1
|
Pawar AS, Ghahremanzadeh A, Ghaffari Sharaf M, Unsworth LD. Effect of Uremic Toxins and Methoxy-PEO Chain Density on Plasma Protein Adsorption. ACS Biomater Sci Eng 2025; 11:322-329. [PMID: 39627973 DOI: 10.1021/acsbiomaterials.4c01407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Protein adsorption can direct the host response to blood-contacting biomaterials. Poly(ethylene oxide) (PEO) is commonly employed to minimize nonspecific protein adsorption. Although chain density has been observed to play a role in the inherent resistance of protein adsorption by end-tethered films of PEO, only a few papers correlate the change in PEO chain densities with the adsorbed plasma protein composition. Almost all studies rely upon blood from healthy patients for these studies even though they are applied to the unhealthy. In the case of patients with kidney failure, there is a remarkable change in the blood composition due to retained metabolites. In the pursuit of personalized dialysis, we must address this dearth in the literature regarding the effect of metabolite accumulation in the blood compartment on the adsorption of protein to blood-contacting biomaterials. To this end, surface films of different methoxy-PEO (mPEO) chain densities were used to evaluate the changes in adsorbed proteins in the presence of uremic metabolites (i.e., uremic toxins). End-tethered mPEO films were characterized using contact angles, ellipsometry, and X-ray photoelectron spectroscopy. Plasma protein adsorption was conducted with and without uremic toxins commonly found in patients with end stage kidney disease, and the adsorbed protein profile was identified using immunoblots. It was found that the presence of uremic toxins led to a notable increase in the adsorption of almost all of the proteins. It was evident that while chain density plays a role in overall protein resistance, the effect of uremic toxins led to substantial increases in adsorbed proteins and needs to be considered when designing next-generation blood-contacting materials.
Collapse
Affiliation(s)
- Aishwarya S Pawar
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Ayda Ghahremanzadeh
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada
| |
Collapse
|
2
|
Sharma I, Sharaf MG, Pawar A, Milley A, Unsworth LD. Hemocompatibility of Albumin-Modified Magnetic Nanoparticles. Int J Mol Sci 2024; 25:11975. [PMID: 39596045 PMCID: PMC11593459 DOI: 10.3390/ijms252211975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/30/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Kidney failure leads to the accumulation of metabolites in the blood compartment. This build-up of metabolites has been associated with increased mortality and morbidity in these patients; thus, these metabolites are commonly called uremic toxins. The retention of some uremic toxins in the blood results from a strong interaction with serum albumin, preventing their clearance using standard hemodialysis techniques. Adsorbents are considered the next-generation technology for clearing uremic toxins from the blood, and iron oxide magnetic nanoparticles are a promising material due to a high surface area that is easily modified and the ability to remove them from blood with an external magnetic field. Plasma protein adsorption and clot formation kinetics were determined for unmodified and albumin-modified iron oxide magnetic nanoparticles. Albumin was selected because it can bind uremic toxins, and it is commonly used to passivate surfaces. Coatings were formed and characterized using transmission electron microscopy, thermogravimetric analysis, and zeta-potential analysis. Clotting kinetics, total protein assays, and immunoblots were used to analyze the effect surface modification has on protein adsorption events. Unmodified nanoparticles showed rapid clotting and more adsorbed protein compared to albumin-coated iron oxide nanoparticles. Immunoblots show that modified particles showed changes in albumin, protein C, Immunoglobulin G, transferrin, fibrinogen, α1-antitrypsin, vitronectin, plasminogen, prothrombin, and antithrombin levels compared to unmodified controls. The hemocompatibility of adsorbent materials is essential to their clinical application in clearing the blood of uremic toxins.
Collapse
Affiliation(s)
| | | | | | | | - Larry D. Unsworth
- Department of Chemical and Material Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (I.S.); (M.G.S.); (A.P.); (A.M.)
| |
Collapse
|
3
|
Ghaffari Sharaf M, Li S, Rowe EM, Devine DV, Unsworth LD. Characterization and Hemocompatibility of α, β, and γ Cyclodextrin-Modified Magnetic Nano-Adsorbents. Int J Mol Sci 2024; 25:10710. [PMID: 39409039 PMCID: PMC11476827 DOI: 10.3390/ijms251910710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
Kidney dysfunction leads to the retention of metabolites within the blood that are not effectively cleared with conventional hemodialysis. Magnetic nanoparticle (MNP)-based absorbents have inherent properties that make them amenable to capturing toxins in the blood, notably a large surface area that can be chemically modified to enhance toxin capture and the ability to be easily collected from the blood using an external magnetic field. Cyclodextrins (CDs) present a chemical structure that facilitates the binding of small molecules. However, the hemocompatibility of MNPs modified with films composed of different native types of CDs (α, β, or γ) has not yet been investigated, which is information crucial to the potential clinical application of MNPs to supplement hemodialysis. To this end, films of α-, β-, or γ-CDs were formed on MNPs and characterized. The impact of these films on the adsorbed protein structure, composition of key adsorbed proteins, and clotting kinetics were evaluated. It was found that modified MNPs did not significantly affect the secondary structure of some proteins (albumin, lysozyme, α-lactalbumin). The adsorbed proteome from platelet-poor human plasma was evaluated as a function of film properties. Compared to non-modified nanoparticles, CD-modified MNPs exhibited a significant decrease in the adsorbed protein per surface area of MNPs. The immunoblot results showed variations in the adsorption levels of C3, fibrinogen, antithrombin, Factor XI, and plasminogen across CD-modified MNPs. The hemocompatibility experiments showed that CD-modified MNPs are compatible with human whole blood, with no significant impact on platelet activation, hemolysis, or hemostasis.
Collapse
Affiliation(s)
- Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (M.G.S.); (S.L.)
| | - Shuhui Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (M.G.S.); (S.L.)
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (E.M.R.); (D.V.D.)
| | - Dana V. Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada; (E.M.R.); (D.V.D.)
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (M.G.S.); (S.L.)
| |
Collapse
|
4
|
Gerasimovich E, Kriukova I, Shishkov VV, Efremov YM, Timashev PS, Karaulov A, Nabiev I, Sukhanova A. Interaction of Serum and Plasma Proteins with Polyelectrolyte Microparticles with Core/Shell and Shell-Only Structures. ACS OMEGA 2024; 9:29739-29750. [PMID: 39005812 PMCID: PMC11238302 DOI: 10.1021/acsomega.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/29/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Polyelectrolyte microparticles (MPs) synthesized on calcium carbonate cores are considered a promising basis for new drug delivery systems. It is known that microparticles entering a physiological environment absorb proteins on their surface, which can change the properties of the microparticles and alter their functional activity. This study aimed to compare the compositions of the adsorbed protein layer formed on microparticles with the core/shell and shell structures obtained by layer-by-layer deposition. The difference in the microparticle structure was associated with changes in their surface topography and ζ-potential. These microparticles were incubated with human serum or plasma at 37°C for 24 h. The adsorbed proteins were eluted and analyzed by means of SDS-PAGE. The protein composition of the eluates was determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS); a total of 357 proteins were identified, and 183 of them were detected in all samples. Our results demonstrate that the relative abundance of proteins of different functional groups (immunoglobulins, complement proteins, and apolipoproteins) varied depending on the structure and surface characteristics of the polyelectrolyte microparticles and the incubation medium. Our findings expand the understanding of the influence of the physicochemical properties of the microparticles on their interaction with proteins, which can help to improve the design of microparticles for drug delivery.
Collapse
Affiliation(s)
- Evgeniia Gerasimovich
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russian Federation
| | - Irina Kriukova
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russian Federation
| | - Vsevolod V Shishkov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Yuri M Efremov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Peter S Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russian Federation
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
| | - Igor Nabiev
- Life Improvement by Future Technologies (LIFT) Center, 143025 Moscow, Russian Federation
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115522 Moscow, Russian Federation
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russian Federation
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France
| | - Alyona Sukhanova
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France
| |
Collapse
|
5
|
Li S, Sharaf MG, Rowe EM, Serrano K, Devine DV, Unsworth LD. Hemocompatibility of β-Cyclodextrin-Modified (Methacryloyloxy)ethyl Phosphorylcholine Coated Magnetic Nanoparticles. Biomolecules 2023; 13:1165. [PMID: 37627230 PMCID: PMC10452919 DOI: 10.3390/biom13081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
Adsorbing toxins from the blood to augment membrane-based hemodialysis is an active area of research. Films composed of β-cyclodextrin-co-(methacryloyloxy)ethyl phosphorylcholine (p(PMβCD-co-MPC)) with various monomer ratios were formed on magnetic nanoparticles and characterized. Surface chemistry effects on protein denaturation were evaluated and indicated that unmodified magnetic nanoparticles greatly perturbed the structure of proteins compared to coated particles. Plasma clotting assays were conducted to investigate the stability of plasma in the presence of particles, where a 2:2 monomer ratio yielded the best results for a given total surface area of particles. Total protein adsorption results revealed that modified surfaces exhibited reduced protein adsorption compared to bare particles, and pure MPC showed the lowest adsorption. Immunoblot results showed that fibrinogen, α1-antitrypsin, vitronectin, prekallikrein, antithrombin, albumin, and C3 correlated with film composition. Hemocompatibility testing with whole blood illustrated that the 1:3 ratio of CD to MPC had a negative impact on platelets, as evidenced by the increased activation, reduced response to an agonist, and reduced platelet count. Other formulations had statistically significant effects on platelet activation, but no formulation yielded apparent adverse effects on hemostasis. For the first time, p(PMβCD-co-MPC)-coated MNP were synthesized and their general hemocompatibility assessed.
Collapse
Affiliation(s)
- Shuhui Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.L.)
| | - Mehdi Ghaffari Sharaf
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.L.)
| | - Elyn M. Rowe
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada (K.S.); (D.V.D.)
| | - Katherine Serrano
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada (K.S.); (D.V.D.)
| | - Dana V. Devine
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada (K.S.); (D.V.D.)
| | - Larry D. Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; (S.L.)
| |
Collapse
|
6
|
Panico S, Capolla S, Bozzer S, Toffoli G, Dal Bo M, Macor P. Biological Features of Nanoparticles: Protein Corona Formation and Interaction with the Immune System. Pharmaceutics 2022; 14:pharmaceutics14122605. [PMID: 36559099 PMCID: PMC9781747 DOI: 10.3390/pharmaceutics14122605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoparticles (NPs) are versatile candidates for nanomedical applications due to their unique physicochemical properties. However, their clinical applicability is hindered by their undesirable recognition by the immune system and the consequent immunotoxicity, as well as their rapid clearance in vivo. After injection, NPs are usually covered with layers of proteins, called protein coronas (PCs), which alter their identity, biodistribution, half-life, and efficacy. Therefore, the characterization of the PC is for in predicting the fate of NPs in vivo. The aim of this review was to summarize the state of the art regarding the intrinsic factors closely related to the NP structure, and extrinsic factors that govern PC formation in vitro. In addition, well-known opsonins, including complement, immunoglobulins, fibrinogen, and dysopsonins, such as histidine-rich glycoprotein, apolipoproteins, and albumin, are described in relation to their role in NP detection by immune cells. Particular emphasis is placed on their role in mediating the interaction of NPs with innate and adaptive immune cells. Finally, strategies to reduce PC formation are discussed in detail.
Collapse
Affiliation(s)
- Sonia Panico
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sara Capolla
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Sara Bozzer
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Michele Dal Bo
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 33081 Aviano, Italy
| | - Paolo Macor
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: ; Tel.: +39-0405588683
| |
Collapse
|
7
|
Bahniuk MS, Alidina F, Tan X, Unsworth LD. The last 25 years of research on bioflocculants for kaolin flocculation with recent trends and technical challenges for the future. Front Bioeng Biotechnol 2022; 10:1048755. [PMID: 36507274 PMCID: PMC9731118 DOI: 10.3389/fbioe.2022.1048755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
The generation of kaolin-containing wastewater is an inevitable consequence in a number of industries including mining, wastewater treatment, and bitumen processing. In some cases, the production of kaolin tailings waste during the production of bitumen or phosphate is as high as 3 times greater than the actual produced product. The existing inventory of nearly five billion barrels of oil sands tailings alone represents a massive storage and reclamation challenge, as well as a significant economic and environmental liability. Current reclamation options like inorganic coagulants and organic synthetic polymers may settle kaolin effectively, but may themselves pose an additional environmental hazard. Bioflocculants are an emerging alternative, given the inherent safety and biodegradability of their bio-based compositions. This review summarizes the different research attempts towards a better bioflocculant of kaolin, with a focus on the bioflocculant source, composition, and effective flocculating conditions. Bacillus bacteria were the most prevalent single species for bioflocculant production, with wastewater also hosting a large number of bioflocculant-producing microorganisms while serving as an inexpensive nutrient. Effective kaolin flocculation could be obtained over a broad range of pH values (1-12) and temperatures (5-95°C). Uronic acid and glutamic acid were predominant sugars and amino acids, respectively, in a number of effective bioflocculants, potentially due to their structural and charge similarities to effective synthetic polymers like polyacrylamide. Overall, these results demonstrate that bioflocculants can be produced from a wide range of microorganisms, can be composed of polysaccharides, protein or glycoproteins and can serve as effective treatment options for kaolin. In some cases, the next obstacle to their wide-spread application is scaling to industrially relevant volumes and their deployment strategies.
Collapse
|
8
|
Namazi N. A Modified Polymeric Nano-formulation to Control Binding and Release of Insulin. J Pharm Sci 2022; 111:2481-2489. [DOI: 10.1016/j.xphs.2022.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
|
9
|
Bahniuk MS, Ortega VA, Alshememry AK, Stafford JL, Goss GG, Unsworth LD. Effect of amino acid composition of elastin-like polypeptide nanoparticles on nonspecific protein adsorption, macrophage cell viability and phagocytosis. Biopolymers 2021; 112:e23468. [PMID: 34363693 DOI: 10.1002/bip.23468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Development of elastin-like polypeptide (ELP) biomaterials is widespread, but information critical for clinical deployment is limited, with biocompatibility studies focused on a narrow cross-section of ELP sequences. Macrophages can impair biomaterial systems by degrading or isolating the biomaterial and by activating additional immune functions. Their phagocytic response will reveal early immune biocompatibility of ELP nanoparticles (NPs). This study examines that response, induced by the adsorbed protein corona, as a function of ELP guest amino acid, chain length and NP diameter. The breadth of proteins adsorbed to ELP NPs varied, with valine-containing ELP NPs adsorbing fewer types of proteins than leucine-containing constructs. Particle diameter was also a factor, with smaller leucine-containing ELP NPs adsorbing the broadest range of proteins. Macrophage viability was unaffected by the ELP NPs, and their phagocytic capabilities were unimpeded except when incubated with a 500 nm valine-containing 40-mer. This NP significantly decreased the phagocytic capacity of macrophages relative to the control and to a corresponding 500 nm leucine-containing 40-mer. NP size and the proportion of opsonin to dysopsonin proteins likely influenced this outcome. These results suggest that certain combinations of ELP sequence and particle size can result in an adsorbed protein corona, which may hinder macrophage function.
Collapse
Affiliation(s)
- Markian S Bahniuk
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Van A Ortega
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Abdullah K Alshememry
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Larry D Unsworth
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Designing peptide nanoparticles for efficient brain delivery. Adv Drug Deliv Rev 2020; 160:52-77. [PMID: 33031897 DOI: 10.1016/j.addr.2020.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
The targeted delivery of therapeutic compounds to the brain is arguably the most significant open problem in drug delivery today. Nanoparticles (NPs) based on peptides and designed using the emerging principles of molecular engineering show enormous promise in overcoming many of the barriers to brain delivery faced by NPs made of more traditional materials. However, shortcomings in our understanding of peptide self-assembly and blood-brain barrier (BBB) transport mechanisms pose significant obstacles to progress in this area. In this review, we discuss recent work in engineering peptide nanocarriers for the delivery of therapeutic compounds to the brain: from synthesis, to self-assembly, to in vivo studies, as well as discussing in detail the biological hurdles that a nanoparticle must overcome to reach the brain.
Collapse
|
11
|
Polymer-coated nanoparticle protein corona formation potentiates phagocytosis of bacteria by innate immune cells and inhibits coagulation in human plasma. Biointerphases 2020; 15:051003. [DOI: 10.1116/6.0000385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|