1
|
Willms JF, Boss JM, Huo S, Wolf S, Westphal LP, Bögli SY, Inauen C, Baumann D, Fröhlich J, Keller E. Intraparenchymal near-infrared spectroscopy for detection of delayed cerebral ischemia in poor-grade aneurysmal subarachnoid hemorrhage. J Neurosci Methods 2024; 406:110113. [PMID: 38537749 DOI: 10.1016/j.jneumeth.2024.110113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
OBJECTIVE Detection of delayed cerebral ischemia (DCI) is challenging in comatose patients with poor-grade aneurysmal subarachnoid hemorrhage (aSAH). Brain tissue oxygen pressure (PbtO2) monitoring may allow early detection of its occurrence. Recently, a probe for combined measurement of intracranial pressure (ICP) and intraparenchymal near-infrared spectroscopy (NIRS) has become available. In this pilot study, the parameters PbtO2, Hboxy, Hbdeoxy, Hbtotal and rSO2 were measured in parallel and evaluated for their potential to detect perfusion deficits or cerebral infarction. METHODS In patients undergoing multimodal neuromonitoring due to poor neurological condition after aSAH, Clark oxygen probes, microdialysis and NIRS-ICP probes were applied. DCI was suspected when the measured parameters in neuromonitoring deteriorated. Thus, perfusion CT scan was performed as follow up, and DCI was confirmed as perfusion deficit. Median values for PbtO2, Hboxy, Hbdeoxy, Hbtotal and rSO2 in patients with perfusion deficit (Tmax > 6 s in at least 1 vascular territory) and/or already demarked infarcts were compared in 24- and 48-hour time frames before imaging. RESULTS Data from 19 patients (14 University Hospital Zurich, 5 Charité Universitätsmedizin Berlin) were prospectively collected and analyzed. In patients with perfusion deficits, the median values for Hbtotal and Hboxy in both time frames were significantly lower. With perfusion deficits, the median values for Hboxy and Hbtotal in the 24 h time frame were 46,3 [39.6, 51.8] µmol/l (no perfusion deficits 53 [45.9, 55.4] µmol/l, p = 0.019) and 69,3 [61.9, 73.6] µmol/l (no perfusion deficits 74,6 [70.1, 79.6] µmol/l, p = 0.010), in the 48 h time frame 45,9 [39.4, 51.5] µmol/l (no perfusion deficits 52,9 [48.1, 55.1] µmol/l, p = 0.011) and 69,5 [62.4, 74.3] µmol/l (no perfusion deficits 75 [70,80] µmol/l, p = 0.008), respectively. In patients with perfusion deficits, PbtO2 showed no differences in both time frames. PbtO2 was significantly lower in patients with infarctions in both time frames. The median PbtO2 was 17,3 [8,25] mmHg (with no infarctions 29 [22.5, 36] mmHg, p = 0.006) in the 24 h time frame and 21,6 [11.1, 26.4] mmHg (with no infarctions 31 [22,35] mmHg, p = 0.042) in the 48 h time frame. In patients with infarctions, the median values of parameters measured by NIRS showed no significant differences. CONCLUSIONS The combined NIRS-ICP probe may be useful for early detection of cerebral perfusion deficits and impending DCI. Validation in larger patient collectives is needed.
Collapse
Affiliation(s)
- Jan F Willms
- Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Jens M Boss
- Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Shufan Huo
- Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Wolf
- Department of Neurosurgery, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Laura P Westphal
- Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stefan Y Bögli
- Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Corinne Inauen
- Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | | | - Emanuela Keller
- Neurocritical Care Unit, Department of Neurosurgery and Institute of Intensive Care Medicine, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Roldan M, Chatterjee S, Kyriacou PA. Brain Light-Tissue Interaction Modelling: Towards a non-invasive sensor for Traumatic Brain Injury. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1292-1296. [PMID: 34891522 DOI: 10.1109/embc46164.2021.9630909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death worldwide, yet there is no systematic approach to monitor TBI non-invasively. The main motivation of this work is to create new knowledge relating to light brain interaction using a Monte Carlo Model, which could aid in the development of non-invasive optical sensors for the continuous assessment of TBI. To this aim, a multilayer model tissue-model of adult human head was developed and explored at the near-infrared optical wavelength. Investigation reveals that maximum light (40-50%) is absorbed in the skull and the minimum light is absorbed in the subarachnoid space (0-1%). It was found that the absorbance of light decreases with increasing source-detector separation up to 3cm where light travels through the subarachnoid space, after which the absorbance increases with the increasing separation. Such information will be helpful towards the modelling of neurocritical brain tissue followed by the sensor development.
Collapse
|
3
|
Forcione M, Chiarelli AM, Davies DJ, Perpetuini D, Sawosz P, Merla A, Belli A. Cerebral perfusion and blood-brain barrier assessment in brain trauma using contrast-enhanced near-infrared spectroscopy with indocyanine green: A review. J Cereb Blood Flow Metab 2020; 40:1586-1598. [PMID: 32345103 PMCID: PMC7370372 DOI: 10.1177/0271678x20921973] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Contrast-enhanced near-infrared spectroscopy (NIRS) with indocyanine green (ICG) can be a valid non-invasive, continuous, bedside neuromonitoring tool. However, its usage in moderate and severe traumatic brain injury (TBI) patients can be unprecise due to their clinical status. This review is targeted at researchers and clinicians involved in the development and application of contrast-enhanced NIRS for the care of TBI patients and can be used to design future studies. This review describes the methods developed to monitor the brain perfusion and the blood-brain barrier integrity using the changes of diffuse reflectance during the ICG passage and the results on studies in animals and humans. The limitations in accuracy of these methods when applied on TBI patients and the proposed solutions to overcome them are discussed. Finally, the analysis of relative parameters is proposed as a valid alternative over absolute values to address some current clinical needs in brain trauma care. In conclusion, care should be taken in the translation of the optical signal into absolute physiological parameters of TBI patients, as their clinical status must be taken into consideration. Discussion on where and how future studies should be directed to effectively incorporate contrast-enhanced NIRS into brain trauma care is given.
Collapse
Affiliation(s)
- Mario Forcione
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Antonio M Chiarelli
- Department of Neuroscience Imaging and Clinical Science, Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - David J Davies
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - David Perpetuini
- Department of Neuroscience Imaging and Clinical Science, Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Arcangelo Merla
- Department of Neuroscience Imaging and Clinical Science, Institute for Advanced Biomedical Technologies, University G. D'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Antonio Belli
- National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre (NIHR-SRMRC), University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.,Neuroscience & Ophthalmology Research Group, Institute of Inflammation & Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Wang L, Ayaz H, Izzetoglu M. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications. JOURNAL OF BIOPHOTONICS 2019; 12:e201900175. [PMID: 31291506 DOI: 10.1002/jbio.201900175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 05/20/2023]
Abstract
Understanding near infrared light propagation in tissue is vital for designing next generation optical brain imaging devices. Monte Carlo (MC) simulations provide a controlled mechanism to characterize and evaluate contributions of diverse near infrared spectroscopy (NIRS) sensor configurations and parameters. In this study, we developed a multilayer adult digital head model under both healthy and clinical settings and assessed light-tissue interaction through MC simulations in terms of partial differential pathlength, mean total optical pathlength, diffuse reflectance, detector light intensity and spatial sensitivity profile of optical measurements. The model incorporated four layers: scalp, skull, cerebrospinal-fluid and cerebral cortex with and without a customizable lesion for modeling hematoma of different sizes and depths. The effect of source-detector separation (SDS) on optical measurements' sensitivity to brain tissue was investigated. Results from 1330 separate simulations [(4 lesion volumes × 4 lesion depths for clinical +3 healthy settings) × 7 SDS × 10 simulation = 1330)] each with 100 million photons indicated that selection of SDS is critical to acquire optimal measurements from the brain and recommended SDS to be 25 to 35 mm depending on the wavelengths to obtain optical monitoring of the adult brain function. The findings here can guide the design of future NIRS probes for functional neuroimaging and clinical diagnostic systems.
Collapse
Affiliation(s)
- Lei Wang
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania
| | - Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, Pennsylvania
- Department of Family and Community Health, University of Pennsylvania, Philadelphia, Pennsylvania
- Children's Hospital of Philadelphia, Center for Injury Research and Prevention, Philadelphia, Pennsylvania
| | - Meltem Izzetoglu
- Villanova University, Electrical and Computer Engineering, Villanova, Pennsylvania
| |
Collapse
|
5
|
Kooi EMW, Verhagen EA, Elting JWJ, Czosnyka M, Austin T, Wong FY, Aries MJ. Measuring cerebrovascular autoregulation in preterm infants using near-infrared spectroscopy: an overview of the literature. Expert Rev Neurother 2017. [DOI: 10.1080/14737175.2017.1346472] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Elisabeth M. W. Kooi
- Beatrix Children’s Hospital, Division of Neonatology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elise A. Verhagen
- Sophia Children’s Hospital, University of Rotterdam, Erasmus University Hospital, Rotterdam, The Netherlands
| | - Jan Willem J. Elting
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marek Czosnyka
- Department of Academic Neurosurgery, Addenbrooke’s Hospital, University of Cambridge, Cambridge, UK
| | - Topun Austin
- Cambridge University Hospitals NHS Foundation Trust, Rosie Hospital, Cambridge, UK
| | - Flora Y. Wong
- Monash Newborn, Monash Medical Centre; Department of Paediatrics, Monash University; The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, Australia
| | - Marcel J.H. Aries
- Department of Intensive Care, University of Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
6
|
Niederer P, Fankhauser F. Theoretical and practical aspects relating to the photothermal therapy of tumors of the retina and choroid: A review. Technol Health Care 2017; 24:607-26. [PMID: 27129030 DOI: 10.3233/thc-161163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Photothermal treatment of tumors of the retina and choroid such as retinoblastomas, malignant melanomas, benign tumors as well as of vascular malformations can be performed by using laser radiation. A number of basic physical laws have to be taken into account in this procedure. Of particular importance thereby are: Arrhenius' law to approximate the kinetics of protein denaturation and photocoagulation, furthermore the electromagnetic radiation field, the distribution of both radiant and thermal energy induced in tumors and vascular structures, the influence of the wavelength and laser pulse duration (exposure time), as well as of the optical properties of the tissue. Strict confinement of the extent of the photothermal damage is critical since such pathological entities are frequently located close to the macula or optic nerve head.The conditions for tumor destruction are best fulfilled when using radiation in the near-infrared range of the electromagnetic spectrum such as that emitted from the diode (810 nm) and the Nd: YAG (1064 nm) laser, because of the good optical penetration properties of these radiations in tissue. Short wavelength sources of radiation, such as the argon ion (488, 514 nm) or the freqeuency-doubled Nd: YAG (532 nm) laser are less well suited for the irradiation of large vascular structures due to their poor penetration depths. However, for vascular formations with a small thickness (1 mm or less), short wavelength sources appear to be the most appropriate choice. Optical coupling of radiant energy to the eye by means of indirect ophthalmoscopic systems or positive contact lenses is furthermore of importance. Strong positive lenses may lead to severe constrictions of the laser beam within the anterior segment, that leads to high irradiance increasing the probability for structures to be damaged; with negative contact lenses, such as the -64 D Goldmann type lens, this danger is largely absent.
Collapse
Affiliation(s)
- P Niederer
- Institute for Biomedical Engineering, University and Swiss Federal Institute of Technology, Zürich, Switzerland
| | | |
Collapse
|
7
|
Keller E, Froehlich J, Baumann D, Böcklin C, Sikorski C, Oberle M, Muser M. Detection of delayed cerebral ischemia (DCI) in subarachnoid haemorrhage applying near-infrared spectroscopy: elimination of the extracerebral signal by transcutaneous and intraparenchymatous measurements in parallel. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:243-7. [PMID: 25366631 DOI: 10.1007/978-3-319-04981-6_41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Detection of delayed cerebral ischemia (DCI) in high-grade subarachnoid haemorrhage (SAH) is an unsolved issue. Conventional near-infrared spectroscopy (NIRS) with optodes applied over the skin is controversial because the NIRS signal is contaminated by extracerebral tissue. The objective is to quantify and subtract the contribution from extracerebral tissue from the signal by using measurements in parallel with a NIRS brain tissue probe and conventional NIRS. METHODS In a patient with high-grade SAH, two approaches for NIRS were applied. First, a conventional brain tissue probe for intracranial pressure (ICP) monitoring, supplied by optical fibres, was placed into the brain tissue 2 cm deep from the dura. Second, for conventional NIRS, a plaster-based patch carrying optodes (one emitter, two detectors) was attached to the skin. Central venous injections of 0.3 mg/kg body weight (bw) indocyanine green (ICG) were performed. ICG dye dilution curves obtained with the probe and patch were collected simultaneously and analysed for blood flow values. RESULTS Twelve measurements in parallel with the probe and patch were performed. Mean cerebral blood flow (CBF) for the probe was higher (24.8 ± 9.1 ml/100 g/min) compared with the values obtained with the patch (for detector 1, extra-cerebral blood flow [ECBF] mean 5.1 ± 1.8 ml/100 g/min; p = 0.002; for detector 2, 6.6 ± 2.1 ml/100 g/min; p = 0.002). CBF values obtained with the probe correlated with blood flow values obtained with the patch (for CBF vs. ECBF detector 1, r = 0.72 [p = 0.008]; ECBF detector 2, r = 0.79 [p = 0.002]). CONCLUSIONS Blood flow values obtained with conventional NIRS correlated significantly with absolute CBF values obtained directly within the brain tissue. Simultaneous measurements with the NeMo Probe and NeMo Patch allow quantification and subtraction of the contribution from extracerebral tissues from the signal obtained with conventional NIRS.
Collapse
Affiliation(s)
- Emanuela Keller
- Neurocritical Care Unit, Department of Neurosurgery, University Hospital Zurich, Frauenklinikstrasse 10, Zuerich, CH-8091, Switzerland,
| | | | | | | | | | | | | |
Collapse
|
8
|
Zanganeh S, Li H, Kumavor PD, Alqasemi U, Aguirre A, Mohammad I, Stanford C, Smith MB, Zhu Q. Photoacoustic imaging enhanced by indocyanine green-conjugated single-wall carbon nanotubes. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:096006. [PMID: 24002193 PMCID: PMC3759855 DOI: 10.1117/1.jbo.18.9.096006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/29/2013] [Indexed: 05/04/2023]
Abstract
A photoacoustic contrast agent that is based on bis-carboxylic acid derivative of indocyanine green (ICG) covalently conjugated to single-wall carbon nanotubes (ICG/SWCNT) is presented. Covalently attaching ICG to the functionalized SWCNT provides a more robust system that delivers much more ICG to the tumor site. The detection sensitivity of the new contrast agent in a mouse tumor model is demonstrated in vivo by our custom-built photoacoustic imaging system. The summation of the photoacoustic tomography (PAT) beam envelope, referred to as the "PAT summation," is used to demonstrate the postinjection light absorption of tumor areas in ICG- and ICG/SWCNT-injected mice. It is shown that ICG is able to provide 33% enhancement at approximately 20 min peak response time with reference to the preinjection PAT level, while ICG/SWCNT provides 128% enhancement at 80 min and even higher enhancement of 196% at the end point of experiments (120 min on average). Additionally, the ICG/SWCNT enhancement was mainly observed at the tumor periphery, which was confirmed by fluorescence images of the tumor samples. This feature is highly valuable in guiding surgeons to assess tumor boundaries and dimensions in vivo and to achieve clean tumor margins to improve surgical resection of tumors.
Collapse
Affiliation(s)
- Saeid Zanganeh
- University of Connecticut, Departments of Biomedical Engineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| | - Hai Li
- University of Connecticut, Departments of Biomedical Engineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| | - Patrick D. Kumavor
- University of Connecticut, Departments of Biomedical Engineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| | - Umar Alqasemi
- University of Connecticut, Departments of Biomedical Engineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| | - Andres Aguirre
- University of Connecticut, Departments of Biomedical Engineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| | - Innus Mohammad
- University of Connecticut, Department of Chemistry, Storrs, Connecticut 06269
| | - Courtney Stanford
- University of Connecticut, Department of Chemistry, Storrs, Connecticut 06269
| | - Michael B. Smith
- University of Connecticut, Department of Chemistry, Storrs, Connecticut 06269
| | - Quing Zhu
- University of Connecticut, Departments of Biomedical Engineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
- Address all correspondence to: Quing Zhu, University of Connecticut, Departments of Biomedical Engineering and Electrical and Computer Engineering, Storrs, Connecticut 06269. Tel: 860-486-5523; Fax: 860-486-2447; E-mail:
| |
Collapse
|
9
|
Chuang CC, Chen CM, Hsieh YS, Liu TC, Sun CW. Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data. JOURNAL OF BIOPHOTONICS 2013; 6:267-74. [PMID: 22678984 DOI: 10.1002/jbio.201200025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/15/2012] [Accepted: 04/23/2012] [Indexed: 05/16/2023]
Abstract
The goal of this study is to prove that the light propagation in the head by used the 3-D optical model from in vivo MRI data set can also provide significant characteristics on the spatial sensitivity of cerebral cortex folding geometry based on Monte Carlo simulation. Thus, we proposed a MRI based approach for 3-D brain modeling of near-infrared spectroscopy (NIRS). In the results, the spatial sensitivity profile of the cerebral cortex folding geometry and the arrangement of source-detector separation have being necessarily considered for applications of functional NIRS. The optimal choice of source-detector separation is suggested within 3-3.5 cm by the received intensity with different source-detector separations and the ratio of received light from the gray and white matter layer is greater than 50%. Additionally, this study has demonstrated the capability of NIRS in not only assessing the functional but also detecting the structural change of the brain by taking advantage of the low scattering and absorption coefficients observed in CSF of sagittal view.
Collapse
Affiliation(s)
- Ching-Cheng Chuang
- Biophotonics and Molecular Imaging Research Center, Institute of Biophotonics, and Biomedical Optical Imaging Lab, National Yang-Ming University, Taipei 11221, Taiwan, ROC
| | | | | | | | | |
Collapse
|
10
|
Oldag A, Goertler M, Bertz AK, Schreiber S, Stoppel C, Heinze HJ, Kopitzki K. Assessment of cortical hemodynamics by multichannel near-infrared spectroscopy in steno-occlusive disease of the middle cerebral artery. Stroke 2013; 43:2980-5. [PMID: 23091122 DOI: 10.1161/strokeaha.112.656710] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE In a pilot study we evaluated near-infrared spectroscopy as to its potential benefit in monitoring patients with steno-occlusive disease of a major cerebral artery for alterations in cortical hemodynamics. METHODS Cortical maps of time-to-peak (TTP) in 10 patients unilaterally affected by severe stenosis or occlusion of the middle cerebral artery were acquired by multichannel near-infrared spectroscopy after bolus application of indocyanine green. Hemodynamic manifestations were assessed by comparison between affected and unaffected hemisphere and evaluated for common constituents by principal component analysis. In one patient, TTP values were compared with those obtained by dynamic susceptibility contrast imaging. RESULTS TTP was increased on the affected hemisphere in 9 patients. Mean difference in TTP between hemispheres was 0.44 second (P<0.05) as compared with a mean lateral difference of 0.12 second found in a control group of 10 individuals. In group analysis a significant rise in TTP was found in the distribution of the affected middle cerebral artery, whereas principal component analysis suggests augmentation of hemodynamic effects toward the border zones as a dominant pattern. A linear correlation of 0.61 between TTP values determined by dynamic susceptibility contrast MRI and near-infrared spectroscopy was found to be statistically significant (P<0.001). CONCLUSIONS Multichannel near-infrared spectroscopy might facilitate detection of disease-related hemodynamic changes as yet only accessible by tomographic imaging modalities. Being indicative for hypoperfusion and collateral flow increased values of TTP, as found to a varying extent in the present patient group, might be of clinical relevance.
Collapse
Affiliation(s)
- Andreas Oldag
- Department of Neurology, Otto-von-Guericke University, Madgeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Seule M, Muroi C, Sikorski C, Keller E. Monitoring of cerebral hemodynamics and oxygenation to detect delayed ischemic neurological deficit after aneurysmal subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2012; 115:57-61. [PMID: 22890645 DOI: 10.1007/978-3-7091-1192-5_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
One of the major goals in the treatment of patients with aneurysmal subarachnoid hemorrhage (aSAH) is early detection and treatment of delayed ischemic neurologic deficits (DINDs) to prevent cerebral infarction and thus poor outcome or even death. The complex changes of cerebral metabolism, hemodynamics, and oxygenation after SAH are underestimated if they are considered exclusively based on angiographic cerebral vasospasm (CVS). The discrepancies on one hand may arise from the heterogeneous and complex pathophysiology of DINDs. On the other hand, the occurrence of DINDs may depend on the relationship between local cerebral oxygen delivery and demand, which can only be determined if cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)) can be measured. We briefly review the most relevant methods for monitoring cerebral hemodynamics and oxygenation and discuss the limitations associated with early diagnosis of DINDs in patients with severe aSAH not amenable for clinical neurological examination.
Collapse
Affiliation(s)
- Martin Seule
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
12
|
Milej D, Gerega A, Żołek N, Weigl W, Kacprzak M, Sawosz P, Mączewska J, Fronczewska K, Mayzner-Zawadzka E, Królicki L, Maniewski R, Liebert A. Time-resolved detection of fluorescent light during inflow of ICG to the brain—a methodological study. Phys Med Biol 2012; 57:6725-42. [DOI: 10.1088/0031-9155/57/20/6725] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Chuang CC, Lee YT, Chen CM, Hsieh YS, Liu TC, Sun CW. Patient-oriented simulation based on Monte Carlo algorithm by using MRI data. Biomed Eng Online 2012; 11:21. [PMID: 22510474 PMCID: PMC3355000 DOI: 10.1186/1475-925x-11-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 04/17/2012] [Indexed: 11/10/2022] Open
Abstract
Background Although Monte Carlo simulations of light propagation in full segmented three-dimensional MRI based anatomical models of the human head have been reported in many articles. To our knowledge, there is no patient-oriented simulation for individualized calibration with NIRS measurement. Thus, we offer an approach for brain modeling based on image segmentation process with in vivo MRI T1 three-dimensional image to investigate the individualized calibration for NIRS measurement with Monte Carlo simulation. Methods In this study, an individualized brain is modeled based on in vivo MRI 3D image as five layers structure. The behavior of photon migration was studied for this individualized brain detections based on three-dimensional time-resolved Monte Carlo algorithm. During the Monte Carlo iteration, all photon paths were traced with various source-detector separations for characterization of brain structure to provide helpful information for individualized design of NIRS system. Results Our results indicate that the patient-oriented simulation can provide significant characteristics on the optimal choice of source-detector separation within 3.3 cm of individualized design in this case. Significant distortions were observed around the cerebral cortex folding. The spatial sensitivity profile penetrated deeper to the brain in the case of expanded CSF. This finding suggests that the optical method may provide not only functional signal from brain activation but also structural information of brain atrophy with the expanded CSF layer. The proposed modeling method also provides multi-wavelength for NIRS simulation to approach the practical NIRS measurement. Conclusions In this study, the three-dimensional time-resolved brain modeling method approaches the realistic human brain that provides useful information for NIRS systematic design and calibration for individualized case with prior MRI data.
Collapse
Affiliation(s)
- Ching-Cheng Chuang
- Institute of Biomedical Engineering and National Taiwan University Molecular Imaging Center, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Oh S, Stewart T, Miller I, Bhatia S, Ragheb J, Duchowny M, Jayakar P, Lin WC. In vivo optical properties of cortical tubers in children with tuberous sclerosis complex (TSC): a preliminary investigation. Epilepsia 2011; 52:1699-704. [DOI: 10.1111/j.1528-1167.2011.03167.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Li T, Gong H, Luo Q. Visualization of light propagation in visible Chinese human head for functional near-infrared spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:045001. [PMID: 21529068 DOI: 10.1117/1.3567085] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Using the visible Chinese human data set, which faithfully represents human anatomy, we visualize the light propagation in the head in detail based on Monte Carlo simulation. The simulation is verified to agree with published experimental results in terms of a differential path-length factor. The spatial sensitivity profile turns out to seem like a fat tropical fish with strong distortion along the folding cerebral surface. The sensitive brain region covers the gray matter and extends to the superficial white matter, leading to a large penetration depth (>3 cm). Finally, the optimal source-detector separation is suggested to be narrowed down to 3-3.5 cm, while the sensitivity of the detected signal to brain activation reaches the peak of 8%. These results indicate that the cerebral cortex folding geometry actually has substantial effects on light propagation, which should be necessarily considered for applications of functional near-infrared spectroscopy.
Collapse
Affiliation(s)
- Ting Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Britton Chance Center for Biomedical Photonics, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | | | | |
Collapse
|
16
|
Steinkellner O, Gruber C, Wabnitz H, Jelzow A, Steinbrink J, Fiebach JB, Macdonald R, Obrig H. Optical bedside monitoring of cerebral perfusion: technological and methodological advances applied in a study on acute ischemic stroke. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:061708. [PMID: 21198156 DOI: 10.1117/1.3505009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We present results of a clinical study on bedside perfusion monitoring of the human brain by optical bolus tracking. We measure the kinetics of the contrast agent indocyanine green using time-domain near-IR spectroscopy (tdNIRS) in 10 patients suffering from acute unilateral ischemic stroke. In all patients, a delay of the bolus over the affected when compared to the unaffected hemisphere is found (mean: 1.5 s, range: 0.2 s to 5.2 s). A portable time-domain near-IR reflectometer is optimized and approved for clinical studies. Data analysis based on statistical moments of time-of-flight distributions of diffusely reflected photons enables high sensitivity to intracerebral changes in bolus kinetics. Since the second centralized moment, variance, is preferentially sensitive to deep absorption changes, it provides a suitable representation of the cerebral signals relevant for perfusion monitoring in stroke. We show that variance-based bolus tracking is also less susceptible to motion artifacts, which often occur in severely affected patients. We present data that clearly manifest the applicability of the tdNIRS approach to assess cerebral perfusion in acute stroke patients at the bedside. This may be of high relevance to its introduction as a monitoring tool on stroke units.
Collapse
Affiliation(s)
- Oliver Steinkellner
- Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Yaseen MA, Yu J, Jung B, Wong MS, Anvari B. Biodistribution of encapsulated indocyanine green in healthy mice. Mol Pharm 2009; 6:1321-32. [PMID: 19799463 DOI: 10.1021/mp800270t] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Indocyanine green (ICG) is a fluorescent probe used in various optically mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and nonspecific localization. We have encapsulated ICG within electrostatically assembled mesocapsules (MCs) to explore its potential for targeted optical imaging and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely, the liver and spleen, as well as the lungs. The circulation kinetics of ICG appeared unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies.
Collapse
|
18
|
Verhagen EA, Keating P, ter Horst HJ, Martijn A, Bos AF. Cerebral oxygen saturation and extraction in preterm infants with transient periventricular echodensities. Pediatrics 2009; 124:294-301. [PMID: 19564312 DOI: 10.1542/peds.2008-2057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Our aim was to determine regional cerebral tissue oxygen saturation and fractional tissue oxygen extraction in preterm infants with transient periventricular echodensities. We hypothesized that as a result of reduced cerebral perfusion, regional cerebral tissue oxygen saturation will be lower and fractional tissue oxygen extraction will be higher during the first days after birth. PATIENTS AND METHODS This was a prospective, observational study of 49 preterm infants (gestational age median: 30.1 weeks [26.0-31.8 weeks]; birth weight median: 1220 g [615-2250 g]). We defined transient periventricular echodensities as echodensities that persisted for >7 days. Regional cerebral tissue oxygen saturation was measured on days 1-5, 8, and 15 after birth. Fractional tissue oxygen extraction was calculated as (transcutaneous arterial oxygen saturation--regional cerebral tissue oxygen saturation)/transcutaneous arterial oxygen saturation. RESULTS Transient periventricular echodensities were found in 25 of 49 infants. During the first week we found no difference between the 2 groups for cerebral tissue oxygen saturation and fractional tissue oxygen extraction values. On day 15 after birth, cerebral tissue oxygen saturation was lower in preterm infants with transient periventricular echodensities (66%) compared with infants without echodensities (76%) (P = .003). Fractional tissue oxygen extraction in infants with transient periventricular echodensities (0.30) was higher than fractional tissue oxygen extraction in infants without transient periventricular echodensities (0.20) (P < .001). The differences could not be explained by confounding variables. CONCLUSIONS Persistent transient periventricular echodensities may be associated with increased cerebral oxygen demand after the first week after birth, which is contrary to our hypothesis. Cerebral oxygenation may be involved in the recovery of perinatal white matter damage.
Collapse
Affiliation(s)
- Elise A Verhagen
- Division of Neonatology, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | | | | | | | | |
Collapse
|