1
|
Fischbach A, Lamberti M, Simons JA, Wrede E, Theißen A, Winnersbach P, Rossaint R, Stollenwerk A, Bleilevens C. Early Blood Clot Detection Using Forward Scattering Light Measurements Is Not Superior to Delta Pressure Measurements. BIOSENSORS 2023; 13:1012. [PMID: 38131772 PMCID: PMC10741584 DOI: 10.3390/bios13121012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The occurrence of thrombus formation within an extracorporeal membrane oxygenator is a common complication during extracorporeal membrane oxygenation therapy and can rapidly result in a life-threatening situation due to arterial thromboembolism, causing stroke, pulmonary embolism, and limb ischemia in the patient. The standard clinical practice is to monitor the pressure at the inlet and outlet of oxygenators, indicating fulminant, obstructive clot formation indicated by an increasing pressure difference (ΔP). However, smaller blood clots at early stages are not detectable. Therefore, there is an unmet need for sensors that can detect blood clots at an early stage to minimize the associated thromboembolic risks for patients. This study aimed to evaluate if forward scattered light (FSL) measurements can be used for early blood clot detection and if it is superior to the current clinical gold standard (pressure measurements). A miniaturized in vitro test circuit, including a custom-made test chamber, was used. Heparinized human whole blood was circulated through the test circuit until clot formation occurred. Four LEDs and four photodiodes were placed along the sidewall of the test chamber in different positions for FSL measurements. The pressure monitor was connected to the inlet and the outlet to detect changes in ΔP across the test chamber. Despite several modifications in the LED positions on the test chamber, the FSL measurements could not reliably detect a blood clot within the in vitro test circuit, although the pressure measurements used as the current clinical gold standard detected fulminant clot formation in 11 independent experiments.
Collapse
Affiliation(s)
- Anna Fischbach
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.A.S.); (A.T.); (P.W.); (R.R.)
| | - Michael Lamberti
- Informatics 11—Embedded Software, RWTH Aachen University, 52074 Aachen, Germany; (M.L.); (E.W.); (A.S.)
| | - Julia Alexandra Simons
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.A.S.); (A.T.); (P.W.); (R.R.)
| | - Erik Wrede
- Informatics 11—Embedded Software, RWTH Aachen University, 52074 Aachen, Germany; (M.L.); (E.W.); (A.S.)
| | - Alexander Theißen
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.A.S.); (A.T.); (P.W.); (R.R.)
| | - Patrick Winnersbach
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.A.S.); (A.T.); (P.W.); (R.R.)
| | - Rolf Rossaint
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.A.S.); (A.T.); (P.W.); (R.R.)
| | - André Stollenwerk
- Informatics 11—Embedded Software, RWTH Aachen University, 52074 Aachen, Germany; (M.L.); (E.W.); (A.S.)
| | - Christian Bleilevens
- Department of Anesthesiology, University Hospital RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (J.A.S.); (A.T.); (P.W.); (R.R.)
| |
Collapse
|
2
|
Miller C, Sask KN. Fetuin-A adsorption to tunable polydimethylsiloxane and subsequent macrophage response. J Biomed Mater Res A 2023; 111:1096-1109. [PMID: 36592125 DOI: 10.1002/jbm.a.37491] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 01/03/2023]
Abstract
Surface modifications can be applied to biomaterials to alter the various surface properties that influence protein-material interactions and the cellular response. The plasma protein fetuin-A has been found to adsorb to many biomaterials but details of its interactions with polydimethylsiloxane (PDMS) and roles in regulating the immune response are not clear. Here, PDMS modifications are achieved by altering the ratio of PDMS formulations to control elastic modulus, and by coating PDMS with polydopamine (PDA) to attach fetuin-A. Surface characterization confirmed that altering the PDMS formulation changed the elastic modulus without affecting surface wetting properties. Surface roughness was measured using atomic force microscopy and surface chemistry was determined using X-ray photoelectron spectroscopy, with only minor changes detected on the softest samples. PDA deposition on PDMS was confirmed and contact angle measurements demonstrated an increase in hydrophilicity. Fetuin-A adsorption was influenced by the PDMS formulations, adsorption changed in a competitive plasma environment, and PDA was able to immobilize the greatest amount of fetuin-A. The inflammatory effects of fetuin-A were investigated, and data suggests that the elastic modulus influences cytokine secretion from macrophages at certain timepoints, a result likely due to varied protein amounts and orientations/conformations in response to material stiffness. The addition of a PDA layer demonstrated the potentially cytokine mitigating effect upon fetuin-A immobilization when compared to unmodified PDMS samples. The results provide new insight into the interactions of fetuin-A with PDMS and PDA, and the potential immune regulatory properties of fetuin-A modified materials.
Collapse
Affiliation(s)
- Chelsea Miller
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Kyla N Sask
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, Canada
- Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
3
|
Ekdahl KN, Fromell K, Mannes M, Grinnemo KH, Huber-Lang M, Teramura Y, Nilsson B. Therapeutic regulation of complement activation in extracorporeal circuits and intravascular treatments with special reference to the alternative pathway amplification loop. Immunol Rev 2023; 313:91-103. [PMID: 36258635 PMCID: PMC10092679 DOI: 10.1111/imr.13148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A number of clinical treatment modalities involve contact between blood and biomaterials: these include extracorporeal circuits such as hemodialysis, cardiopulmonary bypass, plasmapheresis, and intravascular treatments. Common side effects arising from these treatments are caused by activation of the cascade systems of the blood. Many of these side effects are mediated via the complement system, including thromboinflammatory reactions and rejection of implants. Depending on the composition of the materials, complement activation is triggered via all the activation pathways but is by far mostly driven by the alternative pathway amplification loop. On biomaterial surfaces the alternative pathway amplification is totally unregulated and leads under optimal conditions to deposition of complement fragments, mostly C3b, on the surface leading to a total masking of the underlying surface. In this review, we discuss the mechanism of the complement activation, clinical consequences of the activation, and potential strategies for therapeutic regulation of the activation, using hemodialysis as demonstrator.
Collapse
Affiliation(s)
- Kristina N Ekdahl
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Linnaeus Center of Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Karin Fromell
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| | - Marco Mannes
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Karl-Henrik Grinnemo
- Department of Surgical Sciences, Division of Cardiothoracic Surgery, Uppsala University, Uppsala University Hospital, Uppsala, Sweden
| | - Markus Huber-Lang
- Institute for Clinical and Experimental Trauma-Immunology, University Hospital of Ulm, Ulm, Germany
| | - Yuji Teramura
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden.,Cellular and Molecular Biotechnology Research Institute (CMB), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.,Master's/Doctoral Program in Life Science Innovation (T-LSI), University of Tsukuba, Tsukuba, Japan
| | - Bo Nilsson
- Department of Immunology, Genetics and Pathology (IGP), Rudbeck Laboratory C5:3, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Hong JK, Ruhoff AM, Mathur K, Neto C, Waterhouse A. Mechanisms for Reduced Fibrin Clot Formation on Liquid-Infused Surfaces. Adv Healthc Mater 2022; 11:e2201360. [PMID: 36040004 PMCID: PMC11468711 DOI: 10.1002/adhm.202201360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/09/2022] [Indexed: 01/28/2023]
Abstract
Biomedical devices are prone to blood clot formation (thrombosis), and liquid-infused surfaces (LIS) are effective in reducing the thrombotic response. However, the mechanisms that underpin this performance, and in particular the role of the lubricant, are not well understood. In this work, it is investigated whether the mechanism of LIS action is related to i) inhibition of factor XII (FXII) activation and the contact pathway; ii) reduced fibrin density of clots formed on surfaces; iii) increased mobility of proteins or cells on the surface due to the interfacial flow of the lubricant. The chosen LIS is covalently tethered, nanostructured layers of perfluorocarbons, infused with thin films of medical-grade perfluorodecalin (tethered-liquid perfluorocarbon), prepared with chemical vapor deposition previously optimized to retain lubricant under flow. Results show that in the absence of external flow, interfacial mobility is inherently higher at the liquid-blood interface, making it a key contributor to the low thrombogenicity of LIS, as FXII activity and fibrin density are equivalent at the interface. The findings of this study advance the understanding of the anti-thrombotic behavior of LIS-coated biomedical devices for future coating design. More broadly, enhanced interfacial mobility may be an important, underexplored mechanism for the anti-fouling behavior of surface coatings.
Collapse
Affiliation(s)
- Jun Ki Hong
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
- School of Medical ScienceFaculty of Medicine and HealthThe University of SydneySydneyNSW 2006Australia
- Heart Research InstituteThe University of SydneyNewtownNSW 2042Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW 2006Australia
- The Charles Perkins CentreThe University of SydneySydneyNSW 2006Australia
| | - Alexander M. Ruhoff
- Heart Research InstituteThe University of SydneyNewtownNSW 2042Australia
- The Charles Perkins CentreThe University of SydneySydneyNSW 2006Australia
- Faculty of Medicine and HealthThe University of SydneySydneyNSW 2006Australia
| | - Kavya Mathur
- Heart Research InstituteThe University of SydneyNewtownNSW 2042Australia
- The Charles Perkins CentreThe University of SydneySydneyNSW 2006Australia
- School of Biomedical EngineeringFaculty of EngineeringThe University of SydneySydneyNSW 2006Australia
| | - Chiara Neto
- School of ChemistryThe University of SydneySydneyNSW 2006Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW 2006Australia
| | - Anna Waterhouse
- School of Medical ScienceFaculty of Medicine and HealthThe University of SydneySydneyNSW 2006Australia
- Heart Research InstituteThe University of SydneyNewtownNSW 2042Australia
- The University of Sydney Nano InstituteThe University of SydneySydneyNSW 2006Australia
- The Charles Perkins CentreThe University of SydneySydneyNSW 2006Australia
| |
Collapse
|
5
|
Strohbach A, Busch R. Predicting the In Vivo Performance of Cardiovascular Biomaterials: Current Approaches In Vitro Evaluation of Blood-Biomaterial Interactions. Int J Mol Sci 2021; 22:ijms222111390. [PMID: 34768821 PMCID: PMC8583792 DOI: 10.3390/ijms222111390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 12/29/2022] Open
Abstract
The therapeutic efficacy of a cardiovascular device after implantation is highly dependent on the host-initiated complement and coagulation cascade. Both can eventually trigger thrombosis and inflammation. Therefore, understanding these initial responses of the body is of great importance for newly developed biomaterials. Subtle modulation of the associated biological processes could optimize clinical outcomes. However, our failure to produce truly blood compatible materials may reflect our inability to properly understand the mechanisms of thrombosis and inflammation associated with biomaterials. In vitro models mimicking these processes provide valuable insights into the mechanisms of biomaterial-induced complement activation and coagulation. Here, we review (i) the influence of biomaterials on complement and coagulation cascades, (ii) the significance of complement-coagulation interactions for the clinical success of cardiovascular implants, (iii) the modulation of complement activation by surface modifications, and (iv) in vitro testing strategies.
Collapse
Affiliation(s)
- Anne Strohbach
- Department of Internal Medicine B Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Fleischmannstr. 42-44, 17489 Greifswald, Germany
- Correspondence:
| | - Raila Busch
- Department of Internal Medicine B Cardiology, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., 17475 Greifswald, Germany;
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, Fleischmannstr. 42-44, 17489 Greifswald, Germany
| |
Collapse
|
6
|
Poulis N, Zaytseva P, Gähwiler EKN, Motta SE, Fioretta ES, Cesarovic N, Falk V, Hoerstrup SP, Emmert MY. Tissue engineered heart valves for transcatheter aortic valve implantation: current state, challenges, and future developments. Expert Rev Cardiovasc Ther 2020; 18:681-696. [DOI: 10.1080/14779072.2020.1792777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Nikolaos Poulis
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Polina Zaytseva
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Eric K. N. Gähwiler
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | | | - Nikola Cesarovic
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
| | - Volkmar Falk
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology in Zurich, Zurich, Switzerland
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
- German Center of Cardiovascular Research, Partner Site Berlin, Berlin, Germany
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Wyss Translational Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
7
|
Braune S, Latour RA, Reinthaler M, Landmesser U, Lendlein A, Jung F. In Vitro Thrombogenicity Testing of Biomaterials. Adv Healthc Mater 2019; 8:e1900527. [PMID: 31612646 DOI: 10.1002/adhm.201900527] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/15/2019] [Indexed: 12/29/2022]
Abstract
The short- and long-term thrombogenicity of implant materials is still unpredictable, which is a significant challenge for the treatment of cardiovascular diseases. A knowledge-based approach for implementing biofunctions in materials requires a detailed understanding of the medical device in the biological system. In particular, the interplay between material and blood components/cells as well as standardized and commonly acknowledged in vitro test methods allowing a reproducible categorization of the material thrombogenicity requires further attention. Here, the status of in vitro thrombogenicity testing methods for biomaterials is reviewed, particularly taking in view the preparation of test materials and references, the selection and characterization of donors and blood samples, the prerequisites for reproducible approaches and applied test systems. Recent joint approaches in finding common standards for a reproducible testing are summarized and perspectives for a more disease oriented in vitro thrombogenicity testing are discussed.
Collapse
Affiliation(s)
- Steffen Braune
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Robert A. Latour
- Rhodes Engineering Research CenterDepartment of BioengineeringClemson University Clemson SC 29634 USA
| | - Markus Reinthaler
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Ulf Landmesser
- Department for CardiologyCharité UniversitätsmedizinCampus Benjamin Franklin Hindenburgdamm 30 12203 Berlin Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Institute of ChemistryUniversity of Potsdam Karl‐Liebknecht‐Strasse 24‐25 14476 Potsdam Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin‐Brandenburg Centre for Regenerative Therapies (BCRT)Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
- Helmholtz Virtual Institute “Multifunctional Biomaterials for Medicine”Helmholtz‐Zentrum Geesthacht Kantstrasse 55 14513 Teltow Germany
| |
Collapse
|
8
|
|
9
|
Ekdahl KN, Davoodpour P, Ekstrand-Hammarström B, Fromell K, Hamad OA, Hong J, Bucht A, Mohlin C, Seisenbaeva GA, Kessler VG, Nilsson B. Contact (kallikrein/kinin) system activation in whole human blood induced by low concentrations of α-Fe2O3 nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:735-744. [DOI: 10.1016/j.nano.2017.12.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/27/2017] [Accepted: 12/10/2017] [Indexed: 12/19/2022]
|
10
|
Firkowska-Boden I, Zhang X, Jandt KD. Controlling Protein Adsorption through Nanostructured Polymeric Surfaces. Adv Healthc Mater 2018; 7. [PMID: 29193909 DOI: 10.1002/adhm.201700995] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 10/09/2017] [Indexed: 12/11/2022]
Abstract
The initial host response to healthcare materials' surfaces after implantation is the adsorption of proteins from blood and interstitial fluids. This adsorbed protein layer modulates the biological/cellular responses to healthcare materials. This stresses the significance of the surface protein assembly for the biocompatibility and functionality of biomaterials and necessitates a profound fundamental understanding of the capability to control protein-surface interactions. This review, therefore, addresses this by systematically analyzing and discussing strategies to control protein adsorption on polymeric healthcare materials through the introduction of specific surface nanostructures. Relevant proteins, healthcare materials' surface properties, clinical applications of polymer healthcare materials, fabrication methods for nanostructured polymer surfaces, amorphous, semicrystalline and block copolymers are considered with a special emphasis on the topographical control of protein adsorption. The review shows that nanostructured polymer surfaces are powerful tools to control the amount, orientation, and order of adsorbed protein layers. It also shows that the understanding of the biological responses to such ordered protein adsorption is still in its infancy, yet it has immense potential for future healthcare materials. The review, which is-as far as it is known-the first one discussing protein adsorption on nanostructured polymer surfaces, concludes with highlighting important current research questions.
Collapse
Affiliation(s)
- Izabela Firkowska-Boden
- Chair of Materials Science (CMS); Otto Schott Institute of Materials Research (OSIM); Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
| | - Xiaoyuan Zhang
- Chair of Materials Science (CMS); Otto Schott Institute of Materials Research (OSIM); Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
| | - Klaus D. Jandt
- Chair of Materials Science (CMS); Otto Schott Institute of Materials Research (OSIM); Friedrich Schiller University Jena; Löbdergraben 32 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
- Jena School for Microbial Communication (JSMC); Neugasse 23 07743 Jena Germany
| |
Collapse
|
11
|
Arua UN, Blum FD. Disruptions in the crystallinity of poly(lauryl methacrylate) due to adsorption on silica. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24525] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ugo N. Arua
- Department of Chemistry; Oklahoma State University; Stillwater OK 74078
| | - Frank D. Blum
- Department of Chemistry; Oklahoma State University; Stillwater OK 74078
| |
Collapse
|
12
|
|