1
|
Christensen JM, Brat GA, Johnson KE, Chen Y, Buretta KJ, Cooney DS, Brandacher G, Lee WPA, Li X, Sacks JM. Monocytes loaded with indocyanine green as active homing contrast agents permit optical differentiation of infectious and non-infectious inflammation. PLoS One 2013; 8:e81430. [PMID: 24282595 PMCID: PMC3839882 DOI: 10.1371/journal.pone.0081430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/13/2013] [Indexed: 01/10/2023] Open
Abstract
Distinguishing cutaneous infection from sterile inflammation is a diagnostic challenge and currently relies upon subjective interpretation of clinical parameters, microbiological data, and nonspecific imaging. Assessing characteristic variations in leukocytic infiltration may provide more specific information. In this study, we demonstrate that homing of systemically administered monocytes tagged using indocyanine green (ICG), an FDA-approved near infrared dye, may be assessed non-invasively using clinically-applicable laser angiography systems to investigate cutaneous inflammatory processes. RAW 264.7 mouse monocytes co-incubated with ICG fluoresce brightly in the near infrared range. In vitro, the loaded cells retained the ability to chemotax toward monocyte chemotactic protein-1. Following intravascular injection of loaded cells into BALB/c mice with induced sterile inflammation (Complete Freund’s Adjuvant inoculation) or infection (Group A Streptococcus inoculation) of the hind limb, non-invasive whole animal imaging revealed local fluorescence at the inoculation site. There was significantly higher fluorescence of the inoculation site in the infection model than in the inflammation model as early as 2 hours after injection (p<0.05). Microscopic examination of bacterial inoculation site tissue revealed points of near infrared fluorescence, suggesting the presence of ICG-loaded cells. Development of a non-invasive technique to rapidly image inflammatory states without radiation may lead to new tools to distinguish infectious conditions from sterile inflammatory conditions at the bedside.
Collapse
Affiliation(s)
- Joani M. Christensen
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gabriel A. Brat
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kristine E. Johnson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins Bayview Medical Center, Baltimore, Maryland, United States of America
| | - Yongping Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Kate J. Buretta
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Damon S. Cooney
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - W. P. Andrew Lee
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Justin M. Sacks
- Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
2
|
Dorward DA, Lucas CD, Rossi AG, Haslett C, Dhaliwal K. Imaging inflammation: molecular strategies to visualize key components of the inflammatory cascade, from initiation to resolution. Pharmacol Ther 2012; 135:182-99. [PMID: 22627270 DOI: 10.1016/j.pharmthera.2012.05.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 05/07/2012] [Indexed: 12/19/2022]
Abstract
Dysregulation of inflammation is central to the pathogenesis of innumerable human diseases. Understanding and tracking the critical events in inflammation are crucial for disease monitoring and pharmacological drug discovery and development. Recent progress in molecular imaging has provided novel insights into spatial associations, molecular events and temporal sequelae in the inflammatory process. While remaining a burgeoning field in pre-clinical research, increasing application in man affords researchers the opportunity to study disease pathogenesis in humans in situ thereby revolutionizing conventional understanding of pathophysiology and potential therapeutic targets. This review provides a description of commonly used molecular imaging modalities, including optical, radionuclide and magnetic resonance imaging, and details key advances and translational opportunities in imaging inflammation from initiation to resolution.
Collapse
Affiliation(s)
- D A Dorward
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
3
|
Pauli J, Grabolle M, Brehm R, Spieles M, Hamann FM, Wenzel M, Hilger I, Resch-Genger U. Suitable Labels for Molecular Imaging – Influence of Dye Structure and Hydrophilicity on the Spectroscopic Properties of IgG Conjugates. Bioconjug Chem 2011; 22:1298-308. [DOI: 10.1021/bc1004763] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jutta Pauli
- BAM Bundesanstalt für Materialforschung und -prüfung, OE I.5, Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
| | - Markus Grabolle
- BAM Bundesanstalt für Materialforschung und -prüfung, OE I.5, Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
| | - Robert Brehm
- BAM Bundesanstalt für Materialforschung und -prüfung, OE I.5, Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
| | - Monika Spieles
- BAM Bundesanstalt für Materialforschung und -prüfung, OE I.5, Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
| | - Franziska M. Hamann
- Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena (IDIR), Forschungszentrum Lobeda, Erlanger Allee 101, D-07747 Jena, Germany
| | | | - Ingrid Hilger
- Institut für Diagnostische und Interventionelle Radiologie des Klinikums der Friedrich-Schiller-Universität Jena (IDIR), Forschungszentrum Lobeda, Erlanger Allee 101, D-07747 Jena, Germany
| | - Ute Resch-Genger
- BAM Bundesanstalt für Materialforschung und -prüfung, OE I.5, Richard-Willstaetter-Str. 11, D-12489 Berlin, Germany
| |
Collapse
|
4
|
Pauli J, Brehm R, Spieles M, Kaiser WA, Hilger I, Resch-Genger U. Novel fluorophores as building blocks for optical probes for in vivo near infrared fluorescence (NIRF) imaging. J Fluoresc 2010; 20:681-93. [PMID: 20213244 DOI: 10.1007/s10895-010-0603-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 01/29/2010] [Indexed: 11/30/2022]
Abstract
Aiming at the identification of new fluorescent reporters for targeted optical probes, we assessed the application-relevant features of a novel asymmetric cyanine, DY-681, in comparison to the only clinically approved dye indocyanine green (ICG), the golden imaging standard Cy5.5, and the asymmetric cyanine DY-676 successfully exploited by us for the design of different contrast agents. This comparison included the analysis of the spectroscopic properties of the free fluorophores and their thermal stability in aqueous solution as well as their cytotoxic potential. In addition, the absorption and emission features of IgG-conjugated DY-681 were examined. The trimethine DY-681 exhibited spectral features closely resembling that of the pentamethine Cy5.5. Its high thermal stability in phosphate buffer saline (PBS) solution in conjunction with its low cytotoxicity, reaching similar values as determined for Cy5.5 and DY-676, renders this dye more attractive as ICG and, due to its improved fluorescence quantum yield in PBS, also superior to DY-676. Although in PBS, Cy5.5 was still more fluorescent, the fluorescence quantum yields (Phi(f)) of DY-681 and Cy5.5 in PBS containing 5 mass-% bovine serum albumin (BSA) were comparable. Labeling experiments with DY-681 and the model antibody IgG revealed promisingly high Phi(f) values of the bioconjugated dye.
Collapse
Affiliation(s)
- Jutta Pauli
- BAM Federal Institute for Materials Research and Testing, Division I.5, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
5
|
Deissler V, Rüger R, Frank W, Fahr A, Kaiser WA, Hilger I. Fluorescent liposomes as contrast agents for in vivo optical imaging of edemas in mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2008; 4:1240-1246. [PMID: 18666163 DOI: 10.1002/smll.200701069] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study assesses if specially designed fluorescent liposomes can be used as contrast agent for near-infrared fluorescence (NIRF) optical imaging of cultured macrophages in vitro and for NIRF imaging of inflammatory processes, like edema, in an in vivo mouse model. Fluorescent liposomes are prepared by the film hydration and extrusion method using cholesterol, L-phosphatidylcholine, and the NIR fluorescent dye DY-676-C(18) ester. Photon correlation spectroscopy and flow cytometry reveal that fluorescent liposomes are structurally stable for up to 133 days. Distinct uptake/labeling of cultured murine J774 macrophages is demonstrated by confocal laser scanning microscopy (CLSM), flow cytometry, and macroscopic NIRF imaging system at wavelengths >670 nm. Moreover, CLSM analysis reveals fluorescence signals within intracellular compartments. Ear edema is induced in mice (n = 16) by subcutaneous injection of zymosan A. Whole-body NIRF imaging is performed after intravenous injection (0-24 h) of fluorescent liposomes (55 nmol dye per kg body weight). Distinctly higher fluorescence intensities (1613.6 +/- 61.7 a.u.) are detected at inflamed areas of diseased mice as compared to controls (892.8 +/- 19.4 a.u.). Furthermore, cell isolated from ear lavage reveals the presence of labeled F4/80 positive tissue macrophages. Taken together, the results indicate both that mouse macrophages labeled with fluorescent liposomes can be detected in vitro with fluoro-optical methods and that in vivo optical imaging of inflammatory processes with fluorescent liposomes as contrast agent is feasible. Possibly, early stages of other inflammatory diseases could also be detected by the proposed diagnostic tool in the long term.
Collapse
Affiliation(s)
- Verena Deissler
- Institute of Diagnostic and Interventional Radiology, University Hospital Jena FZL, Erlanger Allee 101, 07747 Jena, Germany
| | | | | | | | | | | |
Collapse
|
6
|
Dynamics of neutrophil infiltration during cutaneous wound healing and infection using fluorescence imaging. J Invest Dermatol 2008; 128:1812-20. [PMID: 18185533 DOI: 10.1038/sj.jid.5701223] [Citation(s) in RCA: 196] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neutrophil influx is an early inflammatory response that is essential for the clearance of bacteria and cellular debris during cutaneous wounding. A non-invasive real-time fluorescence imaging technique was developed to examine the kinetics of enhanced green fluorescence protein-polymorphonuclear leukocyte (EGFP-PMN) influx within a wound. We hypothesized that infection or systemic availability would directly regulate the dynamics of EGFP-PMN recruitment and the efficiency of wound closure. Neutrophil recruitment increased dramatically over the first 24 hours from 10(6) at 4 hours up to a maximum of 5 x 10(6) EGFP-PMNs at 18 hours. A high rate of EGFP-PMN turnover was evidenced by approximately 80% decrease in EGFP signal within 6 hours. In response to wound colonization by Staphylococcus aureus or injection of GM-CSF, systemic PMNs increased twofold above saline control. This correlated with an increase in EGFP-PMN recruitment up to approximately 10(7) within the wound. Despite this effect by these distinct inflammatory drivers, wound closure occurred at a rate similar to the saline-treated control group. In summary, a non-invasive fluorescence-based imaging approach combined with genetic labeling of neutrophils provides a dynamic inner view of inflammation and the kinetics of neutrophil infiltration into the wounded skin over extended durations.
Collapse
|