1
|
Rist D, DePalma T, Stagner E, Tallman MM, Venere M, Skardal A, Schultz ZD. Cancer Cell Targeting, Magnetic Sorting, and SERS Detection through Cell Surface Receptors. ACS Sens 2023; 8:4636-4645. [PMID: 37988612 PMCID: PMC10921760 DOI: 10.1021/acssensors.3c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Integrins are cellular surface receptors responsible for the activation of many cellular pathways in cancer. These integrin proteins can be specifically targeted by small peptide sequences that offer the potential for the differentiation of cellular subpopulations by using magnetically assisted cellular sorting techniques. By adding a gold shell to the magnetic nanoparticles, these integrin-peptide interactions can be differentiated by surface-enhanced Raman spectroscopy (SERS), providing a quick and reliable method for on-target binding. In this paper, we demonstrate the ability to differentiate the peptide-protein interactions of the small peptides CDPGYIGSR and cyclic RGDfC functionalized on gold-coated magnetic nanoparticles with the integrins they are known to bind to using their SERS signal. SW480 and SW620 colorectal cancer cells known to have the integrins of interest were then magnetically sorted using these functionalized nanoparticles, suggesting differentiation between the sorted populations and integrin populations among the two cell lines.
Collapse
Affiliation(s)
- David Rist
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tom DePalma
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Emerie Stagner
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Miranda M Tallman
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Monica Venere
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aleksander Skardal
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zachary D. Schultz
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Cell Theranostics on Mesoporous Silicon Substrates. Pharmaceutics 2020; 12:pharmaceutics12050481. [PMID: 32466284 PMCID: PMC7284777 DOI: 10.3390/pharmaceutics12050481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/17/2022] Open
Abstract
The adhesion, proliferation, and migration of cells over nanomaterials is regulated by a cascade of biochemical signals that originate at the interface of a cell with a substrate and propagate through the cytoplasm to the nucleus. The topography of the substrate plays a major role in this process. Cell adhesion molecules (CAMs) have a characteristic size of some nanometers and a range of action of some tens of nanometers. Controlling details of a surface at the nanoscale-the same dimensional over which CAMs operate-offers ways to govern the behavior of cells and create organoids or tissues with heretofore unattainable precision. Here, using electrochemical procedures, we generated mesoporous silicon surfaces with different values of pore size (PS≈11 nm and PS≈21 nm), roughness (Ra≈7 nm and Ra≈13 nm), and fractal dimension (Df≈2.48 and Df≈2.15). Using electroless deposition, we deposited over these substrates thin layers of gold nanoparticles. Resulting devices feature (i) nanoscale details for the stimulation and control of cell assembly, (ii) arrays of pores for drug loading/release, (iii) layers of nanostructured gold for the enhancement of the electromagnetic signal in Raman spectroscopy (SERS). We then used these devices as cell culturing substrates. Upon loading with the anti-tumor drug PtCl (O,O'-acac)(DMSO) we examined the rate of adhesion and growth of breast cancer MCF-7 cells under the coincidental effects of surface geometry and drug release. Using confocal imaging and SERS spectroscopy we determined the relative importance of nano-topography and delivery of therapeutics on cell growth-and how an unbalance between these competing agents can accelerate the development of tumor cells.
Collapse
|
3
|
Moore TJ, Sharma B. Direct Surface Enhanced Raman Spectroscopic Detection of Cortisol at Physiological Concentrations. Anal Chem 2020; 92:2052-2057. [PMID: 31874025 DOI: 10.1021/acs.analchem.9b04532] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cortisol is an important steroid hormone in human physiology. Variations or abnormalities in the physiological cortisol levels control acute and chronic stress response, as well as contribute to diseases and syndromes including Addison's disease and Cushing syndrome. The ability to monitor cortisol levels in the physiological range is key in diagnosis and monitoring of these conditions, where current methodology for determination of cortisol levels relies on instrumentation that requires extensive sample preparation, long run times, and is destructive to the sample. Raman spectroscopy provides rapid sample analysis with relatively simple instrumentation; however, Raman spectroscopy is an inherently weak technique. To provide an enhanced Raman signal, we use surface enhanced Raman spectroscopy (SERS) which utilizes oscillating electric fields of metal nanoparticles, enhancing the overall electric field and therefore resulting in an enhanced signal. We demonstrate SERS-based detection of cortisol in the physiologically relevant range using colloidal silver nanoparticles in ethanolic solutions and bovine serum albumin. The SERS spectra obtained in an ethanol matrix demonstrate a sigmoidal concentration response over the physiologically relevant concentration range, with a limit of detection established at 177 nM. Analysis of cortisol solutions in a complex matrix (bovine serum albumin in phosphate buffered saline) is also demonstrated through the use of principal components analysis, a multivariate technique, which shows the separation of cortisol in a linear fashion with respect to cortisol concentration.
Collapse
Affiliation(s)
- T Joshua Moore
- Department of Chemistry , The University of Tennessee Knoxville , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| | - Bhavya Sharma
- Department of Chemistry , The University of Tennessee Knoxville , 1420 Circle Drive , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
4
|
Nguyen AH, Peters EA, Schultz ZD. Bioanalytical applications of surface-enhanced Raman spectroscopy: de novo molecular identification. REVIEWS IN ANALYTICAL CHEMISTRY 2017; 36:20160037. [PMID: 29398776 PMCID: PMC5793888 DOI: 10.1515/revac-2016-0037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Surface enhanced Raman scattering (SERS) has become a powerful technique for trace analysis of biomolecules. The use of SERS-tags has evolved into clinical diagnostics, the enhancement of the intrinsic signal of biomolecules on SERS active materials shows tremendous promise for the analysis of biomolecules and potential biomedical assays. The detection of the de novo signal from a wide range of biomolecules has been reported to date. In this review, we examine different classes of biomolecules for the signals observed and experimental details that enable their detection. In particular, we survey nucleic acids, amino acids, peptides, proteins, metabolites, and pathogens. The signals observed show that the interaction of the biomolecule with the enhancing nanostructure has a significant influence on the observed spectrum. Additional experiments demonstrate that internal standards can correct for intensity fluctuations and provide quantitative analysis. Experimental methods that control the interaction at the surface are providing for reproducible SERS signals. Results suggest that combining advances in methodology with the development of libraries for SERS spectra may enable the characterization of biomolecules complementary to other existing methods.
Collapse
|
5
|
Kamińska A, Witkowska E, Winkler K, Dzięcielewski I, Weyher JL, Waluk J. Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens Bioelectron 2014; 66:461-7. [PMID: 25497986 DOI: 10.1016/j.bios.2014.10.082] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/09/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
A highly sensitive immunoassay utilizing surface-enhanced Raman scattering (SERS) has been developed with a new Raman reporter and a unique SERS-active substrate incorporated into a microfluidic device. An appropriately designed Raman reporter, basic fuchsin (FC), gives strong SERS enhancement and has the ability to bind both the antibody and gold nanostructures. The fuchsin-labeled immuno-Au nanoflowers can form a sandwich structure with the antigen and the antibody immobilized on the SERS-active substrate based on Au-Ag coated GaN. Our experimental results indicate that this SERS-active substrate with its strong surface-enhancement factor, high stability and reproducibility plays a crucial role in improving the efficiency of SERS immunoassay. This SERS assay was applied to the detection of Hepatitis B virus antigen (HBsAg) in human blood plasma. A calibration curve was obtained by plotting the intensity of SERS signal of FC band at 1178cm(-1) versus the concentration of antigen. The low detection limit for Hepatitis B virus antigen was estimated to be 0.01IU/mL. The average relative standard deviation (RSD) of this method is less than 10%. This SERS immunoassay gives exact results over a broad linear range, reflecting clinically relevant HBsAg concentrations. It also exhibits high biological specificity for the detection of Hepatitis B virus antigen.
Collapse
Affiliation(s)
- Agnieszka Kamińska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Evelin Witkowska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Katarzyna Winkler
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Igor Dzięcielewski
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
| | - Jan L Weyher
- Institute of High Pressure Physics, Polish Academy of Sciences, Sokołowska 29/37, 01-142 Warsaw, Poland
| | - Jacek Waluk
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Wang H, Schultz ZD. TERS Detection of αVβ3Integrins in Intact Cell Membranes. Chemphyschem 2014; 15:3944-9. [DOI: 10.1002/cphc.201402466] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/28/2014] [Indexed: 11/10/2022]
|
7
|
Driscoll AJ, Harpster MH, Johnson PA. The development of surface-enhanced Raman scattering as a detection modality for portable in vitro diagnostics: progress and challenges. Phys Chem Chem Phys 2013; 15:20415-33. [PMID: 24177331 DOI: 10.1039/c3cp52334a] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This perspective provides an overview of the diverse surface-enhanced Raman scattering (SERS)-based sensor platforms that have been developed for in vitro diagnostic applications. To provide focus, protein and nucleic acid detection assays based on the principle of extrinsic SERS sensing are emphasized, as well as their potential for translation to fully integrated point-of-care (POC) test platforms. The development of intrinsic SERS sensors, which are predicated on the direct detection of analytes by laser excitation, entails unique opportunities and challenges deserving of their own attention. As the robust sensing of disease pathogens and cancers in both clinical facilities and limited resource settings is the targeted objective of many next-generation biosensors, the majority of the research progress summarized here centers on SERS sensors developed for the rapid, sensitive and selective detection of disease-causing pathogens and biomarkers. In our effort to communicate a realistic assessment of the progress that has been made and the challenges that lie ahead, we avoid an overtly optimistic appraisal of the current status of SERS diagnostics that does not tacitly acknowledge the difficulties inherent in aligning SERS-based technologies alongside ELISA and PCR technologies as a complementary method for bioanalyte detection possessing unique advantages.
Collapse
Affiliation(s)
- Ashley J Driscoll
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.
| | | | | |
Collapse
|
8
|
Culha M. Surface-enhanced Raman scattering: an emerging label-free detection and identification technique for proteins. APPLIED SPECTROSCOPY 2013; 67:355-364. [PMID: 23601534 DOI: 10.1366/12-06895] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The detection and identification of biologically important molecules has critical importance in several fields such as medicine, biotechnology, and pharmacology. Surface-enhanced Raman scattering (SERS) is a powerful emerging vibrational spectroscopic technique that allows not only for the characterization, but also for the identification and detection of biomacromolecules in a very short time. In this review, efforts to utilize SERS for label-free protein detection and identification is summarized after a short introduction of proteins and the technique.
Collapse
Affiliation(s)
- Mustafa Culha
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Atasehir, Istanbul 34755 Turkey.
| |
Collapse
|
9
|
Xie W, Qiu P, Mao C. Bio-imaging, detection and analysis by using nanostructures as SERS substrates. ACTA ACUST UNITED AC 2011; 21:5190-5202. [PMID: 21625344 DOI: 10.1039/c0jm03301d] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is a phenomenon that occurs on nanoscale-roughed metallic surface. The magnitude of the Raman scattering signal can be greatly enhanced when the scatterer is placed in the very close vicinity of the surface, which enables this phenomenon to be a highly sensitive analytical technique. SERS inherits the general strongpoint of conventional Raman spectroscopy and overcomes the inherently small cross section problem of a Raman scattering. It is a sensitive and nondestructive spectroscopic method for biological samples, and can be exploited either for the delivery of molecular structural information or for the detection of trace levels of analytes. Therefore, SERS has long been regarded as a powerful tool in biomedical research. Metallic nanostructure plays a key role in all the biomedical applications of SERS because the enhanced Raman signal can only be obtained on the surface of a finely divided substrate. This review focuses on progress made in the use of SERS as an analytical technique in bio-imaging, analysis and detection. Recent progress in the fabrication of SERS active nanostructures is also highlighted.
Collapse
Affiliation(s)
- Wei Xie
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, 73019, USA
| | | | | |
Collapse
|
10
|
Connatser RM, Prokes SM, Glembocki OJ, Schuler RL, Gardner CW, Lewis SA, Lewis LA. Toward Surface-Enhanced Raman Imaging of Latent Fingerprints*. J Forensic Sci 2010; 55:1462-70. [DOI: 10.1111/j.1556-4029.2010.01484.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Liu R, Si M, Kang Y, Zi X, Liu Z, Zhang D. A simple method for preparation of Ag nanofilm used as active, stable, and biocompatible SERS substrate by using electrostatic self-assembly. J Colloid Interface Sci 2010; 343:52-7. [DOI: 10.1016/j.jcis.2009.11.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2009] [Revised: 10/31/2009] [Accepted: 11/18/2009] [Indexed: 10/20/2022]
|
12
|
Raman Spectroscopy: A Tool for Tissue Engineering. EMERGING RAMAN APPLICATIONS AND TECHNIQUES IN BIOMEDICAL AND PHARMACEUTICAL FIELDS 2010. [DOI: 10.1007/978-3-642-02649-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Harpster MH, Zhang H, Sankara-Warrier AK, Ray BH, Ward TR, Kollmar JP, Carron KT, Mecham JO, Corcoran RC, Wilson WC, Johnson PA. SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label. Biosens Bioelectron 2009; 25:674-81. [DOI: 10.1016/j.bios.2009.05.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 02/08/2023]
|
14
|
Aydin O, Altaş M, Kahraman M, Bayrak OF, Culha M. Differentiation of healthy brain tissue and tumors using surface-enhanced Raman scattering. APPLIED SPECTROSCOPY 2009; 63:1095-100. [PMID: 19843358 DOI: 10.1366/000370209789553219] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for characterization of biological samples. SERS spectra from healthy brain tissue and tumors are obtained by sudden freezing of tissue in liquid nitrogen and crashing and mixing it with a concentrated silver colloidal suspension. The acquired spectra from tissues show significant spectral differences that can be used to identify whether it is from a healthy region or tumor. The most significant change on SERS spectra from the healthy/peripheral brain tissue to tumor is the increase of the ratio of the peaks at around 723 to 655 cm(-1). In addition, the spectral changes indicate that the protein content in tumors increases compared to the peripheral/healthy tissue as observed with tumor invasion. The preliminary results show that SERS spectra can be used for a quick diagnosis due to the simplicity of the sample preparation and the speed of the spectral acquisition.
Collapse
Affiliation(s)
- Omer Aydin
- Yeditepe University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, 34755 Kayisdagi-Istanbul, Turkey
| | | | | | | | | |
Collapse
|
15
|
Chen J, Wang C, Irudayaraj J. Ultrasensitive protein detection in blood serum using gold nanoparticle probes by single molecule spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:040501. [PMID: 19725706 DOI: 10.1117/1.3183789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A one-step rapid and ultrasensitive immunoassay capable of detecting proteins in blood serum is developed using gold nanoprobes and fluorescence correlation spectroscopy (FCS). In this approach we take advantage of the inherent photoluminescence property of gold nanoparticles (GNPs) to develop a fluorophore-free assay to observe binding entities by monitoring the diffusion of bound versus unbound molecules in a limited confocal volume. 40-nm GNPs conjugated separately with rabbit anti-IgG (Fc) and goat anti-IgG (Fab) when incubated in blood serum containing IgG forms a sandwich structure constituting dimers and oligomers that can be differentiated by to detect IgG in blood serum at a limit of detection (LOD) of 5 pgml. The novelty of integrating GNPs with FCS to develop a sensitive blood immunoassay brings single molecule methods one step closer to the clinic.
Collapse
|
16
|
Aydin O, Kahraman M, Kiliç E, Culha M. Surface-enhanced Raman scattering of rat tissues. APPLIED SPECTROSCOPY 2009; 63:662-668. [PMID: 19531293 DOI: 10.1366/000370209788559647] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is proven to be a powerful tool for investigation of biological structures. In this study, tissues obtained from different rat organs are examined using SERS. The tissue samples are crushed with a pestle after sudden freezing in liquid nitrogen and mixed with a concentrated colloidal silver nanoparticle suspension. The reproducibility of SERS spectra acquired from several tissue samples from different organs is demonstrated. The collected spectra are comparatively evaluated based on the physiological function of the organ from which the tissue is obtained. The spectra from the tissues show significant differences and indicate that they can be used for tissue characterization and differentiation. The identification of the origins of the bands on the spectra is also attempted. This study suggests that SERS can be used to monitor the changes at the molecular level during metabolic changes in an organ or tissue as a result of a disease or another cause.
Collapse
Affiliation(s)
- Omer Aydin
- Yeditepe University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, 34755 Kayisdagi-Istanbul, Turkey
| | | | | | | |
Collapse
|
17
|
Strategies for label-free optical detection. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2007; 109:395-432. [PMID: 17999039 DOI: 10.1007/10_2007_076] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A large number of methods using direct detection with label-free systems are known. They compete with the well-introduced fluorescence-based methods. However, recent applications take advantage of label-free detection in protein-protein interactions, high-throughput screening, and high-content screening. These new applications require new strategies for biosensors. It becomes more and more obvious that neither the transduction principle nor the recognition elements for the biomolecular interaction process alone determine the quality of the biosensor. Accordingly, the biosensor system has to be considered as a whole. This chapter focuses on strategies to optimize the detection platform and the biomolecular recognition layer. It concentrates on direct detection methods, with special focus on optical transduction. Since even this restriction still leaves a large number of methods, only microrefractometric and microreflectometric methods using planar transducers have been selected for a detailed description and a listing of applications. However, since many review articles on the physical principles exist, the description is kept short. Other methods are just mentioned in brief and for comparison. The outlook and the applications demonstrate the future perspectives of direct optical detection in bioanalytics.
Collapse
|
18
|
Zhang X, Yin H, Cooper JM, Haswell SJ. Characterization of cellular chemical dynamics using combined microfluidic and Raman techniques. Anal Bioanal Chem 2007; 390:833-40. [PMID: 17849101 PMCID: PMC2226000 DOI: 10.1007/s00216-007-1564-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 08/14/2007] [Accepted: 08/17/2007] [Indexed: 11/29/2022]
Abstract
The integration of a range of technologies including microfluidics, surface-enhanced Raman scattering and confocal microspectroscopy has been successfully used to characterize in situ single living CHO (Chinese hamster ovary) cells with a high degree of spatial (in three dimensions) and temporal (1 s per spectrum) resolution. Following the introduction of a continuous flow of ionomycin, the real time spectral response from the cell was monitored during the agonist-evoked Ca2+ flux process. The methodology described has the potential to be used for the study of the cellular dynamics of a range of signalling processes. Spectral mapping of a single CHO cell ![]()
Collapse
Affiliation(s)
- Xunli Zhang
- Department of Chemistry, The University of Hull, Hull, HU6 7RX UK
- School of Engineering Sciences, University of Southampton, Southampton, SO17 1BJ UK
| | - Huabing Yin
- Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | - Jon M. Cooper
- Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow, G12 8QQ UK
| | | |
Collapse
|
19
|
Kahraman M, Yazici MM, Sahin F, Culha M. Experimental parameters influencing surface-enhanced Raman scattering of bacteria. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:054015. [PMID: 17994903 DOI: 10.1117/1.2798640] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a powerful technique for the analysis of a variety of molecules and molecular structures. Due to its great complexity, the acquisition of detailed molecular information from biological organizations such as bacteria is still a challenging task. SERS can provide valuable information once silver or gold surfaces can be brought in close contact with the biological organization. Because several experimental parameters can affect SERS spectra of bacteria, the experimental conditions must be well defined for comparable and reproducible results. The influence of experimental parameters, such as the type of noble metal, size, and aggregation properties of nanoparticles, and the wavelength of the laser light on the SERS of E. coli and B. megaterium are examined. It is demonstrated that the impact of these parameters could be enormous and a standard protocol must be developed depending on the goal of the study.
Collapse
Affiliation(s)
- Mehmet Kahraman
- Yeditepe University, Faculty of Engineering and Architecture, Genetics and Bioengineering Department, Kayisdagi, Istanbul, Turkey
| | | | | | | |
Collapse
|
20
|
Walsh GM, Leane D, Moran N, Keyes TE, Forster RJ, Kenny D, O'Neill S. S-Nitrosylation of Platelet αIIbβ3 As Revealed by Raman Spectroscopy. Biochemistry 2007; 46:6429-36. [PMID: 17474714 DOI: 10.1021/bi0620712] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The exact mechanisms regulating conformational changes in the platelet-specific integrin alphaIIbbeta3 are not fully understood. However, a role exists for thiol/disulfide exchange in integrin conformational changes leading to altered disulfide bonding patterns, via its endogenous thiol isomerase activity. Nitric oxide (NO) accelerates this intrinsic enzymatic activity and, in doing so, reverses the activational state of the integrin on the platelet surface toward a more unactivated one. We propose that it is an S-nitrosylation-induced "shuffling" of thiol/disulfide exchange that regulates this reversal of the activated state of the integrin. In this study, we use Raman spectroscopy to explore S-nitrosylation of purified alphaIIbbeta3. Using S-nitrosoglutathione (GSNO) as a model system, we identify Raman markers which show a direct interaction between NO and the thiol groups of the integrin and reveal many of the structural changes that occur in alphaIIbbeta3 in the course of not only its activation but also its deactivation. Key conformational changes are detected within the integrin when treated with manganese (Mn2+), occurring mainly in the cysteine and disulfide regions of the protein, confirming the importance of thiol/disulfide exchange in integrin activation. These changes are subsequently shown to be reversed in the presence of NO.
Collapse
Affiliation(s)
- Geraldine M Walsh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
21
|
Tang HW, Yang XB, Kirkham J, Smith DA. Probing Intrinsic and Extrinsic Components in Single Osteosarcoma Cells by Near-Infrared Surface-Enhanced Raman Scattering. Anal Chem 2007; 79:3646-53. [PMID: 17441678 DOI: 10.1021/ac062362g] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the capabilities of near-infrared surface-enhanced Raman scattering (SERS) using gold nanoparticles to obtain detailed chemical information with high spatial resolution from within single cancer cells, living or fixed. Colloidal gold particles, 60 nm in size, were introduced into live human osteosarcoma cells by endocytosis by adding them to the growth medium. Rapid SERS mapping of cells indicated that not only could rich vibrational spectra be obtained from intrinsic cellular constituents both in the cytoplasm and nucleus and but also the distribution of extrinsic molecules introduced into the cells, in this case, rhodamine 6G could be characterized, suggesting that the intracellular distribution of chemotherapeutic agents could potentially be measured by this technique. We show that the SERS signal intensity from the cellular components increases and more spectral detail is acquired from dried cells when compared with hydrated cells in buffer. The data also show spectral fluctuations, mainly in intensity but also in peak position, which are dependent upon the intensity of the excitation light and are probably due to diffusion of molecules on the surface of the gold nanoparticles. A detailed understanding of the origins of these effects is still not complete, but the ability to acquire very sensitive SERS inside living cancer cells indicates the potential of this technique as a useful tool in biomedicine.
Collapse
Affiliation(s)
- Hong-Wu Tang
- College of Chemistry and Molecular Science, Wuhan University, Wuhan 430072, P. R. China.
| | | | | | | |
Collapse
|
22
|
Bruzzone S, Malvaldi M, Arrighini GP, Guidotti C. SERS effect in CO physisorbed on homogeneous and core-shell nanoparticle aggregates. Theor Chem Acc 2007. [DOI: 10.1007/s00214-006-0238-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|