1
|
Reviakine I. Quartz crystal microbalance in soft and biological interfaces. Biointerphases 2024; 19:010801. [PMID: 38416603 DOI: 10.1116/6.0003312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
Applications of quartz crystal microbalance with dissipation to studying soft and biological interfaces are reviewed. The focus is primarily on data analysis through viscoelastic modeling and a model-free approach focusing on the acoustic ratio. Current challenges and future research and development directions are discussed.
Collapse
|
2
|
Wei J, Shao Y, Qiao S, Li A, Hou S, Zhang WB. Biomacromolecular Characterizations Using State-of-the-Art Quartz Crystal Microbalance with Dissipation. Anal Chem 2023; 95:16435-16446. [PMID: 37921449 DOI: 10.1021/acs.analchem.3c02499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Biomolecular characterization is essential in fields such as drug discovery, glycomics, and cell biology. This feature article focuses on the experimental use of quartz crystal microbalance with dissipation (QCM-D) as a powerful analytical technique to probe biological events ranging from biomacromolecular interactions and conformational changes of biomacromolecules to surface immobilization of biomacromolecules and cell morphological changes.
Collapse
Affiliation(s)
- Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Yu Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Shixin Qiao
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Aaron Li
- China Biolin Scientific AB, Shanghai 201203, P. R. China
| | - Shaogang Hou
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
3
|
Golbek TW, Weidner T. Peptide Orientation Strongly Affected by the Nanoparticle Size as Revealed by Sum Frequency Scattering Spectroscopy. J Phys Chem Lett 2023; 14:9819-9823. [PMID: 37889607 DOI: 10.1021/acs.jpclett.3c01751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The orientation of proteins at interfaces has a profound effect on the function of proteins. For nanoparticles (NPs) in a biological environment, protein orientation determines the toxicity, function, and identity of the NP. Thus, understanding how proteins orientate at NP surfaces is a critical parameter in controlling NP biochemistry. While planar surfaces are often used to model NP interfaces for protein orientation studies, it has been shown recently that proteins can orient very differently on NP surfaces. This study uses sum frequency scattering vibrational spectroscopy of the model helical leucine-lysine (LK) peptide on NPs of different sizes to determine the cause for the orientation effects. The data show that, for low dielectric constant materials, the orientation of the helical LK peptide is a function of the coulombic forces between peptides across different particle volumes. This finding strongly suggests that flat model systems are only of limited use for determining protein orientation at NP interfaces and that charge interactions should be considered when designing medical NPs or assessing NP biocompatibility.
Collapse
Affiliation(s)
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Pasquardini L, Vanzetti L, Canteri R, Cennamo N, Arcadio F, Perri C, D'Agostino G, Pitruzzella R, Rovida R, Chiodi A, Zeni L. Optimization of the immunorecognition layer towards Brucella sp. on gold surface for SPR platform. Colloids Surf B Biointerfaces 2023; 231:113577. [PMID: 37797466 DOI: 10.1016/j.colsurfb.2023.113577] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/08/2023] [Accepted: 09/30/2023] [Indexed: 10/07/2023]
Abstract
A successful immunosensor is characterized by a proper antibody immobilization and orientation in order to enhance the antigen recognition. In this work, a thorough characterization of the antibody functionalized gold surface is performed to set up the best conditions to implement in an optical platform for the detection of Brucella sp. Two different strategies are evaluated, based on a random immobilization and on an oriented one: a direct antibody immobilization on carboxylic mixed polyethylene (PEG) self-assembled monolayer (SAM) or only carboxylic PEG SAM interface is compared to an oriented immobilization on a layer of protein G on the same PEG SAM interfaces. X-ray Photoelectron Spectroscopy (XPS), Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS) and contact angle (CA) are used to chemically characterize the gold functionalized surface and ToF-SIMS is also used to confirm the right antibody orientation. Optical characterization is applied to monitor the functionalization steps and fluorescence measurements are used to set up the proper experimental conditions and also to detect Brucella bacteria on the surface. Best results are obtained with a 10 ng/μl incubation solution of antibody immobilized, in an oriented way, on a mixed PEG SAM interface.
Collapse
Affiliation(s)
| | - Lia Vanzetti
- Fondazione Bruno Kessler (FBK), Micro Nano Facility (MNF), Via Sommarive 18, 38123 Trento, Italy
| | - Roberto Canteri
- Fondazione Bruno Kessler (FBK), Micro Nano Facility (MNF), Via Sommarive 18, 38123 Trento, Italy
| | - Nunzio Cennamo
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Francesco Arcadio
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Chiara Perri
- Moresense srl, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | | | - Rosalba Pitruzzella
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Riccardo Rovida
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy
| | - Alessandro Chiodi
- Moresense srl, Filarete Foundation, Viale Ortles 22/4, 20139 Milano, Italy
| | - Luigi Zeni
- Department of Engineering, University of Campania "L. Vanvitelli", Via Roma 29, 81031 Aversa, Italy.
| |
Collapse
|
5
|
Gamble LJ, Radford D, Grainger DW, Castner DG. Quantitative evaluation of perfluorinated alkanethiol molecular order on gold surfaces. Biointerphases 2023; 18:031009. [PMID: 37306557 PMCID: PMC10264085 DOI: 10.1116/6.0002720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/15/2023] [Accepted: 05/19/2023] [Indexed: 06/13/2023] Open
Abstract
Self-assembled monolayers (SAMs) of perfluoroalkanethiols [CF3(CF2)xCH2CH2SH (x = 3, 5, 7, and 9)] on gold were characterized by x-ray photoelectron spectroscopy (XPS), near edge x-ray absorption fine structure (NEXAFS), and static time-of-flight secondary ion mass spectrometry (ToF-SIMS). Perfluoroalkanethiols of several chain lengths were synthesized using a known hydride reduction method for transforming commercially available perfluoroalkyliodides to corresponding perfluoroalkanethiols. This strategy provides improved product yields compared to other known routes based on hydrolysis from the common thioacetyl perfluoroalkyl intermediate. Angle-dependent XPS analysis revealed that CF3(CF2)xCH2CH2SH (x = 5, 7, and 9; F6, F8, and F10, respectively) SAMs on gold exhibited significant enrichment of the terminal CF3 group at the outer monolayer surface with the sulfur present as a metal-bound thiolate located at the monolayer-gold interface. XPS of the CF3(CF2)3CH2CH2SH (F4) monolayer revealed a thin film with a significant (>50%) amount of hydrocarbon contamination consistent with poorly organized monolayers, while the longest thiol (F10) showed XPS signals attributed to substantial ordering and anisotropy. ToF-SIMS spectra from all four SAMs contained molecular ions representative of the particular perfluorinated thiol used to prepare the monolayer. NEXAFS methods were used to determine degrees of ordering and average tilt for molecules comprising monolayers. The SAMs prepared from the longest (F10) thiols exhibited the highest degree of ordering with the molecular axis nearly perpendicular to the gold surface. The degree of ordering decreased significantly with decreasing length of the perfluorocarbon tail.
Collapse
Affiliation(s)
- Lara J. Gamble
- Department of Bioengineering, National ESCA and Surface Analysis Center for Biomedical Problems, Box 351653 Seattle, Washington 98195-1653
| | - David Radford
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872
| | | | | |
Collapse
|
6
|
Correira JM, Handali PR, Webb LJ. Characterizing Protein-Surface and Protein-Nanoparticle Conjugates: Activity, Binding, and Structure. J Chem Phys 2022; 157:090902. [DOI: 10.1063/5.0101406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many sensors and catalysts composed of proteins immobilized on inorganic materials have been reported over the past few decades. Despite some examples of functional protein-surface and protein-nanoparticle conjugates, thorough characterization of the biological-abiological interface at the heart of these materials and devices is often overlooked in lieu of demonstrating acceptable system performance. This has resulted in a focus on generating functioning protein-based devices without a concerted effort to develop reliable tools necessary to measure the fundamental properties of the bio-abio interface such as surface concentration, biomolecular structure, and activity. In this Perspective we discuss current methods used to characterize these critical properties of devices that operate by integrating a protein into both flat surfaces and nanoparticle materials. We highlight the advantages and drawbacks of each method as they relate to understanding the function of the protein-surface interface, and explore the manner in which an informed understanding of this complex interaction leads directly to the advancement of protein-based materials and technology.
Collapse
Affiliation(s)
| | - Paul R Handali
- The University of Texas at Austin, United States of America
| | - Lauren J. Webb
- Chemistry, The University of Texas at Austin Department of Chemistry, United States of America
| |
Collapse
|
7
|
Cancelliere R, Di Tinno A, Di Lellis AM, Contini G, Micheli L, Signori E. Cost-effective and disposable label-free voltammetric immunosensor for sensitive detection of interleukin-6. Biosens Bioelectron 2022; 213:114467. [PMID: 35760020 DOI: 10.1016/j.bios.2022.114467] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
IL-6 detection is highly desirable since can monitor many diseases in humans and assess the response to treatments. Herein, two novel label-free voltammetric immunosensors for rapid and accurate interleukin-6 (IL-6) detection in human serum are presented. The immunosensors are fabricated by immobilising two different IL-6 antibodies, identified as mAb-IL-6 clone-5 and clone-7, on in-house produced screen-printed electrodes modified with inexpensive recycling biochar (Bio-SPEs). To ensure high structural fidelity and performance, an in-depth electrochemical characterization of the layer-by-layer assembly of the immunosensor was conducted by cyclic voltammetry (CV) and sensing was performed using square wave voltammetry (SWV). The two immunosensors showed good analytical performances in human serum, exhibiting a wide linear range (LR) between 26-125 and 30-138 pg/mL, a good limit of detection (LOD) of 4.8 and 5.4 pg/mL and selectivity for IL-6 over other common cytokines, including IL-1β and TNF-α. Performance comparison of IL-6 immunosensors with those of a commercial spectrophotometric ELISA kit (LOD of 20 pg/mL, RSD% of 15%) denotes a better sensitivity and reproducibility of the proposed label-free devices, associated with a reduced detection time (30 min instead of more than 3 h for ELISA test). Furthermore, the proposed immunosensors were successfully applied in blood samples (with only a dilution of 1:100 v/v in PBS and without additional treatments) with good sensitivity (LOD of 14.3 pg/mL) and reproducibility (RSD% < 11%), thus paving the way for their application as viable diagnostic and therapeutic point-of-care tools alternative to the IL-6 detection techniques routinely used (ELISA and Western Blot).
Collapse
Affiliation(s)
- Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy
| | - Alessio Di Tinno
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy; Department of Electrical and Information Engineering, University of Cassino and Southern Lazio, 03043, Cassino, FR, Italy
| | | | - Giorgio Contini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133, Roma, Italy; Department of Physics, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy.
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133, Roma, Italy.
| | - Emanuela Signori
- Istituto di Farmacologia Traslazionale-CNR (IFT-CNR), Via Fosso del Cavaliere 100, 00133, Roma, Italy.
| |
Collapse
|
8
|
Weidner T, Castner DG. Developments and Ongoing Challenges for Analysis of Surface-Bound Proteins. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:389-412. [PMID: 33979545 PMCID: PMC8522203 DOI: 10.1146/annurev-anchem-091520-010206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Proteins at surfaces and interfaces play important roles in the function and performance of materials in applications ranging from diagnostic assays to biomedical devices. To improve the performance of these materials, detailed molecular structure (conformation and orientation) along with the identity and concentrations of the surface-bound proteins on those materials must be determined. This article describes radiolabeling, surface plasmon resonance, quartz crystal microbalance with dissipation, X-ray photoelectron spectroscopy, secondary ion mass spectrometry, sum frequency generation spectroscopy, and computational techniques along with the information each technique provides for characterizing protein films. A multitechnique approach using both experimental and computation methods is required for these investigations. Although it is now possible to gain much insight into the structure of surface-bound proteins, it is still not possible to obtain the same level of structural detail about proteins on surfaces as can be obtained about proteins in crystals and solutions, especially for large, complex proteins. However, recent results have shown it is possible to obtain detailed structural information (e.g., backbone and side chain orientation) about small peptides (5-20 amino sequences) on surfaces. Current studies are extending these investigations to small proteins such as protein G B1 (∼6 kDa). Approaches for furthering the capabilities for characterizing the molecular structure of surface-bound proteins are proposed.
Collapse
Affiliation(s)
- Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark;
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Departments of Bioengineering and Chemical Engineering, University of Washington, Seattle, Washington 98195, USA;
| |
Collapse
|
9
|
Kamińska A, Gajos K, Woźnicka O, Dłubacz A, Marzec ME, Budkowski A, Stępień EŁ. Using a lactadherin-immobilized silicon surface for capturing and monitoring plasma microvesicles as a foundation for diagnostic device development. Anal Bioanal Chem 2020; 412:8093-8106. [PMID: 32959112 PMCID: PMC7584542 DOI: 10.1007/s00216-020-02938-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022]
Abstract
Microvesicles (MVs) are found in several types of body fluids and are promising disease biomarkers and therapeutic targets. This study aimed to develop a novel biofunctionalized surface for binding plasma microvesicles (PMVs) based on a lab-on-a-chip (LOC) approach. A new lactadherin (LACT)-functionalized surface was prepared and examined for monitoring PMVs. Moreover, two different strategies of LACT immobilization on a silicon surface were applied to compare different LACT orientations. A higher PMV to LACT binding efficiency was observed for LACT bonded to an αvβ3 integrin-functionalized surface compared with that for LACT directly bonded to a glutaraldehyde-modified surface. Effective binding of PMVs and its components for both LACT immobilization strategies was confirmed using spectral ellipsometry and time-of-flight secondary ion mass spectrometry methods. The proposed PMV capturing system can be used as a foundation to design novel point-of-care (POC) diagnostic devices to detect and characterize PMVs in clinical samples. Graphical Abstract.
Collapse
Affiliation(s)
- Agnieszka Kamińska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Katarzyna Gajos
- Department of Molecular and Interfacial Biophysics, M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland.
| | - Olga Woźnicka
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Kraków, Poland
| | - Anna Dłubacz
- Department of Advanced Materials Engineering, M. Smoluchowski Institute of Physics, Jagiellonian Univeristy, 30-348, Kraków, Poland
| | - Magdalena E Marzec
- Institute of Physics, Cracow University of Technology, 30-084, Kraków, Poland
| | - Andrzej Budkowski
- Department of Molecular and Interfacial Biophysics, M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland
| | - Ewa Ł Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Jagiellonian University, 30-348, Kraków, Poland.
| |
Collapse
|
10
|
Controlling orientation, conformation, and biorecognition of proteins on silane monolayers, conjugate polymers, and thermo-responsive polymer brushes: investigations using TOF-SIMS and principal component analysis. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04711-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractControl over orientation and conformation of surface-immobilized proteins, determining their biological activity, plays a critical role in biointerface engineering. Specific protein state can be achieved with adjusted surface preparation and immobilization conditions through different types of protein-surface and protein-protein interactions, as outlined in this work. Time-of-flight secondary ion mass spectroscopy, combining surface sensitivity with excellent chemical specificity enhanced by multivariate data analysis, is the most suited surface analysis method to provide information about protein state. This work highlights recent applications of the multivariate principal component analysis of TOF-SIMS spectra to trace orientation and conformation changes of various proteins (antibody, bovine serum albumin, and streptavidin) immobilized by adsorption, specific binding, and covalent attachment on different surfaces, including self-assembled monolayers on silicon, solution-deposited polythiophenes, and thermo-responsive polymer brushes. Multivariate TOF-SIMS results correlate well with AFM data and binding assays for antibody-antigen and streptavidin-biotin recognition. Additionally, several novel extensions of the multivariate TOF-SIMS method are discussed.Graphical abstract
Collapse
|
11
|
Baio JE, Graham DJ, Castner DG. Surface analysis tools for characterizing biological materials. Chem Soc Rev 2020; 49:3278-3296. [PMID: 32390029 PMCID: PMC7337324 DOI: 10.1039/d0cs00181c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surfaces represent a unique state of matter that typically have significantly different compositions and structures from the bulk of a material. Since surfaces are the interface between a material and its environment, they play an important role in how a material interacts with its environment. Thus, it is essential to characterize, in as much detail as possible, the surface structure and composition of a material. However, this can be challenging since the surface region typically is only minute portion of the entire material, requiring specialized techniques to selectively probe the surface region. This tutorial will provide a brief review of several techniques used to characterize the surface and interface regions of biological materials. For each technique we provide a description of the key underlying physics and chemistry principles, the information provided, strengths and weaknesses, the types of samples that can be analyzed, and an example application. Given the surface analysis challenges for biological materials, typically there is never just one technique that can provide a complete surface characterization. Thus, a multi-technique approach to biological surface analysis is always required.
Collapse
Affiliation(s)
- Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Daniel J Graham
- National ESCA and Surface Analysis Center for Biomedical Problems, Box 351653, University of Washington, Seattle, WA 98195, USA. and Department of Bioengineering, Box 351653, University of Washington, Seattle, WA 98195, USA
| | - David G Castner
- National ESCA and Surface Analysis Center for Biomedical Problems, Box 351653, University of Washington, Seattle, WA 98195, USA. and Department of Bioengineering, Box 351653, University of Washington, Seattle, WA 98195, USA and Department of Chemical Engineering, Box 351653, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|