1
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
2
|
Spiesz EM, Thorpe CT, Thurner PJ, Screen HRC. Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM). Acta Biomater 2018; 70:281-292. [PMID: 29409868 PMCID: PMC5894809 DOI: 10.1016/j.actbio.2018.01.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/15/2023]
Abstract
Structure-function relationships in tendons are directly influenced by the arrangement of collagen fibres. However, the details of such arrangements in functionally distinct tendons remain obscure. This study demonstrates the use of quantitative polarised light microscopy (qPLM) to identify structural differences in two major tendon compartments at the mesoscale: fascicles and interfascicular matrix (IFM). It contrasts functionally distinct positional and energy storing tendons, and considers changes with age. Of particular note, the technique facilitates the analysis of crimp parameters, in which cutting direction artefact can be accounted for and eliminated, enabling the first detailed analysis of crimp parameters across functionally distinct tendons. IFM shows lower birefringence (0.0013 ± 0.0001 [−]), as compared to fascicles (0.0044 ± 0.0005 [−]), indicating that the volume fraction of fibres must be substantially lower in the IFM. Interestingly, no evidence of distinct fibre directional dispersions between equine energy storing superficial digital flexor tendons (SDFTs) and positional common digital extensor tendons (CDETs) were noted, suggesting either more subtle structural differences between tendon types or changes focused in the non-collagenous components. By contrast, collagen crimp characteristics are strongly tendon type specific, indicating crimp specialisation is crucial in the respective mechanical function. SDFTs showed much finer crimp (21.1 ± 5.5 µm) than positional CDETs (135.4 ± 20.1 µm). Further, tendon crimp was finer in injured tendon, as compared to its healthy equivalents. Crimp angle differed strongly between tendon types as well, with average of 6.5 ± 1.4° in SDFTs and 13.1 ± 2.0° in CDETs, highlighting a substantially tighter crimp in the SDFT, likely contributing to its effective recoil capacity. Statement of Significance This is the first study to quantify birefringence in fascicles and interfascicular matrix of functionally distinct energy storing and positional tendons. It adopts a novel method – quantitative polarised light microscopy (qPLM) to measure collagen crimp angle, avoiding artefacts related to the direction of histological sectioning, and provides the first direct comparison of crimp characteristics of functionally distinct tendons of various ages. A comparison of matched picrosirius red stained and unstained tendons sections identified non-homogenous staining effects, and leads us to recommend that only unstained sections are analysed in the quantitative manner. qPLM is successfully used to assess birefringence in soft tissue sections, offering a promising tool for investigating the structural arrangements of fibres in (soft) tissues and other composite materials.
Collapse
Affiliation(s)
- Ewa M Spiesz
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London E1 4NS, United Kingdom; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Chavaunne T Thorpe
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London E1 4NS, United Kingdom; Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Hazel R C Screen
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London E1 4NS, United Kingdom.
| |
Collapse
|
3
|
Laser-induced autofluorescence-based objective evaluation of burn tissue repair in mice. Lasers Med Sci 2017; 33:699-707. [DOI: 10.1007/s10103-017-2371-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/22/2017] [Indexed: 11/26/2022]
|
4
|
Anatomical heterogeneity of tendon: Fascicular and interfascicular tendon compartments have distinct proteomic composition. Sci Rep 2016; 6:20455. [PMID: 26842662 PMCID: PMC4740843 DOI: 10.1038/srep20455] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/04/2016] [Indexed: 12/14/2022] Open
Abstract
Tendon is a simple aligned fibre composite, consisting of collagen-rich fascicles surrounded by a softer interfascicular matrix (IFM). The composition and interactions between these material phases are fundamental in ensuring tissue mechanics meet functional requirements. However the IFM is poorly defined, therefore tendon structure-function relationships are incompletely understood. We hypothesised that the IFM has a more complex proteome, with faster turnover than the fascicular matrix (FM). Using laser-capture microdissection and mass spectrometry, we demonstrate that the IFM contains more proteins, and that many proteins show differential abundance between matrix phases. The IFM contained more protein fragments (neopeptides), indicating greater matrix degradation in this compartment, which may act to maintain healthy tendon structure. Protein abundance did not alter with ageing, but neopeptide numbers decreased in the aged IFM, indicating decreased turnover which may contribute to age-related tendon injury. These data provide important insights into how differences in tendon composition and turnover contribute to tendon structure-function relationships and the effects of ageing.
Collapse
|
5
|
Objective assessment of endogenous collagen in vivo during tissue repair by laser induced fluorescence. PLoS One 2014; 9:e98609. [PMID: 24874229 PMCID: PMC4038633 DOI: 10.1371/journal.pone.0098609] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/06/2014] [Indexed: 01/31/2023] Open
Abstract
Collagen, a triple helical protein with the primary role of mechanical function, provides tensile strength to the skin, and plays a pivotal task in tissue repair. During tissue regeneration, collagen level increases gradually and therefore, monitoring of such changes in vivo by laser induced fluorescence was the main objective behind the present study. In order to accomplish this, 15 mm diameter excisional wounds were created on six to eight week old Swiss albino mice. The collagen deposition accelerated upon irradiation of single exposure of 2 J/cm2 He-Ne laser dose immediately after wounding was recorded by laser induced autofluorescence in vivo along with un-illuminated and un-wounded controls. Autofluorescence spectra were recorded for each animal of the experimental groups on 0, 5, 10, 30, 45 and 60 days post-wounding, by exciting the granulation tissue/skin with 325 nm He-Cd laser. The variations in the average collagen intensities from the granulation tissue/skin of mice were inspected as a function of age and gender. Further, the spectral findings of the collagen synthesis in wound granulation tissue/un-wounded skin tissues were validated by Picro-Sirius red- polarized light microscopy in a blinded manner through image analysis of the respective collagen birefringence. The in vivo autofluorescence studies have shown a significant increase in collagen synthesis in laser treated animals as compared to the un-illuminated controls. Image analysis of the collagen birefringence further authenticated the ability of autofluorescence in the objective monitoring of collagen in vivo. Our results clearly demonstrate the potential of laser induced autofluorescence in the monitoring of collegen synthesis during tissue regeneration, which may have clinical implications.
Collapse
|
6
|
Thorpe CT, Birch HL, Clegg PD, Screen HRC. The role of the non-collagenous matrix in tendon function. Int J Exp Pathol 2013; 94:248-59. [PMID: 23718692 DOI: 10.1111/iep.12027] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/16/2013] [Indexed: 01/26/2023] Open
Abstract
Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure-function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment.
Collapse
Affiliation(s)
- Chavaunne T Thorpe
- Institute of Bioengineering, School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK.
| | | | | | | |
Collapse
|
7
|
Sugita S, Matsumoto T. Quantitative measurement of the distribution and alignment of collagen fibers in unfixed aortic tissues. J Biomech 2013; 46:1403-7. [DOI: 10.1016/j.jbiomech.2013.02.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/16/2012] [Accepted: 02/05/2013] [Indexed: 12/19/2022]
|
8
|
Kinoshita H, Umezawa T, Omine Y, Kasahara M, Rodríguez-Vázquez JF, Murakami G, Abe S. Distribution of elastic fibers in the head and neck: a histological study using late-stage human fetuses. Anat Cell Biol 2013; 46:39-48. [PMID: 23560235 PMCID: PMC3615611 DOI: 10.5115/acb.2013.46.1.39] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 12/01/2012] [Accepted: 12/17/2012] [Indexed: 01/13/2023] Open
Abstract
There is little or no information about the distribution of elastic fibers in the human fetal head. We examined this issue in 15 late-stage fetuses (crown-rump length, 220-320 mm) using aldehyde-fuchsin and elastica-Masson staining, and we used the arterial wall elastic laminae and external ear cartilages as positive staining controls. The posterior pharyngeal wall, as well as the ligaments connecting the laryngeal cartilages, contained abundant elastic fibers. In contrast with the sphenomandibular ligament and the temporomandibular joint disk, in which elastic fibers were partly present, the discomalleolar ligament and the fascial structures around the pterygoid muscles did not have any elastic fibers. In addition, the posterior marginal fascia of the prestyloid space did contain such fibers. Notably, in the middle ear, elastic fibers accumulated along the tendons of the tensor tympani and stapedius muscles and in the joint capsules of the ear ossicle articulations. Elastic fibers were not seen in any other muscle tendons or vertebral facet capsules in the head and neck. Despite being composed of smooth muscle, the orbitalis muscle did not contain any elastic fibers. The elastic fibers in the sphenomandibular ligament seemed to correspond to an intermediate step of development between Meckel's cartilage and the final ligament. Overall, there seemed to be a mini-version of elastic fiber distribution compared to that in adults and a different specific developmental pattern of connective tissues. The latter morphology might be a result of an adaptation to hypoxic conditions during development.
Collapse
|
9
|
Prabhu V, Rao SBS, Chandra S, Kumar P, Rao L, Guddattu V, Satyamoorthy K, Mahato KK. Spectroscopic and histological evaluation of wound healing progression following Low Level Laser Therapy (LLLT). JOURNAL OF BIOPHOTONICS 2012; 5:168-84. [PMID: 22174176 DOI: 10.1002/jbio.201100089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 05/09/2023]
Abstract
The present study focuses on the evaluation of the effect of He-Ne laser on tissue regeneration by monitoring collagen synthesis in wound granulation tissues in Swiss albino mice using analysis of laser induced fluorescence (LIF) and light microscopy techniques. The spectral analyses of the wound granulation tissues have indicated a dose dependent increase in collagen levels during the post-wounding days. The histological examinations on the other hand have also shown a significant increase in collagen deposition along with the reduced edema, leukocytes, increased granulation tissue, and fibroblast number in the optimal laser dose treated group compared to the non-illuminated controls.
Collapse
Affiliation(s)
- Vijendra Prabhu
- Biophysics Unit, Manipal Life Sciences Centre, Manipal University, Manipal 576104, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Biochemical and anisotropical properties of tendons. Micron 2011; 43:205-14. [PMID: 21890364 DOI: 10.1016/j.micron.2011.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 01/30/2023]
Abstract
Tendons are formed by dense connective tissue composed of an abundant extracellular matrix (ECM) that is constituted mainly of collagen molecules, which are organized into fibrils, fibers, fiber bundles and fascicles helicoidally arranged along the largest axis of the tendon. The biomechanical properties of tendons are directly related to the organization of the collagen molecules that aggregate to become a super-twisted cord. In addition to collagen, the ECM of tendons is composed of non-fibrillar components, such as proteoglycans and non-collagenous glycoproteins. The capacity of tendons to resist mechanical stress is directly related to the structural organization of the ECM. Collagen is a biopolymer and presents optical anisotropies, such as birefringence and linear dichroism, that are important optical properties in the characterization of the supramolecular organization of the fibers. The objective of this study was to present a review of the composition and organization of the ECM of tendons and to highlight the importance of the anisotropic optical properties in the study of alterations in the ECM.
Collapse
|
11
|
Korol RM, Canham PB, Liu L, Viswanathan K, Ferguson GG, Hammond RR, Finlay HM, Baker HV, Lopez C, Lucas AR. Detection of altered extracellular matrix in surface layers of unstable carotid plaque: an optical spectroscopy, birefringence and microarray genetic analysis. Photochem Photobiol 2011; 87:1164-72. [PMID: 21699546 DOI: 10.1111/j.1751-1097.2011.00960.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Erosion and rupture of surface layers in atherosclerotic plaque can cause heart attack and stroke; however, changes in luminal surface composition are incompletely defined. Laser-induced fluorescence spectroscopy (LIFS), with limited tissue penetration, was used to investigate the surface of unstable carotid plaque and correlated with microscopy, birefringence and gene expression. Arterial matrix collagens I, III and elastin were assessed in unstable plaques (n = 25) and reference left internal mammary arteries (LIMA, n = 10). LIFS in addition to selective histological staining with picrosirius red, Movat pentachrome and immunostaining revealed decreased elastin and increased collagen I and III (P < 0.05) in carotid plaque when compared with LIMA. Within plaque, collagen I was elevated in the internal carotid region versus the common carotid region. Polarized light microscopy detected layers of aligned collagen and associated mechanical rigidity of the fibrous cap. Microarray analysis of three carotid and three LIMA specimens confirmed up-regulation of collagen I, III and IV, lysyl oxidase and MMP-12. In conclusion, LIFS analysis coupled with microscopy revealed marked regional differences in collagen I, III and elastin in surface layers of carotid plaque; indicative of plaque instability. Birefringence measurements demonstrated mechanical rigidity and weakening of the fibrous cap with complementary changes in ECM gene expression.
Collapse
Affiliation(s)
- Renee M Korol
- Department of Medical Biophysics, The University of Western Ontario, ON, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
van Turnhout MC, Kranenbarg S, van Leeuwen JL. Modeling optical behavior of birefringent biological tissues for evaluation of quantitative polarized light microscopy. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:054018. [PMID: 19895120 DOI: 10.1117/1.3241986] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Quantitative polarized light microscopy (qPLM) is a popular tool for the investigation of birefringent architectures in biological tissues. Collagen, the most abundant protein in mammals, is such a birefringent material. Interpretation of results of qPLM in terms of collagen network architecture and anisotropy is challenging, because different collagen networks may yield equal qPLM results. We created a model and used the linear optical behavior of collagen to construct a Jones or Mueller matrix for a histological cartilage section in an optical qPLM train. Histological sections of tendon were used to validate the basic assumption of the model. Results show that information on collagen densities is needed for the interpretation of qPLM results in terms of collagen anisotropy. A parameter that is independent of the optical system and that measures collagen fiber anisotropy is introduced, and its physical interpretation is discussed. With our results, we can quantify which part of different qPLM results is due to differences in collagen densities and which part is due to changes in the collagen network. Because collagen fiber orientation and anisotropy are important for tissue function, these results can improve the biological and medical relevance of qPLM results.
Collapse
Affiliation(s)
- Mark C van Turnhout
- Wageningen University, Department of Animal Sciences, Experimental Zoology Group, P.O. Box 338, Wageningen, 6700 AH, The Netherlands.
| | | | | |
Collapse
|
13
|
Hompland T, Erikson A, Lindgren M, Lindmo T, de Lange Davies C. Second-harmonic generation in collagen as a potential cancer diagnostic parameter. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:054050. [PMID: 19021430 DOI: 10.1117/1.2983664] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The fibrillar collagen network in tumor and normal tissues is different due to remodeling of the extracellular matrix during the malignant process. Collagen type I fibers have the crystalline and noncentrosymmetric properties required for generating the second-harmonic signal. The content and structure of collagen were studied by imaging the second-harmonic generation (SHG) signal in frozen sections from three tumor tissues, osteosarcoma, breast carcinoma, and melanoma, and were compared with corresponding normal tissues, bone/femur, breast, and dermis/skin. The collagen density was measured as the percentage of pixels containing SHG signal in tissue images, and material parameters such as the second-order nonlinear optical susceptibility given by the d22 coefficient and an empirical anisotropy parameter were used to characterize the collagen structure. Generally, normal tissues had much more collagen than tumor tissues. In tumor tissues, a cap of collagen was seen at the periphery, and further into the tumors, the distribution of collagen was sparse and heterogeneous. The difference in structure was reflected in the two times higher d22 coefficient and lower anisotropy values in normal tissues compared with tumor tissues. Together, the differences in the collagen content, distribution, and structure show that collagen signature is a promising diagnostic marker.
Collapse
Affiliation(s)
- Tord Hompland
- The Norwegian University of Science and Technology, Department of Physics, Hogskoleringen 5, 7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|