboration, and practical needs that must be addressed for neuromusculoskeletal models to fulfill their clinical potential, along with recommendations for meeting them. Finally, it discusses how more complex modeling and experimental methods could enhance neuromusculoskeletal model fidelity, personalization, and utilization. The author hopes that these ideas will provide a conceptual blueprint that will help the neuromusculoskeletal modeling research community work toward clinical utility.
Collapse
|
10
|
Load Distribution at the Patellofemoral Joint During Walking. Ann Biomed Eng 2020; 48:2821-2835. [DOI: 10.1007/s10439-020-02672-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 10/21/2020] [Indexed: 12/24/2022]
|
11
|
Charles JP, Grant B, D'Août K, Bates KT. Subject-specific muscle properties from diffusion tensor imaging significantly improve the accuracy of musculoskeletal models. J Anat 2020; 237:941-959. [PMID: 32598483 PMCID: PMC7542200 DOI: 10.1111/joa.13261] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 11/29/2022] Open
Abstract
Musculoskeletal modelling is an important platform on which to study the biomechanics of morphological structures in vertebrates and is widely used in clinical, zoological and palaeontological fields. The popularity of this approach stems from the potential to non-invasively quantify biologically important but difficult-to-measure functional parameters. However, while it is known that model predictions are highly sensitive to input values, it is standard practice to build models by combining musculoskeletal data from different sources resulting in 'generic' models for a given species. At present, there are little quantitative data on how merging disparate anatomical data in models impacts the accuracy of these functional predictions. This issue is addressed herein by quantifying the accuracy of both subject-specific human limb models containing individualised muscle force-generating properties and models built using generic properties from both elderly and young individuals, relative to experimental muscle torques obtained from an isokinetic dynamometer. The results show that subject-specific models predict isokinetic muscle torques to a greater degree of accuracy than generic models at the ankle (root-mean-squared error - 7.9% vs. 49.3% in elderly anatomy-based models), knee (13.2% vs. 57.3%) and hip (21.9% vs. 32.8%). These results have important implications for the choice of musculoskeletal properties in future modelling studies, and the relatively high level of accuracy achieved in the subject-specific models suggests that such models can potentially address questions about inter-subject variations of muscle functions. However, despite relatively high levels of overall accuracy, models built using averaged generic muscle architecture data from young, healthy individuals may lack the resolution and accuracy required to study such differences between individuals, at least in certain circumstances. The results do not wholly discourage the continued use of averaged generic data in musculoskeletal modelling studies but do emphasise the need for to maximise the accuracy of input values if studying intra-species form-function relationships in the musculoskeletal system.
Collapse
Affiliation(s)
- James P Charles
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Barbara Grant
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Kristiaan D'Août
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Karl T Bates
- Department of Musculoskeletal and Ageing Science , Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|