1
|
Itina TE. Understanding mono- and bi-metallic Au and Ni nanoparticle responses to fast heating. NANOSCALE ADVANCES 2024:d4na00634h. [PMID: 39263251 PMCID: PMC11382544 DOI: 10.1039/d4na00634h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Nanoparticle assembly, alloying and fragmentation are fundamental processes with significant implications in various fields such as catalysis, materials science, and nanotechnology. Understanding these processes under fast heating conditions is crucial for tailoring nanoparticle properties and optimizing their applications. For this, we employ molecular dynamics simulations to obtain atomic-level insights into nanoparticle behavior. The performed simulations reveal intricate details of sintering, alloying and fragmentation mechanisms shedding light on the underlying physical phenomena governing these processes. The calculation results help to visualize nanoparticle evolution upon undercritical and supercritical heating elucidating not only the role of temperature, but also of nanoparticle sizes and composition. In particular, it is shown that surface tension and surface energy play important roles not only in nanoparticle melting but also in its fragmentation. When the added energy exceeds a critical threshold, the nanoparticle begins to experience alternating compression and expansion. If the tensile stress surpasses the material's strength limit, fragmentation becomes prominent. For very small particles (with radius smaller than ∼10 nm), this occurs more rapidly, whereas sub-nano-cavitation precedes the final fragmentation in larger particles, which behave more like droplets. Interestingly, this effect depends on composition in the case of AuNi alloy nanoparticles, as expected from the phase diagrams and excess energy. The heating level required to overcome the mixing barrier is also determined and is shown to play an important role in the evolution of AuNi nanoparticles, in addition to their size. Furthermore, our findings provide insights into controlling nanoparticle synthesis for various applications in numerous nanotechnological domains, such as catalysis, sensors, material analysis, as well as deseas diagnostics and treatment. This study bridges the gap between experimental observations and theoretical predictions paving the way for designing advanced nanomaterials with enhanced functionalities.
Collapse
Affiliation(s)
- Tatiana E Itina
- Université Jean Monnet Saint-Etienne, CNRS, Institut d Optique Graduate School, Laboratoire Hubert Curien UMR 5516 F-42023 Saint-Etienne France
| |
Collapse
|
2
|
Pellizzoni E, Şologan M, Daka M, Pengo P, Marson D, Posel Z, Franchi S, Bignardi L, Franchi P, Lucarini M, Posocco P, Pasquato L. Thiolate end-group regulates ligand arrangement, hydration and affinity for small compounds in monolayer-protected gold nanoparticles. J Colloid Interface Sci 2021; 607:1373-1381. [PMID: 34583042 DOI: 10.1016/j.jcis.2021.09.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022]
Abstract
The ability to control the properties of monolayer protected gold nanoparticles (MPNPs) discloses unrevealed features stemming from collective properties of the ligands forming the monolayer and presents opportunities to design new materials. To date, the influence of ligand end-group size and capacity to form hydrogen bonds on structure and hydration of small MPNPs (<5 nm) has been poorly studied. Here, we show that both features determine ligands order, solvent accessibility, capacity to host hydrophobic compounds and interfacial properties of MPNPs. The polarity perceived by a radical probe and its binding constant with the monolayer investigated by electron spin resonance is rationalized by molecular dynamics simulations, which suggest that larger space-filling groups - trimethylammonium, zwitterionic and short polyethylene glycol - favor a radial organization of the thiolates, whereas smaller groups - as sulfonate - promote the formation of bundles. Zwitterionic ligands create a surface network of hydrogen bonds, which affects nanoparticle hydrophobicity and maximize the partition equilibrium constant of the probe. This study discloses the role of the chemistry of the end-group on monolayer features with effects that span from molecular- to nano-scale and opens the door to a shift in the conception of new MPNPs exploiting the end-group as a novel design motif.
Collapse
Affiliation(s)
- Elena Pellizzoni
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127 Trieste, (Italy)
| | - Maria Şologan
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127 Trieste, (Italy)
| | - Mario Daka
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127 Trieste, (Italy)
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127 Trieste, (Italy)
| | - Domenico Marson
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, (Italy)
| | - Zbyšek Posel
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, (Italy); Department of Informatics, Jan Evangelista Purkyně University, 400 96 Ústínad Labem, (Czech Republic)
| | - Stefano Franchi
- Elettra Sincrotrone Trieste S.C.p.A., 34149 Trieste, (Italy)
| | - Luca Bignardi
- Department of Physics, University of Trieste, 34127 Trieste, (Italy)
| | - Paola Franchi
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126 Bologna, (Italy)
| | - Marco Lucarini
- Department of Chemistry "G. Ciamician", University of Bologna, I-40126 Bologna, (Italy).
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, 34127 Trieste, (Italy).
| | - Lucia Pasquato
- Department of Chemical and Pharmaceutical Sciences and INSTM Trieste Research Unit, University of Trieste, 34127 Trieste, (Italy).
| |
Collapse
|
3
|
Spataro G, Champouret Y, Coppel Y, Kahn ML. Prominence of the Instability of a Stabilizing Agent in the Changes in Physical State of a Hybrid Nanomaterial. Chemphyschem 2020; 21:2454-2459. [PMID: 32893945 DOI: 10.1002/cphc.202000584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Shaping ability of hybrid nanomaterials is a key point for their further use in devices. It is therefore crucial to control it. To this end, it is necessary that the macroscopic properties of the material remain constant over time. Here, we evidence by multinuclear Magic-Angle Spinning Nuclear Magnetic Resonance spectroscopic study including 17 O isotope exchange that for a ZnO-alkylamine hybrid material, the partial carbonation of amine into ammonium carbamate molecules is behind the conversion from highly viscous liquid to a powdery solid when exposed to air. This carbonation induces modification and reorganization of the organic shell around the nanocrystals and affects significantly the macroscopic properties of the material such as it physical state, its solubility and colloidal stability. This study, straightforwardly extendable, highlights that the nature of the functional chemical group allowing connecting the stabilizing agent (SA) to the surface of the nanoparticles is of tremendous importance especially if the SA is reactive with molecules present in the environment.
Collapse
Affiliation(s)
- Grégory Spataro
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| | - Yohan Champouret
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| | - Yannick Coppel
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| | - Myrtil L Kahn
- Laboratoire de Chimie de Coordination, CNRS UPR 8241, University of Toulouse, 205 route de Narbonne, 31077, Toulouse, France
| |
Collapse
|
4
|
Poulsen KM, Pho T, Champion JA, Payne CK. Automation and low-cost proteomics for characterization of the protein corona: experimental methods for big data. Anal Bioanal Chem 2020; 412:6543-6551. [PMID: 32500258 PMCID: PMC7483600 DOI: 10.1007/s00216-020-02726-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023]
Abstract
Nanoparticles used in biological settings are exposed to proteins that adsorb on the surface forming a protein corona. These adsorbed proteins dictate the subsequent cellular response. A major challenge has been predicting what proteins will adsorb on a given nanoparticle surface. Instead, each new nanoparticle and nanoparticle modification must be tested experimentally to determine what proteins adsorb on the surface. We propose that any future predictive ability will depend on large datasets of protein-nanoparticle interactions. As a first step towards this goal, we have developed an automated workflow using a liquid handling robot to form and isolate protein coronas. As this workflow depends on magnetic separation steps, we test the ability to embed magnetic nanoparticles within a protein nanoparticle. These experiments demonstrate that magnetic separation could be used for any type of nanoparticle in which a magnetic core can be embedded. Higher-throughput corona characterization will also require lower-cost approaches to proteomics. We report a comparison of fast, low-cost, and standard, slower, higher-cost liquid chromatography coupled with mass spectrometry to identify the protein corona. These methods will provide a step forward in the acquisition of the large datasets necessary to predict nanoparticle-protein interactions.
Collapse
Affiliation(s)
- Karsten M Poulsen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Thomas Pho
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Christine K Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
5
|
Chan CH, Poignant F, Beuve M, Dumont E, Loffreda D. Effect of the Ligand Binding Strength on the Morphology of Functionalized Gold Nanoparticles. J Phys Chem Lett 2020; 11:2717-2723. [PMID: 32146808 DOI: 10.1021/acs.jpclett.0c00300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Functionalized gold nanoparticles are investigated by density functional theory calculations in the context of cancer radiotherapy. Several typical experimental shapes, including nanostars, nanospheres, and nanorods, are modeled by optimizing Au clusters covered by organic monolayers composed of hydrated short-chain polyethylene glycol (PEG) ligands. The PEGylation stabilizes significantly the stellation of decahedral Au54 by deforming significantly its geometry at the spikes. The higher stability of the PEG molecules adsorbed on this stellated nanocluster with respect to the more spherical icosahedral Au55 and truncated octahedral Au79 leads to a larger energy cost to desorb them and thus a weaker propensity for the starred nanoparticle to exchange ligands with the cell membrane, in agreement with experiments. These results open interesting possibilities for advancing our understanding of the cellular uptake of gold nanoparticles.
Collapse
Affiliation(s)
- Chen-Hui Chan
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - Floriane Poignant
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, PHABIO, Villeurbanne 69322, France
| | - Michaël Beuve
- Univ Lyon, Université Lyon 1, UMR CNRS5822/IN2P3, IPNL, PRISME, PHABIO, Villeurbanne 69322, France
| | - Elise Dumont
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| | - David Loffreda
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Université Claude Bernard Lyon 1, Laboratoire de Chimie, F-69342 Lyon, France
| |
Collapse
|
6
|
Affiliation(s)
- Christine K. Payne
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, USA
| |
Collapse
|