1
|
Hollander JM, Goraltchouk A, Liu J, Xu E, Luppino F, McAlindon TE, Zeng L, Seregin A. Single Injection AAV2-FGF18 Gene Therapy Reduces Cartilage Loss and Subchondral Bone Damage in a Mechanically Induced Model of Osteoarthritis. Curr Gene Ther 2024; 24:331-345. [PMID: 38783531 DOI: 10.2174/0115665232275532231213063634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 05/25/2024]
Abstract
BACKGROUND Osteoarthritis (OA) is a highly debilitating, degenerative pathology of cartilaginous joints affecting over 500 million people worldwide. The global economic burden of OA is estimated at $260-519 billion and growing, driven by aging global population and increasing rates of obesity. To date, only the multi-injection chondroanabolic treatment regimen of Fibroblast Growth Factor 18 (FGF18) has demonstrated clinically meaningful disease-modifying efficacy in placebo-controlled human trials. Our work focuses on the development of a novel single injection disease-modifying gene therapy, based on FGF18's chondroanabolic activity. METHODS OA was induced in Sprague-Dawley rats using destabilization of the medial meniscus (DMM) (3 weeks), followed by intra-articular treatment with 3 dose levels of AAV2-FGF18, rh- FGF18 protein, and PBS. Durability, redosability, and biodistribution were measured by quantifying nLuc reporter bioluminescence. Transcriptomic analysis was performed by RNA-seq on cultured human chondrocytes and rat knee joints. Morphological analysis was performed on knee joints stained with Safranin O/Fast Green and anti-PRG antibody. RESULTS Dose-dependent reductions in cartilage defect size were observed in the AAV2-FGF18- treated joints relative to the vehicle control. Total defect width was reduced by up to 76% and cartilage thickness in the thinnest zone was increased by up to 106%. Morphologically, the vehicle- treated joints exhibited pronounced degeneration, ranging from severe cartilage erosion and bone void formation, to subchondral bone remodeling and near-complete subchondral bone collapse. In contrast, AAV2-FGF18-treated joints appeared more anatomically normal, with only regional glycosaminoglycan loss and marginal cartilage erosion. While effective at reducing cartilage lesions, treatment with rhFGF18 injections resulted in significant joint swelling (19% increase in diameter), as well as a decrease in PRG4 staining uniformity and intensity. In contrast to early-timepoint in vitro RNA-seq analysis, which showed a high degree of concordance between protein- and gene therapy-treated chondrocytes, in vivo transcriptomic analysis, revealed few gene expression changes following protein treatment. On the other hand, the gene therapy treatment exhibited a high degree of durability and localization over the study period, upregulating several chondroanabolic genes while downregulating OA- and fibrocartilage-associated markers. CONCLUSION FGF18 gene therapy treatment of OA joints can provide benefits to both cartilage and subchondral bone, with a high degree of localization and durability.
Collapse
Affiliation(s)
- Judith M Hollander
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| | - Alex Goraltchouk
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| | - Jingshu Liu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
| | - Ellyn Xu
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
| | - Francesco Luppino
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| | - Timothy E McAlindon
- Division of Rheumatology, Immunology, and Allergy, Tufts Medical Center, Boston, MA, United States of America
| | - Li Zeng
- Department of Immunology, Tufts University School of Medicine, 136 Harrison Ave, Boston, MA, United States of America
| | - Alexey Seregin
- Remedium Bio, Inc. 1116 Great Plain Ave, Suite 203, Needham, MA, United States of America
| |
Collapse
|
2
|
Vogiatzi A, Keklikoglou K, Makris K, Argyrou DS, Zacharopoulos A, Sotiropoulou V, Parthenios N, Gkikas A, Kokkori M, Richardson MSW, Fenwick AL, Archontidi S, Arvanitidis C, Robertson J, Parthenios J, Zacharakis G, Twigg SRF, Wilkie AOM, Mavrothalassitis G. Development of Erf-Mediated Craniosynostosis and Pharmacological Amelioration. Int J Mol Sci 2023; 24:7961. [PMID: 37175668 PMCID: PMC10178537 DOI: 10.3390/ijms24097961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/19/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
ETS2 repressor factor (ERF) insufficiency causes craniosynostosis (CRS4) in humans and mice. ERF is an ETS domain transcriptional repressor regulated by Erk1/2 phosphorylation via nucleo-cytoplasmic shuttling. Here, we analyze the onset and development of the craniosynostosis phenotype in an Erf-insufficient mouse model and evaluate the potential of the residual Erf activity augmented by pharmacological compounds to ameliorate the disease. Erf insufficiency appears to cause an initially compromised frontal bone formation and subsequent multisuture synostosis, reflecting distinct roles of Erf on the cells that give rise to skull and facial bones. We treated animals with Mek1/2 and nuclear export inhibitors, U0126 and KPT-330, respectively, to increase Erf activity by two independent pathways. We implemented both a low dosage locally over the calvaria and a systemic drug administration scheme to evaluate the possible indirect effects from other systems and minimize toxicity. The treatment of mice with either the inhibitors or the administration scheme alleviated the synostosis phenotype with minimal adverse effects. Our data suggest that the ERF level is an important regulator of cranial bone development and that pharmacological modulation of its activity may represent a valid intervention approach both in CRS4 and in other syndromic forms of craniosynostosis mediated by the FGFR-RAS-ERK-ERF pathway.
Collapse
Affiliation(s)
- Angeliki Vogiatzi
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
- IMBB, FORTH, 71003 Heraklion, Crete, Greece
| | - Kleoniki Keklikoglou
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003 Heraklion, Crete, Greece
- Biology Department, University of Crete, 71003 Heraklion, Crete, Greece
| | | | | | | | | | | | - Angelos Gkikas
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Maria Kokkori
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Melodie S. W. Richardson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | - Aimée L. Fenwick
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Sofia Archontidi
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| | - Christos Arvanitidis
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003 Heraklion, Crete, Greece
- LifeWatch ERIC, Sector II-II, Plaza de España, 41071 Seville, Spain
| | - Jeremy Robertson
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| | | | | | - Stephen R. F. Twigg
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Andrew O. M. Wilkie
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - George Mavrothalassitis
- Medical School, University of Crete, 71003 Heraklion, Crete, Greece
- IMBB, FORTH, 71003 Heraklion, Crete, Greece
| |
Collapse
|
3
|
Pogue BW, Wilson BC. Optical and x-ray technology synergies enabling diagnostic and therapeutic applications in medicine. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-17. [PMID: 30350489 PMCID: PMC6197862 DOI: 10.1117/1.jbo.23.12.121610] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/24/2018] [Indexed: 05/10/2023]
Abstract
X-ray and optical technologies are the two central pillars for human imaging and therapy. The strengths of x-rays are deep tissue penetration, effective cytotoxicity, and the ability to image with robust projection and computed-tomography methods. The major limitations of x-ray use are the lack of molecular specificity and the carcinogenic risk. In comparison, optical interactions with tissue are strongly scatter dominated, leading to limited tissue penetration, making imaging and therapy largely restricted to superficial or endoscopically directed tissues. However, optical photon energies are comparable with molecular energy levels, thereby providing the strength of intrinsic molecular specificity. Additionally, optical technologies are highly advanced and diversified, being ubiquitously used throughout medicine as the single largest technology sector. Both have dominant spatial localization value, achieved with optical surface scanning or x-ray internal visualization, where one often is used with the other. Therapeutic delivery can also be enhanced by their synergy, where radio-optical and optical-radio interactions can inform about dose or amplify the clinical therapeutic value. An emerging trend is the integration of nanoparticles to serve as molecular intermediates or energy transducers for imaging and therapy, requiring careful design for the interaction either by scintillation or Cherenkov light, and the nanoscale design is impacted by the choices of optical interaction mechanism. The enhancement of optical molecular sensing or sensitization of tissue using x-rays as the energy source is an important emerging field combining x-ray tissue penetration in radiation oncology with the molecular specificity and packaging of optical probes or molecular localization. The ways in which x-rays can enable optical procedures, or optics can enable x-ray procedures, provide a range of new opportunities in both diagnostic and therapeutic medicine. Taken together, these two technologies form the basis for the vast majority of diagnostics and therapeutics in use in clinical medicine.
Collapse
Affiliation(s)
- Brian W. Pogue
- Dartmouth College, Thayer School of Engineering, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Brian C. Wilson
- University of Toronto, Princess Margaret Cancer Centre/University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Durham EL, Howie RN, Black L, Bennfors G, Parsons TE, Elsalanty M, Yu JC, Weinberg SM, Cray JJ. Effects of thyroxine exposure on the Twist 1 +/- phenotype: A test of gene-environment interaction modeling for craniosynostosis. ACTA ACUST UNITED AC 2016; 106:803-813. [PMID: 27435288 DOI: 10.1002/bdra.23543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Craniosynostosis, the premature fusion of one or more of the cranial sutures, is estimated to occur in 1:1800 to 2500 births. Genetic murine models of craniosynostosis exist, but often imperfectly model human patients. Case, cohort, and surveillance studies have identified excess thyroid hormone as an agent that can either cause or exacerbate human cases of craniosynostosis. METHODS Here we investigate the influence of in utero and in vitro exogenous thyroid hormone exposure on a murine model of craniosynostosis, Twist 1 +/-. RESULTS By 15 days post-natal, there was evidence of coronal suture fusion in the Twist 1 +/- model, regardless of exposure. With the exception of craniofacial width, there were no significant effects of exposure; however, the Twist 1 +/- phenotype was significantly different from the wild-type control. Twist 1 +/- cranial suture cells did not respond to thyroxine treatment as measured by proliferation, osteogenic differentiation, and gene expression of osteogenic markers. However, treatment of these cells did result in modulation of thyroid associated gene expression. CONCLUSION Our findings suggest the phenotypic effects of the genetic mutation largely outweighed the effects of thyroxine exposure in the Twist 1 +/- model. These results highlight difficultly in experimentally modeling gene-environment interactions for craniosynostotic phenotypes. Birth Defects Research (Part A) 106:803-813, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emily L Durham
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - R Nicole Howie
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Laurel Black
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Grace Bennfors
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina
| | - Trish E Parsons
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mohammed Elsalanty
- Departments of Oral Biology, Cellular Biology and Anatomy, Orthopaedic Surgery and Oral and Maxillofacial Surgery, Augusta University, Augusta, Georgia.,Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia
| | - Jack C Yu
- Institute for Regenerative and Reparative Medicine, Augusta University, Augusta, Georgia.,Department of Surgery, Division of Plastic Surgery, Augusta University, Augusta, Georgia
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - James J Cray
- Department of Oral Health Sciences, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
5
|
Harris M, Cilwa K, Elster EA, Potter BK, Forsberg JA, Crane NJ. Pilot study for detection of early changes in tissue associated with heterotopic ossification: moving toward clinical use of Raman spectroscopy. Connect Tissue Res 2015; 56:144-52. [PMID: 25738521 DOI: 10.3109/03008207.2015.1013190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Over 60% of combat-wounded patients develop heterotopic ossification (HO). Nearly 33% of them require surgical excision for symptomatic lesions, a procedure that is both fraught with complications and can delay or regress functional rehabilitation. Relative medical contraindications limit widespread use of conventional means of primary prophylaxis, such as nonspecific nonsteroidal anti-inflammatory medications and radiotherapy. Better methods for risk stratification are needed to both mitigate the risk of current means of primary prophylaxis as well as to evaluate novel preventive strategies currently in development. We asked whether Raman spectral changes, measured ex vivo, could be associated with histologic evidence of the earliest signs of HO formation and substance P (SP) expression in tissue biopsies from the wounds of combat casualties. In this pilot study, we compared normal muscle tissue, injured muscle tissue, very early HO lesions (< 16 d post-injury), early HO lesions (> 16 d post-injury) and mature HO lesions. The Raman spectra of these tissues demonstrate clear differences in the Amide I and III spectral regions of HO lesions compared to normal tissue, denoted by changes in the Amide I band center (p < 0.01) and the 1340/1270 cm(-1) (p < 0.05) band area and band height ratios. SP expression in the HO lesions appears to peak between 16 and 30 d post-injury, as determined by SP immunohistochemistry of corresponding tissue sections, potentially indicating optimal timing for administration of therapeutics. Raman spectroscopy may therefore prove a useful, non-invasive and early diagnostic modality to detect HO formation before it becomes evident either clinically or radiographically.
Collapse
Affiliation(s)
- Mitchell Harris
- Department of Surgery, Uniformed Services University of Health Science , Bethesda, MD , USA
| | | | | | | | | | | |
Collapse
|
6
|
Karampas IA, Orkoula MG, Kontoyannis CG. A quantitative bioapatite/collagen calibration method using Raman spectroscopy of bone. JOURNAL OF BIOPHOTONICS 2013; 6:573-86. [PMID: 22961694 DOI: 10.1002/jbio.201200053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 05/21/2023]
Abstract
Numerous calibration models were developed and tested for the quantitative analysis of collagen and bioapatite in bone using Raman spectroscopy. The ν1 phosphate vibration at 960 cm(-1) was used as indicator of the content of bioapatite while for collagen three markers were used: the C-H2 band at 2940 cm(-1) , the amide I band at 1667 cm(-1) and the vibrations of proline and hydroxyproline at 855 and 878 cm(-1) , respectively. Also a calibration model based on the PLS algorithm was developed, too. Validation of the derived calibration models indicated that the model that makes use of the height ratio of the peaks 960/(855+878) exhibits the best accuracy.
Collapse
Affiliation(s)
- I A Karampas
- Department of Pharmacy, University of Patras, 26500 Patras, Greece
| | | | | |
Collapse
|
7
|
Kimura-Suda H, Kajiwara M, Sakamoto N, Kobayashi S, Ijiro K, Yurimoto H, Yamato H. Studies on bone metabolism by using isotope microscopy, FTIR imaging, and micro-Raman spectroscopy. J Oral Biosci 2013. [DOI: 10.1016/j.job.2013.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Raghavan M, Sahar ND, Wilson RH, Mycek MA, Pleshko N, Kohn DH, Morris MD. Quantitative polarized Raman spectroscopy in highly turbid bone tissue. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:037001. [PMID: 20615030 PMCID: PMC2881928 DOI: 10.1117/1.3426310] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Polarized Raman spectroscopy allows measurement of molecular orientation and composition and is widely used in the study of polymer systems. Here, we extend the technique to the extraction of quantitative orientation information from bone tissue, which is optically thick and highly turbid. We discuss multiple scattering effects in tissue and show that repeated measurements using a series of objectives of differing numerical apertures can be employed to assess the contributions of sample turbidity and depth of field on polarized Raman measurements. A high numerical aperture objective minimizes the systematic errors introduced by multiple scattering. We test and validate the use of polarized Raman spectroscopy using wild-type and genetically modified (oim/oim model of osteogenesis imperfecta) murine bones. Mineral orientation distribution functions show that mineral crystallites are not as well aligned (p<0.05) in oim/oim bones (28+/-3 deg) compared to wild-type bones (22+/-3 deg), in agreement with small-angle X-ray scattering results. In wild-type mice, backbone carbonyl orientation is 76+/-2 deg and in oim/oim mice, it is 72+/-4 deg (p>0.05). We provide evidence that simultaneous quantitative measurements of mineral and collagen orientations on intact bone specimens are possible using polarized Raman spectroscopy.
Collapse
Affiliation(s)
- Mekhala Raghavan
- University of Michigan, Department of Biomedical Engineering, 930 North University Avenue, Room 4638, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Raman Spectroscopy of Bone and Cartilage. EMERGING RAMAN APPLICATIONS AND TECHNIQUES IN BIOMEDICAL AND PHARMACEUTICAL FIELDS 2010. [DOI: 10.1007/978-3-642-02649-2_14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Abstract
Bone mineralization is possible via complex interactions among fibroblast growth factor 23 (FGF23), phosphate-regulating gene with homologies to endopeptidases on the X-chromosome (PHEX), and matrix extracellular phosphoglycoprotein. A loss-of-function mutation in PHEX disrupts this interaction leading to hypophosphatemic rickets. X-linked hypophosphatemic (XLH) rickets is the most common form of metabolic rickets, and there have been reports linking XLH rickets to craniosynostosis. A clinical report of a patient with XLH rickets and craniosynostosis is presented with a review of literature. A review of physiology of bone mineralization reveals that, at high levels, there is cross-binding of FGF23 with FGF receptors 2 and 3 at the cranial sutures. This may be the reason for the common association of craniosynostosis and XLH rickets. There are complex interactions of proteins required for mineralization, proteins inhibiting mineralization, bone remodeling, and bone-renal phosphate homeostasis. Clarification of this pathway and reproducibility in a mouse model may pave the way for medical prevention of craniosynostosis in rickets.
Collapse
|
11
|
Goodyear SR, Gibson IR, Skakle JMS, Wells RPK, Aspden RM. A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone 2009; 44:899-907. [PMID: 19284975 DOI: 10.1016/j.bone.2009.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 11/18/2022]
Abstract
Cortical and trabecular bone are both produced and maintained by the same cell types. At the microscopic scale they have a similar lamellar structure but at a macroscopic scale they are very different. Raman microscopy has been used to investigate compositional differences in the two bone types using bone from standard laboratory mice in physiological conditions. Clear differences were observed when complete spectra were compared by principal component analysis (PCA). Analysis of individual bands showed cortical bone to have compositional characteristics of older bone when compared with trabecular material, possibly due to the higher bone turnover traditionally reported in the trabecular compartment.
Collapse
Affiliation(s)
- Simon R Goodyear
- Bone and Musculoskeletal Programme, Division of Applied Medicine, University of Aberdeen, Foresterhill, Aberdeen, UK.
| | | | | | | | | |
Collapse
|
12
|
Krafft C, Steiner G, Beleites C, Salzer R. Disease recognition by infrared and Raman spectroscopy. JOURNAL OF BIOPHOTONICS 2009; 2:13-28. [PMID: 19343682 DOI: 10.1002/jbio.200810024] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Infrared (IR) and Raman spectroscopy are emerging biophotonic tools to recognize various diseases. The current review gives an overview of the experimental techniques, data-classification algorithms and applications to assess soft tissues, hard tissues and body fluids. The methodology section presents the principles to combine vibrational spectroscopy with microscopy, lateral information and fiber-optic probes. A crucial step is the classification of spectral data by a variety of algorithms. We discuss unsupervised algorithms such as cluster analysis or principal component analysis and supervised algorithms such as linear discriminant analysis, soft independent modeling of class analogies, artificial neural networks support vector machines, Bayesian classification, partial least-squares regression and ensemble methods. The selected topics include tumors of epithelial tissue, brain tumors, prion diseases, bone diseases, atherosclerosis, kidney stones and gallstones, skin tumors, diabetes and osteoarthritis.
Collapse
Affiliation(s)
- Christoph Krafft
- Bioanalytical Chemistry, Dresden University of Technology, 01062 Dresden, Germany.
| | | | | | | |
Collapse
|
13
|
Krafft C, Dietzek B, Popp J. Raman and CARS microspectroscopy of cells and tissues. Analyst 2009; 134:1046-57. [DOI: 10.1039/b822354h] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Crane NJ, Popescu V, Morris MD, Steenhuis P, Ignelzi MA. Raman spectroscopic evidence for octacalcium phosphate and other transient mineral species deposited during intramembranous mineralization. Bone 2006; 39:434-42. [PMID: 16627026 DOI: 10.1016/j.bone.2006.02.059] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 02/14/2006] [Accepted: 02/21/2006] [Indexed: 11/26/2022]
Abstract
UNLABELLED To understand early mineralization events, we studied living murine calvarial tissue by Raman spectroscopy using fibroblast growth factor 2 (FGF2)-soaked porous beads. We detected increased levels of a transient phase resembling octacalcium phosphate in sutures undergoing premature suture closure. INTRODUCTION Several calcium phosphates have been postulated as the earliest inorganic precursors to bone mineral. They are unstable and have not been previously detected in tissue specimens. Whether the same intermediates are formed in sutures undergoing premature closure is also unknown. METHODS Six coronal suture tissue specimens from fetal day 18.5 B6CBA F1/J wild-type mice were studied. Three sutures specimens were treated with FGF2-soaked heparin acrylic beads to induce accelerated mineralization and premature suture closure. Three control specimens were treated with empty heparin acrylic beads. All sutures were maintained as organ cultures to permit repeated spectral analyses at 12-24 h intervals over a 72-h period. RESULTS During the first 24 h, the spectra contained bands of octacalcium phosphate (OCP) or an OCP-like mineral. The main phosphorus-oxygen stretch was at 955 cm(-1), instead of the 957-959 cm(-1) seen in bone mineral, and there was an additional band at 1010-1014 cm(-1), as expected for OCP. A broad band was found at 945 cm(-1), characteristic of a highly disordered or amorphous calcium phosphate. An increased amount of mineral was observed in FGF2-treated sutures, but no qualitative differences in Raman spectra were observed between experimental and control specimens. CONCLUSIONS Inorganic mineral deposition proceeds through transient intermediates, including an OCP-like phase. Although this transient phase has been observed in purely inorganic model systems, this study is the first to report OCP or an OCP-like intermediate in living tissue. Raman microspectroscopy allows observation of this transient mineral and may allow observation of other precursors as well.
Collapse
Affiliation(s)
- Nicole J Crane
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | | | | | | | | |
Collapse
|
15
|
Golcuk K, Mandair GS, Callender AF, Sahar N, Kohn DH, Morris MD. Is photobleaching necessary for Raman imaging of bone tissue using a green laser? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:868-73. [PMID: 16584709 DOI: 10.1016/j.bbamem.2006.02.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 02/14/2006] [Accepted: 02/16/2006] [Indexed: 11/15/2022]
Abstract
Raman microspectroscopy is widely used for musculoskeletal tissues studies. But the fluorescence background obscures prominent Raman bands of mineral and matrix components of bone tissue. A 532-nm laser irradiation has been used efficiently to remove the fluorescence background from Raman spectra of cortical bone. Photochemical bleaching reduces over 80% of the fluorescence background after 2 h and is found to be nondestructive within 40 min. The use of electron multiplying couple charge detector (EMCCD) enables to acquire Raman spectra of bone tissues within 1-5 s range and to obtain Raman images less than in 10 min.
Collapse
Affiliation(s)
- Kurtulus Golcuk
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | |
Collapse
|