1
|
Qiu B, Cheng Q, Chen R, Liu C, Qin J, Jiang Q. Mussel-Mimetic Hydrogel Coating with Anticoagulant and Antiinflammatory Properties on a Poly(lactic acid) Vascular Stent. Biomacromolecules 2024; 25:3098-3111. [PMID: 38606583 DOI: 10.1021/acs.biomac.4c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Biodegradable stents are the most promising alternatives for the treatment of cardiovascular disease nowadays, and the strategy of preparing functional coatings on the surface is highly anticipated for addressing adverse effects such as in-stent restenosis and stent thrombosis. Yet, inadequate mechanical stability and biomultifunctionality limit their clinical application. In this study, we developed a multicross-linking hydrogel on the polylactic acid substrates by dip coating that boasts impressive antithrombotic ability, antibacterial capability, mechanical stability, and self-healing ability. Gelatin methacryloyl, carboxymethyl chitosan, and oxidized sodium alginate construct a double-cross-linking hydrogel through the dynamic Schiff base chemical and in situ blue initiation reaction. Inspired by the adhesion mechanism employed by mussels, a triple-cross-linked hydrogel is formed with the addition of tannic acid to increase the adhesion and antibiofouling properties. The strength and hydrophilicity of hydrogel coating are regulated by changing the composition ratio and cross-linking degree. It has been demonstrated in tests in vitro that the hydrogel coating significantly reduces the adhesion of proteins, MC3T3-E1 cells, platelets, and bacteria by 85% and minimizes the formation of blood clots. The hydrogel coating also exhibits excellent antimicrobial in vitro and antiinflammatory properties in vivo, indicating its potential value in vascular intervention and other biomedical fields.
Collapse
Affiliation(s)
- Biwei Qiu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qianqian Cheng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rukun Chen
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
- Faculty of Medicine, University of Southampton, University Road, Southampton SO17 1BJ, United Kingdom
| | - Chunling Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jinchao Qin
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qixia Jiang
- Department of Cardiology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, China
| |
Collapse
|
2
|
Bioaffinity-based surface immobilization of antibodies to capture endothelial colony-forming cells. PLoS One 2022; 17:e0269316. [PMID: 36040884 PMCID: PMC9426933 DOI: 10.1371/journal.pone.0269316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
Maximizing the re-endothelialization of vascular implants such as prostheses or stents has the potential to significantly improve their long-term performance. Endothelial progenitor cell capture stents with surface-immobilized antibodies show significantly improved endothelialization in the clinic. However, most current antibody-based stent surface modification strategies rely on antibody adsorption or direct conjugation via amino or carboxyl groups which leads to poor control over antibody surface concentration and/or molecular orientation, and ultimately bioavailability for cell capture. Here, we assess the utility of a bioaffinity-based surface modification strategy to immobilize antibodies targeting endothelial cell surface antigens. A cysteine-tagged truncated protein G polypeptide containing three Fc-binding domains was conjugated onto aminated polystyrene substrates via a bi-functional linking arm, followed by antibody immobilization. Different IgG antibodies were successfully immobilized on the protein G-modified surfaces. Covalent grafting of the protein G polypeptide was more effective than surface adsorption in immobilizing antibodies at high density based on fluorophore-labeled secondary antibody detection, as well as endothelial colony-forming cell capture through anti-CD144 antibodies. This work presents a potential avenue for enhancing the performance of cell capture strategies by using covalent grafting of protein G polypeptides to immobilize IgG antibodies.
Collapse
|
3
|
Zhang M, Shi X, Sun H, Xu D, Gao Y, Wu X, Zhang J, Zhang J. Immobilization of Glycogen Synthase Kinase-3β Inhibitor on 316L Stainless Steel via Polydopamine to Accelerate Endothelialization. Front Bioeng Biotechnol 2021; 9:806151. [PMID: 34881239 PMCID: PMC8646698 DOI: 10.3389/fbioe.2021.806151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
The coverage of stents with healthy endothelium is crucial to the success of cardiovascular stent implantation. Immobilizing bioactive molecules on stents is an effective strategy to generate such stents. Glycogen synthase kinase-3β inhibitor (GSKi) is a bioactive molecule that can effectively accelerate vascular endothelialization. In this work, GSKi was covalently conjugated on 316L stainless steel through polydopamine to develop a stable bioactive surface. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and water contact angle results revealed the successful introduction of GSKi onto 316L stainless steel. The GSKi coating did not obviously affect the hemocompatibility of plates. The adhesion and proliferation of human coronary artery endothelial cells (HCAECs) on stainless steel was significantly promoted by the addition of GSKi. In summary, this work provides a universal and stable strategy of immobilizing GSKi on the stent surface. This method has the potential for widespread application in the modification of vascular stents.
Collapse
Affiliation(s)
- Ming Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xudong Shi
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Hai Sun
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,Jilin Biomedical Polymers Engineering Laboratory, Changchun, China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Yang Gao
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Xi Wu
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jianqi Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Jichang Zhang
- Cardiology Department, The Second Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
4
|
Friedrich RP, Cicha I, Alexiou C. Iron Oxide Nanoparticles in Regenerative Medicine and Tissue Engineering. NANOMATERIALS 2021; 11:nano11092337. [PMID: 34578651 PMCID: PMC8466586 DOI: 10.3390/nano11092337] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
In recent years, many promising nanotechnological approaches to biomedical research have been developed in order to increase implementation of regenerative medicine and tissue engineering in clinical practice. In the meantime, the use of nanomaterials for the regeneration of diseased or injured tissues is considered advantageous in most areas of medicine. In particular, for the treatment of cardiovascular, osteochondral and neurological defects, but also for the recovery of functions of other organs such as kidney, liver, pancreas, bladder, urethra and for wound healing, nanomaterials are increasingly being developed that serve as scaffolds, mimic the extracellular matrix and promote adhesion or differentiation of cells. This review focuses on the latest developments in regenerative medicine, in which iron oxide nanoparticles (IONPs) play a crucial role for tissue engineering and cell therapy. IONPs are not only enabling the use of non-invasive observation methods to monitor the therapy, but can also accelerate and enhance regeneration, either thanks to their inherent magnetic properties or by functionalization with bioactive or therapeutic compounds, such as drugs, enzymes and growth factors. In addition, the presence of magnetic fields can direct IONP-labeled cells specifically to the site of action or induce cell differentiation into a specific cell type through mechanotransduction.
Collapse
|
5
|
Jin S, Huang J, Chen X, Gu H, Li D, Zhang A, Liu X, Chen H. Nitric Oxide-Generating Antiplatelet Polyurethane Surfaces with Multiple Additional Biofunctions via Cyclodextrin-Based Host–Guest Interactions. ACS APPLIED BIO MATERIALS 2019; 3:570-576. [DOI: 10.1021/acsabm.9b00969] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Jialei Huang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Dan Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Aiyang Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou 215123, People’s Republic of China
| |
Collapse
|
6
|
Immobilization of Fibronectin-Loaded Polyelectrolyte Nanoparticles on Cardiovascular Material Surface to Improve the Biocompatibility. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5478369. [PMID: 31781622 PMCID: PMC6875231 DOI: 10.1155/2019/5478369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 09/23/2019] [Indexed: 01/02/2023]
Abstract
Vascular stent interventional therapy is the main method for clinical treatment of coronary artery diseases. However, due to the insufficient biocompatibility of cardiovascular materials, the implantation of stents often leads to serious adverse cardiac events. Surface biofunctional modification to improve the biocompatibility of vascular stents has been the focus of current research. In this study, based on the structure and function of extracellular matrix on vascular injury healing, a novel fibronectin-loaded poly-l-lysine/heparin nanoparticles was constructed for stent surface modification. In vitro blood compatibility evaluation results showed that the nanoparticles-modified surface could effectively reduce platelet adhesion and activation. In vitro cellular compatibility evaluation results indicated that the nanocoating may provide adequate efficacy in promoting the adhesion and proliferation of endothelial cells and thereby accelerate endothelialization. This study provides a new approach for the surface biological function modification of vascular stents.
Collapse
|
7
|
Maitz MF, Martins MCL, Grabow N, Matschegewski C, Huang N, Chaikof EL, Barbosa MA, Werner C, Sperling C. The blood compatibility challenge. Part 4: Surface modification for hemocompatible materials: Passive and active approaches to guide blood-material interactions. Acta Biomater 2019; 94:33-43. [PMID: 31226481 DOI: 10.1016/j.actbio.2019.06.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 12/22/2022]
Abstract
Biomedical devices in the blood flow disturb the fine-tuned balance of pro- and anti-coagulant factors in blood and vessel wall. Numerous technologies have been suggested to reduce coagulant and inflammatory responses of the body towards the device material, ranging from camouflage effects to permanent activity and further to a responsive interaction with the host systems. However, not all types of modification are suitable for all types of medical products. This review has a focus on application-oriented considerations of hemocompatible surface fittings. Thus, passive versus bioactive modifications are discussed along with the control of protein adsorption, stability of the immobilization, and the type of bioactive substance, biological or synthetic. Further considerations are related to the target system, whether enzymes or cells should be addressed in arterial or venous system, or whether the blood vessel wall is addressed. Recent developments like feedback controlled or self-renewing systems for drug release or addressing cellular regulation pathways of blood platelets and endothelial cells are paradigms for a generation of blood contacting devices, which are hemocompatible by cooperation with the host system. STATEMENT OF SIGNIFICANCE: This paper is part 4 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Collapse
Affiliation(s)
- Manfred F Maitz
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany; Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Portugal; INEB, Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Niels Grabow
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany
| | - Claudia Matschegewski
- Institut für Biomedizinische Technik, Universitätsmedizin Rostock, Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany; Institute for ImplantTechnology and Biomaterials (IIB) e.V., Friedrich-Barnewitz-Str. 4, 18119 Rostock, Germany
| | - Nan Huang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Elliot L Chaikof
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02115, United States; Wyss Institute for Biologically Inspired Engineering at Harvard University, 3 Blackfan Circle, Boston, MA 02115, United States; Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Mário A Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde, Portugal; INEB, Instituto de Engenharia Biomédica, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carsten Werner
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| | - Claudia Sperling
- Institute Biofunctional Polymer Materials, Max Bergmann Center of Biomaterials, Leibniz-Institut für Polymerforschung Dresden e.V., Dresden, Germany
| |
Collapse
|
8
|
Jin S, Gu H, Chen X, Liu X, Zhan W, Wei T, Sun X, Ren C, Chen H. A facile method to prepare a versatile surface coating with fibrinolytic activity, vascular cell selectivity and antibacterial properties. Colloids Surf B Biointerfaces 2018; 167:28-35. [PMID: 29625420 DOI: 10.1016/j.colsurfb.2018.03.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/27/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022]
Abstract
Clot and thrombus formation on surfaces that come into contact with blood is still the most serious problem for blood contacting devices. Despite many years of continuous efforts in developing hemocompatible materials, it is still of great interest to develop multifunctional materials to enable vascular cell selectivity (to favor rapid endothelialization while inhibiting smooth muscle cell proliferation) and improve hemocompatibility. In addition, biomaterial-associated infections also cause the failure of biomedical implants and devices. However, it remains a challenging task to design materials that are multifunctional, since one of their functions will usually be compromised by the introduction of another function. In the present work, the gold substrate was first layer-by-layer (LbL) deposited with a multilayered polyelectrolyte film containing chitosan (positively charged) and a copolymer of sodium 4-vinylbenzenesulfonate (SS) and the "guest" adamantane monomer 1-adamantan-1-ylmethyl methacrylate (P(SS-co-Ada), negatively charged) via electro-static interactions, referred to as Au-LbL. The chitosan and P(SS-co-Ada) were intended to provide, respectively, resistance to bacteria and heparin-like properties. Then, "host" β-cyclodextrin derivatives bearing seven lysine ligands (CD-L) were immobilized on the Au-LbL surface by host-guest interactions between adamantane residues and CD-L, referred to as Au-LbL/CD-L. Finally, a versatile surface coating with fibrinolytic activity (lysis of nascent clots), vascular cell selectivity and antibacterial properties was developed.
Collapse
Affiliation(s)
- Sheng Jin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Hao Gu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xianshuang Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xiaoli Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China.
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| | - Xuebo Sun
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou 215006, PR China.
| | - Chuanlu Ren
- Department of Lab., No. 100 Hospital, CPLA, 4 Canglangting Street, Suzhou 215007, PR China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren'ai Road, Suzhou 215123, PR China
| |
Collapse
|
9
|
Emerging Technologies in Flow Diverters and Stents for Cerebrovascular Diseases. Curr Neurol Neurosci Rep 2017; 17:96. [DOI: 10.1007/s11910-017-0805-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Vesga B, Hernandez H, Higuera S, Gasior P, Echeveri D, Delgado JA, Dager A, Arana C, Simonton C, Maehara A, Palmaz J, Granada JF. Biological effect of microengineered grooved stents on strut healing: a randomised OCT-based comparative study in humans. Open Heart 2017; 4:e000521. [PMID: 28674616 PMCID: PMC5471868 DOI: 10.1136/openhrt-2016-000521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 12/20/2016] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
Objective To evaluate the biological effect of microengineered stent grooves (MSG) on early strut healing in humans by performing optical coherence tomography (OCT) analysis 3 weeks following the implantation. Background In the experimental setting, MSG accelerate endothelial cell migration and reduce neointimal proliferation compared with bare metal stent (BMS). Methods A total of 37 patients undergoing percutaneous coronary intervention with de novo coronary lesions were randomly assigned to either MSG (n=19) or an identical BMS controls (n=18). All patients underwent OCT imaging at 3 weeks. A total of 7959 struts were included in the final analysis. Results At 3 weeks following stent implantation, almost all struts analysed (~97%) had evidence of tissue coverage. The percentage of partially covered struts was comparable between both groups. However, the percentage of fully embedded struts was higher in the BMS group (81.22%, 49.75–95.52) compared with the MSG group (74.21%, 58.85–86.38). The stent-level analysis demonstrated reduction in neointimal formation (neointimal hyperplasia area and volume reduction of ~14% and ~19%, respectively) in the MSG versus the BMS group. In the strut-level analysis, an even greater reduction (~22% in neointimal thickness) was seen in the MSG group. Layered neointimal was present in ~6% of the OCT frames in the BMS group while it was not present in the MSG group. Conclusions MSG induced a more homogeneous and predictable pattern of surface healing in the early stages following stent implantation. The biological effect of MSG on stent healing has the potential to improve the safety profile of current generation drug-eluting stents. Classifications BMS, OCT, clinical trials.
Collapse
Affiliation(s)
- Boris Vesga
- Universidad Industrial de Santander, Bucaramanga, Colombia.,Instituto del Corazon de Bucaramanga, Bucaramanga, Colombia
| | - Hector Hernandez
- Universidad Industrial de Santander, Bucaramanga, Colombia.,Instituto del Corazon de Bucaramanga, Bucaramanga, Colombia
| | - Sergio Higuera
- Universidad Industrial de Santander, Bucaramanga, Colombia.,Instituto del Corazon de Bucaramanga, Bucaramanga, Colombia
| | - Pawel Gasior
- CRF-Skirball Center for Innovation, Orangeburg, New York, USA.,3rd Department of Cardiology, Medical University of Silesia, Katowice, Poland
| | - Dario Echeveri
- Fundacion Cardioinfantil Instituto de Cardiologia, Bogota, Colombia
| | | | | | | | | | - Akiko Maehara
- Cardiology, Cardiovascular Research Foundation/Columbia University Medical Center, New York, USA
| | | | - Juan F Granada
- Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation, Orangeburg, New York, USA
| |
Collapse
|
11
|
Yang J, Li Q, Yang X, Feng Y, Ren X, Shi C, Zhang W. Multitargeting Gene Delivery Systems for Enhancing the Transfection of Endothelial Cells. Macromol Rapid Commun 2016; 37:1926-1931. [DOI: 10.1002/marc.201600345] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/19/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Weijin Road 92 Tianjin 300072 China
| | - Qian Li
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Weijin Road 92 Tianjin 300072 China
| | - Xiao Yang
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Weijin Road 92 Tianjin 300072 China
| | - Yakai Feng
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin); Weijin Road 92 Tianjin 300072 China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Weijin Road 92 Tianjin 300072 China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Yaguan Road 135 Tianjin 300350 China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology; Tianjin University; Yaguan Road 135 Tianjin 300350 China
- Tianjin University-Helmholtz-Zentrum Geesthacht; Joint Laboratory for Biomaterials and Regenerative Medicine; Yaguan Road 135 Tianjin 300350 China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering; Wenzhou Zhejiang 325011 China
- Institute of Biomaterials and Engineering; Wenzhou Medical University; Wenzhou Zhejiang 325011 China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology; Logistics University of Chinese People's Armed Police Force; Tianjin 300162 China
| |
Collapse
|
12
|
Platelets and coronary artery disease: Interactions with the blood vessel wall and cardiovascular devices. Biointerphases 2016; 11:029702. [DOI: 10.1116/1.4953246] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Xiong K, Qi P, Yang Y, Li X, Qiu H, Li X, Shen R, Tu Q, Yang Z, Huang N. Facile immobilization of vascular endothelial growth factor on a tannic acid-functionalized plasma-polymerized allylamine coating rich in quinone groups. RSC Adv 2016. [DOI: 10.1039/c5ra25917g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biomolecules like VEGF with thiol or amine groups can easily be covalently immobilized onto a Tannic Acid functional plasma polymerized allylamine surface rich in quinone groups in a mild alkali buffer solution based on Schiff base or Michael addition reactions.
Collapse
|
14
|
|
15
|
Yang J, Khan M, Zhang L, Ren X, Guo J, Feng Y, Wei S, Zhang W. Antimicrobial surfaces grafted random copolymers with REDV peptide beneficial for endothelialization. J Mater Chem B 2015; 3:7682-7697. [DOI: 10.1039/c5tb01155h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multifunctional surfaces have been created by surface modification and click reactions. These surfaces possess excellent hemocompatibility and endothelialization, as well as effective antimicrobial activity.
Collapse
Affiliation(s)
- Jing Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Musammir Khan
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Li Zhang
- Tianjin University Helmholtz-Zentrum Geesthacht
- Joint Laboratory for Biomaterials and Regenerative Medicine
- 300072 Tianjin
- China
| | - Xiangkui Ren
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Jintang Guo
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Yakai Feng
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
- Tianjin University Helmholtz-Zentrum Geesthacht
| | - Shuping Wei
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| | - Wencheng Zhang
- Department of Physiology and Pathophysiology
- Logistics University of Chinese People's Armed Police Force
- Tianjin 300162
- China
| |
Collapse
|
16
|
Qi P, Yan W, Yang Y, Li Y, Fan Y, Chen J, Yang Z, Tu Q, Huang N. Immobilization of DNA aptamers via plasma polymerized allylamine film to construct an endothelial progenitor cell-capture surface. Colloids Surf B Biointerfaces 2014; 126:70-9. [PMID: 25575347 DOI: 10.1016/j.colsurfb.2014.12.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
The endothelial progenitor cells (EPCs) capture stent has drawn increasing attentions and become one of the most promising concepts for the next generation vascular stent. In this regard, it is of great significance to immobilize a molecule with the ability to bind EPC for rapid in vivo endothelialization with high specificity. In this work, a facile two-step method aimed at constructing a coating with specific EPC capturing aptamers is reported. The processes involves as the first-step deposition of plasma polymerized allylamine (PPAam) on a substrate to introduce amine groups, followed by the electrostatic adsorption of a 34 bases single strand DNA sequence to the PPAam surface as a second step (PPAam-DNA). Grazing incidence attenuated total reflection Fourier transform infrared spectroscopy (GATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the successful immobilization of the aptamers. Quartz crystal microbalance with dissipation (QCM-D) real time monitoring result shows that about 175 ng/cm(2) aptamers were conjugated onto the PPAam surface. The interactions between the modified surfaces and human umbilical vein endothelial cells (ECs), smooth muscle cells (SMCs), and murine induced EPCs derived from mesenchymal stem cells (MSCs) were also investigated. It was demonstrated that PPAam-DNA samples could capture more EPCs, and present a cellular friendly surface for the proliferation of both EPCs and ECs but no effect on the hyperplasia of SMCs. Also, the co-culture results of 3 types of cells confirmed that the aptamer could specifically bond EPCs rather than ECs and SMCs, suggesting the competitive adhesion advantage of EPCs to ECs and SMCs. These data demonstrate that the EPC aptamer has large potential for designing an EPC captured stent and other vascular grafts with targeted in situ endothelialization.
Collapse
Affiliation(s)
- Pengkai Qi
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Yan
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ying Yang
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Yalong Li
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China
| | - Yi Fan
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Junying Chen
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Zhilu Yang
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Qiufen Tu
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; Laboratory of Biosensing and MicroMechatronics, Southwest Jiaotong University, Chengdu 610031, China.
| | - Nan Huang
- Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031, China; School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|