1
|
Clark MG, Ma S, Mahapatra S, Mohn KJ, Zhang C. Chemical-imaging-guided optical manipulation of biomolecules. Front Chem 2023; 11:1198670. [PMID: 37214479 PMCID: PMC10196011 DOI: 10.3389/fchem.2023.1198670] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Chemical imaging via advanced optical microscopy technologies has revealed remarkable details of biomolecules in living specimens. However, the ways to control chemical processes in biological samples remain preliminary. The lack of appropriate methods to spatially regulate chemical reactions in live cells in real-time prevents investigation of site-specific molecular behaviors and biological functions. Chemical- and site-specific control of biomolecules requires the detection of chemicals with high specificity and spatially precise modulation of chemical reactions. Laser-scanning optical microscopes offer great platforms for high-speed chemical detection. A closed-loop feedback control system, when paired with a laser scanning microscope, allows real-time precision opto-control (RPOC) of chemical processes for dynamic molecular targets in live cells. In this perspective, we briefly review recent advancements in chemical imaging based on laser scanning microscopy, summarize methods developed for precise optical manipulation, and highlight a recently developed RPOC technology. Furthermore, we discuss future directions of precision opto-control of biomolecules.
Collapse
Affiliation(s)
| | - Seohee Ma
- Department of Chemistry, West Lafayette, IN, United States
| | | | | | - Chi Zhang
- Department of Chemistry, West Lafayette, IN, United States
- Purdue Center for Cancer Research, West Lafayette, IN, United States
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
2
|
Optical characteristics of the skin with dark circles using pump-probe imaging. Sci Rep 2022; 12:18553. [PMID: 36329126 PMCID: PMC9633781 DOI: 10.1038/s41598-022-21131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/22/2022] [Indexed: 11/06/2022] Open
Abstract
Pump-probe imaging was first used for quantitative analysis of melanin in dark circles' skin to improve the ability to diagnose and treat dark circles on human skin. This study aimed to compare the distribution characteristics in melanin of lower eyelid skin tissues and to determine whether pump-probe imaging has potential for the classification of dark circles in vivo. Specimens obtained from 15 patients undergoing blepharoplasty were examined using pump-probe imaging. Furthermore, adjacent slices were respectively treated with hematoxylin-eosin (HE) and ferrous sulfate (FeSO4) staining for cross-references. Subsequently, the melanin content index (MCI) and mean fluorescence intensity (MFI) were quantitatively analyzed by the pump-probe imaging. The distribution of melanin granules in the pump-probe image and FeSO4 staining was consistent. Meanwhile, the tissues of the skin with dark circles and normal skin demonstrated significant differences in MCI and MFI. These differences can be used to distinguish the skin with dark circles from the normal skin. Pump-probe imaging could be used for the analysis of the microstructure and spectral characteristics of melanin granules in skin with dark circles. Significant differences were noted between the pigmented type of dark circles and the other two groups (normal skin and the vascular type of dark circles), while no significant differences were found between normal skin and the vascular type of dark circles.
Collapse
|
3
|
Zhang B, Yao T, Chen Y, Wang C, Bao Y, Wang Z, Zhao K, Ji M. Label-Free Delineation of Human Uveal Melanoma Infiltration With Pump–Probe Microscopy. Front Oncol 2022; 12:891282. [PMID: 35936703 PMCID: PMC9354715 DOI: 10.3389/fonc.2022.891282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Uveal melanoma (UM) is the most frequent primary intraocular malignancy in adults, characterized by melanin depositions in melanocytes located in the uveal tract in the eyes. Differentiation of melanin species (eumelanin and pheomelanin) is crucial in the diagnosis and management of UM, yet it remains inaccessible for conventional histology. Here, we report that femtosecond time-resolved pump-probe microscopy could provide label-free and chemical-specific detection of melanin species in human UM based on their distinct transient relaxation dynamics at the subpicosecond timescale. The method is capable of delineating the interface between melanoma and paracancerous regions on various tissue conditions, including frozen sections, paraffin sections, and fresh tissues. Moreover, transcriptome sequencing was conducted to confirm the active eumelanin synthesis in UM. Our results may hold potential for sensitive detection of tumor boundaries and biomedical research on melanin metabolism in UM.
Collapse
Affiliation(s)
- Bohan Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Multiscale Research Institute of Complex Systems, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Academy for Engineering and Technology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Tengteng Yao
- Department of Ophthalmology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yaxin Chen
- State Key Laboratory of Surface Physics and Department of Physics, Multiscale Research Institute of Complex Systems, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Academy for Engineering and Technology, Human Phenome Institute, Fudan University, Shanghai, China
| | - Chuqiao Wang
- Department of Ophthalmology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongyang Bao
- Department of Ophthalmology, Shanghai Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaoyang Wang
- Department of Ophthalmology, The Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
- *Correspondence: Minbiao Ji, ; Keke Zhao, ; Zhaoyang Wang,
| | - Keke Zhao
- Department of Ophthalmology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Minbiao Ji, ; Keke Zhao, ; Zhaoyang Wang,
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Multiscale Research Institute of Complex Systems, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Academy for Engineering and Technology, Human Phenome Institute, Fudan University, Shanghai, China
- *Correspondence: Minbiao Ji, ; Keke Zhao, ; Zhaoyang Wang,
| |
Collapse
|
4
|
Marini M, Bouzin M, Scodellaro R, D’Alfonso L, Sironi L, Granucci F, Mingozzi F, Chirico G, Collini M. Quantitative active super-resolution thermal imaging: The melanoma case study. Biomol Concepts 2022; 13:242-255. [DOI: 10.1515/bmc-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Super-resolution image acquisition has turned photo-activated far-infrared thermal imaging into a promising tool for the characterization of biological tissues. By the sub-diffraction localization of sparse temperature increments primed by the sample absorption of modulated focused laser light, the distribution of (endogenous or exogenous) photo-thermal biomarkers can be reconstructed at tunable ∼10−50 μm resolution. We focus here on the theoretical modeling of laser-primed temperature variations and provide the guidelines to convert super-resolved temperature-based images into quantitative maps of the absolute molar concentration of photo-thermal probes. We start from camera-based temperature detection via Stefan–Boltzmann’s law, and elucidate the interplay of the camera point-spread-function and pixelated sensor size with the excitation beam waist in defining the amplitude of the measured temperature variations. This can be accomplished by the numerical solution of the three-dimensional heat equation in the presence of modulated laser illumination on the sample, which is characterized in terms of thermal diffusivity, conductivity, thickness, and concentration of photo-thermal species. We apply our data-analysis protocol to murine B16 melanoma biopsies, where melanin is mapped and quantified in label-free configuration at sub-diffraction 40 µm resolution. Our results, validated by an unsupervised machine-learning analysis of hematoxylin-and-eosin images of the same sections, suggest potential impact of super-resolved thermography in complementing standard histopathological analyses of melanocytic lesions.
Collapse
Affiliation(s)
- Mario Marini
- Physics Department, Università degli Studi di Milano-Bicocca , Piazza Della Scienza 3, 20126 , Milano , Italy
| | - Margaux Bouzin
- Physics Department, Università degli Studi di Milano-Bicocca , Piazza Della Scienza 3, 20126 , Milano , Italy
| | - Riccardo Scodellaro
- Physics Department, Università degli Studi di Milano-Bicocca , Piazza Della Scienza 3, 20126 , Milano , Italy
| | - Laura D’Alfonso
- Physics Department, Università degli Studi di Milano-Bicocca , Piazza Della Scienza 3, 20126 , Milano , Italy
| | - Laura Sironi
- Physics Department, Università degli Studi di Milano-Bicocca , Piazza Della Scienza 3, 20126 , Milano , Italy
| | - Francesca Granucci
- Biotechnology and Biosciences Department, Università degli Studi di Milano-Bicocca , Piazza Della Scienza 2, 20126 , Milano , Italy
| | - Francesca Mingozzi
- Biotechnology and Biosciences Department, Università degli Studi di Milano-Bicocca , Piazza Della Scienza 2, 20126 , Milano , Italy
| | - Giuseppe Chirico
- Physics Department, Università degli Studi di Milano-Bicocca , Piazza Della Scienza 3, 20126 , Milano , Italy
- CNR Institute for Applied Science and Intelligent Systems , Via Campi Flegrei 34, 80078 , Pozzuoli , Italy
| | - Maddalena Collini
- Physics Department, Università degli Studi di Milano-Bicocca , Piazza Della Scienza 3, 20126 , Milano , Italy
- CNR Institute for Applied Science and Intelligent Systems , Via Campi Flegrei 34, 80078 , Pozzuoli , Italy
| |
Collapse
|
5
|
Bouzin M, Marini M, Chirico G, Granucci F, Mingozzi F, Colombo R, D'Alfonso L, Sironi L, Collini M. Melanin concentration maps by label-free super-resolution photo-thermal imaging on melanoma biopsies. BIOMEDICAL OPTICS EXPRESS 2022; 13:1173-1187. [PMID: 35414966 PMCID: PMC8973199 DOI: 10.1364/boe.445945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 05/04/2023]
Abstract
Surgical excision followed by histopathological examination is the gold standard for melanoma screening. However, the color-based inspection of hematoxylin-and-eosin-stained biopsies does not provide a space-resolved quantification of the melanin content in melanocytic lesions. We propose a non-destructive photo-thermal imaging method capable of characterizing the microscopic distribution and absolute concentration of melanin pigments in excised melanoma biopsies. By exploiting the photo-thermal effect primed by melanin absorption of visible laser light we obtain label-free super-resolution far-infrared thermal images of tissue sections where melanin is spatially mapped at sub-diffraction 40-μm resolution. Based on the finite-element simulation of the full 3D heat transfer model, we are able to convert temperature maps into quantitative images of the melanin molar concentration on B16 murine melanoma biopsies, with 4·10-4 M concentration sensitivity. Being readily applicable to human melanoma biopsies in combination with hematoxylin-and-eosin staining, the proposed approach could complement traditional histopathology in the characterization of pigmented lesions ex-vivo.
Collapse
Affiliation(s)
- Margaux Bouzin
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- Equal contribution
| | - Mario Marini
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- Equal contribution
| | - Giuseppe Chirico
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- CNR Institute for Applied Science and Intelligent Systems, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| | - Francesca Granucci
- Biotechnology and Biosciences Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Francesca Mingozzi
- Biotechnology and Biosciences Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy
| | - Roberto Colombo
- Department of Earth and Environmental Sciences, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126, Milano, Italy
| | - Laura D'Alfonso
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Laura Sironi
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
| | - Maddalena Collini
- Physics Department, Università degli Studi di Milano-Bicocca, Piazza della Scienza 3, 20126, Milano, Italy
- CNR Institute for Applied Science and Intelligent Systems, Via Campi Flegrei 34, 80078, Pozzuoli, Italy
| |
Collapse
|
6
|
Galeb HA, Wilkinson EL, Stowell AF, Lin H, Murphy ST, Martin‐Hirsch PL, Mort RL, Taylor AM, Hardy JG. Melanins as Sustainable Resources for Advanced Biotechnological Applications. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000102. [PMID: 33552556 PMCID: PMC7857133 DOI: 10.1002/gch2.202000102] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Indexed: 05/17/2023]
Abstract
Melanins are a class of biopolymers that are widespread in nature and have diverse origins, chemical compositions, and functions. Their chemical, electrical, optical, and paramagnetic properties offer opportunities for applications in materials science, particularly for medical and technical uses. This review focuses on the application of analytical techniques to study melanins in multidisciplinary contexts with a view to their use as sustainable resources for advanced biotechnological applications, and how these may facilitate the achievement of the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Hanaa A. Galeb
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Department of ChemistryScience and Arts CollegeRabigh CampusKing Abdulaziz UniversityJeddah21577Saudi Arabia
| | - Emma L. Wilkinson
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Alison F. Stowell
- Department of Organisation, Work and TechnologyLancaster University Management SchoolLancaster UniversityLancasterLA1 4YXUK
| | - Hungyen Lin
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
| | - Samuel T. Murphy
- Department of EngineeringLancaster UniversityLancasterLA1 4YWUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| | - Pierre L. Martin‐Hirsch
- Lancashire Teaching Hospitals NHS TrustRoyal Preston HospitalSharoe Green LanePrestonPR2 9HTUK
| | - Richard L. Mort
- Department of Biomedical and Life SciencesLancaster UniversityLancasterLA1 4YGUK
| | - Adam M. Taylor
- Lancaster Medical SchoolLancaster UniversityLancasterLA1 4YWUK
| | - John G. Hardy
- Department of ChemistryLancaster UniversityLancasterLA1 4YBUK
- Materials Science InstituteLancaster UniversityLancasterLA1 4YBUK
| |
Collapse
|
7
|
Zhu Y, Cheng JX. Transient absorption microscopy: Technological innovations and applications in materials science and life science. J Chem Phys 2020; 152:020901. [PMID: 31941290 PMCID: PMC7195865 DOI: 10.1063/1.5129123] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/15/2019] [Indexed: 01/08/2023] Open
Abstract
Transient absorption (TA) spectroscopy has been extensively used in the study of excited state dynamics of various materials and molecules. The transition from TA spectroscopy to TA microscopy, which enables the space-resolved measurement of TA, is opening new investigations toward a more complete picture of excited state dynamics in functional materials, as well as the mapping of crucial biopigments for precision diagnosis. Here, we review the recent instrumental advancement that is pushing the limit of spatial resolution, detection sensitivity, and imaging speed. We further highlight the emerging application in materials science and life science.
Collapse
Affiliation(s)
- Yifan Zhu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
8
|
Steuwe C, Bové H, Clerinx J, vandeVen M, Fron E, Nawrot T, Ameloot M, Roeffaers M. Rapid and label-free optical detection of individual carbon air pollutant nanoparticulates in biomedical samples. JOURNAL OF BIOPHOTONICS 2018; 11:e201700233. [PMID: 29265706 DOI: 10.1002/jbio.201700233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/17/2017] [Indexed: 05/23/2023]
Abstract
Carbonaceous particle exposure and air pollution in general lead to a multitude of adverse human health effects and pose multiple challenges in terms of exposure, risk and safety assessment. Highly desirable for fast screening are label-free approaches for detecting these particle types in biological or medical context. We report a powerful approach for detecting carbonaceous particles using photothermal pump-probe microscopy, which directly probes their strong light absorption. The principle and reliability of this approach is demonstrated by examining 4 different carbon black (CB) species modeling soot with diameters ranging from 13 to 500 nm. Our results show that the proposed approach is applicable to a large number of CB types as well as black carbon. As the particles show a strong absorption over a wide spectral range as compared to other absorbing species, we can image CB particles almost background free. Our pump-probe approach allows label-free optical detection and unambiguous localization of CB particles in (bio)fluids and 3D cellular environments. In combination with fluorescence microscopy, this method allows for simultaneous colocalization of CB with different cellular components using fluorophores as shown here for human lung fibroblasts. We further demonstrate the versatility of pump-probe detection in a flow cell.
Collapse
Affiliation(s)
- Christian Steuwe
- Centre for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
| | - Hannelore Bové
- Centre for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jan Clerinx
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Martin vandeVen
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Eduard Fron
- Department of Chemistry, Molecular Imaging and Photonics, KU Leuven, Leuven, Belgium
| | - Tim Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Maarten Roeffaers
- Centre for Surface Chemistry and Catalysis, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Evans CL. Nonlinear Optical Microscopy for Melanoma: Challenges, Tools and Opportunities. Photochem Photobiol 2018; 94:624-632. [PMID: 29485199 DOI: 10.1111/php.12916] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 02/17/2018] [Indexed: 02/02/2023]
Abstract
The natural pigments known as melanins are thought to play a role in the etiology and progression of melanoma, but many of their roles are currently not well understood. While quantification of melanins have, up until now, have been performed in bulk tissue ex vivo, new imaging technologies have unlocked the means to visualize and quantify melanins at the sub-cellular scale. The nonlinear imaging methods known as pump-probe, coherent Raman, and sum-frequency absorption microscopies provide subcellular resolution imaging of melanins, enabling label-free, longitudinal quantification of both eumelanin and pheomelanin in situ and in vivo. These nonlinear imaging toolkits have been well proven in both animal models and human samples, moving them tantalizingly close to clinical application. Future efforts integrating these tools into practical, mobile imaging systems will provide immense benefit both to clinical research and practice.
Collapse
Affiliation(s)
- Conor L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA
| |
Collapse
|
10
|
Wang H, Osseiran S, Igras V, Nichols AJ, Roider EM, Pruessner J, Tsao H, Fisher DE, Evans CL. In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin. Sci Rep 2016; 6:37986. [PMID: 27892516 PMCID: PMC5125099 DOI: 10.1038/srep37986] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023] Open
Abstract
Melanoma is the most deadly form of skin cancer with a yearly global incidence over 232,000 patients. Individuals with fair skin and red hair exhibit the highest risk for developing melanoma, with evidence suggesting the red/blond pigment known as pheomelanin may elevate melanoma risk through both UV radiation-dependent and -independent mechanisms. Although the ability to identify, characterize, and monitor pheomelanin within skin is vital for improving our understanding of the underlying biology of these lesions, no tools exist for real-time, in vivo detection of the pigment. Here we show that the distribution of pheomelanin in cells and tissues can be visually characterized non-destructively and noninvasively in vivo with coherent anti-Stokes Raman scattering (CARS) microscopy, a label-free vibrational imaging technique. We validated our CARS imaging strategy in vitro to in vivo with synthetic pheomelanin, isolated melanocytes, and the Mc1re/e, red-haired mouse model. Nests of pheomelanotic melanocytes were observed in the red-haired animals, but not in the genetically matched Mc1re/e; Tyrc/c ("albino-red-haired") mice. Importantly, samples from human amelanotic melanomas subjected to CARS imaging exhibited strong pheomelanotic signals. This is the first time, to our knowledge, that pheomelanin has been visualized and spatially localized in melanocytes, skin, and human amelanotic melanomas.
Collapse
Affiliation(s)
- Hequn Wang
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Sam Osseiran
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue E25-519, Cambridge, Massachusetts 02139, USA
| | - Vivien Igras
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Alexander J Nichols
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Harvard-MIT Division of Health Sciences and Technology, 77 Massachusetts Avenue E25-519, Cambridge, Massachusetts 02139, USA.,Harvard University Program in Biophysics, Building C2 Room 112, 240 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Elisabeth M Roider
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Joachim Pruessner
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Hensin Tsao
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Harvard Medical School, Massachusetts General Hospital, 149 13th Street, Charlestown, Massachusetts 02129, USA.,Harvard University Program in Biophysics, Building C2 Room 112, 240 Longwood Avenue, Boston, Massachusetts 02115, USA.,Ludwig Center at Harvard, Harvard Medical School, 200 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
11
|
Doughty B, Simpson MJ, Yang B, Xiao K, Ma YZ. Simplification of femtosecond transient absorption microscopy data from CH₃NH₃PbI₃ perovskite thin films into decay associated amplitude maps. NANOTECHNOLOGY 2016; 27:114002. [PMID: 27308671 DOI: 10.1088/0957-4484/27/11/114002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps (DAAMs) that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the data set comprising 68 time-resolved images into four DAAMs. These maps offer a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.
Collapse
|
12
|
Koehler MJ, Kellner K, Hipler UC, Kaatz M. Acute UVB-induced epidermal changes assessed by multiphoton laser tomography. Skin Res Technol 2014; 21:137-43. [PMID: 25066913 DOI: 10.1111/srt.12168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND In vivo multiphoton tomography (MPT) of human skin has become a valuable tool for non-invasive examination of morphological and biophysical skin properties and their alterations. So far, skin changes after UVB irradiation were mainly evaluated clinically and histologically. The present study aimed at non-invasive imaging of histological changes during acute UVB irradiation by multiphoton laser tomography. METHODS In 10 volunteers, five areas were irradiated once with an erythematous UVB dose. Multiphoton measurements were performed four times, i.e. before irradiation (baseline), and 24, 48 and 72 h after irradiation, respectively. The data were evaluated for changes of epidermal pleomorphy, spongiosis, pigmentation and thickness. RESULTS The four parameters were altered significantly by acute UVB irradiation, i.e. epidermal pleomorphy, spongiosis, pigmentation and thickness increased within 72 h after irradiation. CONCLUSION Thus, the study has shown that typical epidermal changes induced by acute UVB irradiation can be evaluated by MPT.
Collapse
Affiliation(s)
- M J Koehler
- Department of Dermatology, SRH Waldklinikum Gera, Gera, Germany; Department of Dermatology, University Hospital Jena, Jena, Germany
| | | | | | | |
Collapse
|
13
|
Miyazaki J, Kawasumi K, Kobayashi T. Resolution improvement in laser diode-based pump-probe microscopy with an annular pupil filter. OPTICS LETTERS 2014; 39:4219-4222. [PMID: 25121691 DOI: 10.1364/ol.39.004219] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We experimentally demonstrate the use of annular beams to improve lateral resolution in laser-diode-based pump-probe microscopy. We found that the width of the point-spreading function in the case of the annular pump-probe beams is 162 nm, which is 30% smaller than that of the circular beams (232 nm). Furthermore, side lobes were efficiently suppressed at the focal plane since the pump-probe signal is proportional to the product of the two beam intensities. This scheme is demonstrated for the photothermal signal of nonfluorescent gold nanoparticles and the stimulated emission signal of fluorescence beads.
Collapse
|
14
|
Miyazaki J, Tsurui H, Hayashi-Takagi A, Kasai H, Kobayashi T. Sub-diffraction resolution pump-probe microscopy with shot-noise limited sensitivity using laser diodes. OPTICS EXPRESS 2014; 22:9024-9032. [PMID: 24787791 DOI: 10.1364/oe.22.009024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We demonstrate the use of intensity-modulated laser diodes to implement pump-probe microscopy and achieved sub-diffraction resolution imaging with shot-noise limited sensitivity with a scheme of balanced detection. This technique has several applications for various types of induced transmission change, including excited-state absorption, ground state absorption bleaching and stimulated emission. By using our technique, biological imaging of mouse T cells and the axons of neurons in the cerebral cortex was demonstrated.
Collapse
|
15
|
Femtosecond pump-probe microscopy generates virtual cross-sections in historic artwork. Proc Natl Acad Sci U S A 2014; 111:1708-13. [PMID: 24449855 DOI: 10.1073/pnas.1317230111] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The layering structure of a painting contains a wealth of information about the artist's choice of materials and working methods, but currently, no 3D noninvasive method exists to replace the taking of small paint samples in the study of the stratigraphy. Here, we adapt femtosecond pump-probe imaging, previously shown in tissue, to the case of the color palette in paintings, where chromophores have much greater variety. We show that combining the contrasts of multispectral and multidelay pump-probe spectroscopy permits nondestructive 3D imaging of paintings with molecular and structural contrast, even for pigments with linear absorption spectra that are broad and relatively featureless. We show virtual cross-sectioning capabilities in mockup paintings, with pigment separation and nondestructive imaging on an intact 14th century painting (The crucifixion by Puccio Capanna). Our approach makes it possible to extract microscopic information for a broad range of applications to cultural heritage.
Collapse
|
16
|
Gabriel MM, Kirschbrown JR, Christesen JD, Pinion CW, Zigler DF, Grumstrup EM, Mehl BP, Cating EEM, Cahoon JF, Papanikolas JM. Direct imaging of free carrier and trap carrier motion in silicon nanowires by spatially-separated femtosecond pump-probe microscopy. NANO LETTERS 2013; 13:1336-1340. [PMID: 23421654 DOI: 10.1021/nl400265b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have developed a pump-probe microscope capable of exciting a single semiconductor nanostructure in one location and probing it in another with both high spatial and temporal resolution. Experiments performed on Si nanowires enable a direct visualization of the charge cloud produced by photoexcitation at a localized spot as it spreads along the nanowire axis. The time-resolved images show clear evidence of rapid diffusional spreading and recombination of the free carriers, which is consistent with ambipolar diffusion and a surface recombination velocity of ∼10(4) cm/s. The free carrier dynamics are followed by trap carrier migration on slower time scales.
Collapse
Affiliation(s)
- Michelle M Gabriel
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Li B, Cheng Y, Liu J, Yi C, Brown AS, Yuan H, Vo-Dinh T, Fischer MC, Warren WS. Direct optical imaging of graphene in vitro by nonlinear femtosecond laser spectral reshaping. NANO LETTERS 2012; 12:5936-40. [PMID: 23101475 PMCID: PMC3672226 DOI: 10.1021/nl303358p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nonlinear optical microscopy, based on femtosecond laser spectral reshaping, characterized and imaged graphene samples made from different methods, both on slides and in a biological environment. This technique clearly discriminates between graphene flakes with different numbers of layers and reveals the distinct nonlinear optical properties of reduced graphene oxide as compared to mechanically exfoliated or chemical vapor deposition grown graphene. The nonlinearity makes it applicable to scattering samples (such as tissue) as opposed to previous methods, such as transmission. This was demonstrated by high-resolution imaging of breast cancer cells incubated with graphene flakes.
Collapse
Affiliation(s)
- Baolei Li
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Yingwen Cheng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jie Liu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Congwen Yi
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - April S. Brown
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Hsiangkuo Yuan
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Tuan Vo-Dinh
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Martin C. Fischer
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Warren S. Warren
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
- Corresponding Author
| |
Collapse
|
18
|
Robles FE, Wilson JW, Fischer MC, Warren WS. Phasor analysis for nonlinear pump-probe microscopy. OPTICS EXPRESS 2012; 20:17082. [PMCID: PMC3601636 DOI: 10.1364/oe.20.017082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/07/2012] [Accepted: 07/07/2012] [Indexed: 05/19/2023]
Abstract
Pump-probe microscopy provides molecular information by probing transient, excited state dynamic properties of pigmented samples. Analysis of the transient response is typically conducted using principal component analysis or multi-exponential fitting, however these methods are not always practical or feasible. Here, we show an adaptation of phasor analysis to provide an intuitive, robust, and efficient method for analyzing and displaying pump-probe images, thereby alleviating some of the challenges associated with differentiating multiple pigments. A theoretical treatment is given to understand how the complex transient signals map onto the phasor plot. Analyses of cutaneous and ocular pigmented tissue samples, as well as historical pigments in art demonstrate the utility of this approach.
Collapse
Affiliation(s)
| | - Jesse W. Wilson
- Department of Chemistry, Duke University, Durham, North Carolina 27708,
USA
| | - Martin C. Fischer
- Department of Chemistry, Duke University, Durham, North Carolina 27708,
USA
| | - Warren S. Warren
- Department of Chemistry, Duke University, Durham, North Carolina 27708,
USA
- Departments of Radiology and Biomedical Engineering, Duke University, Durham, North Carolina 27708,
USA
| |
Collapse
|
19
|
Samineni P, deCruz A, Villafaña TE, Warren WS, Fischer MC. Pump-probe imaging of historical pigments used in paintings. OPTICS LETTERS 2012; 37:1310-1312. [PMID: 22513669 DOI: 10.1364/ol.37.001310] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A recently developed nonlinear optical pump-probe microscopy technique uses modulation transfer to sensitively extract excited-state dynamics of endogenous biological pigments, such as eumelanin and pheomelanin. In this work, we use this method to image and characterize several inorganic and organic pigments used in historical art. We show substantial differences in the near-IR pump-probe signatures from nominally similar pigments and suggest extensions to art restoration.
Collapse
Affiliation(s)
- Prathyush Samineni
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | | | | | | | | |
Collapse
|
20
|
Samineni P, Li B, Wilson JW, Warren WS, Fischer MC. Cross-phase modulation imaging. OPTICS LETTERS 2012; 37:800-2. [PMID: 22378398 PMCID: PMC3371360 DOI: 10.1364/ol.37.000800] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We demonstrate a cross-phase modulation measurement technique based on the sensitive detection of modulation transfer in a pump-probe setup. By modulating the amplitude of the pump beam and spectrally analyzing the probe beam, we achieve a rapid, background-free measurement of nonlinear phase modulation using power levels acceptable in biological imaging. This measurement technique would allow the extension of widely employed phase microscopy methods to the nonlinear regime, providing intrinsic and universal nonlinear contrast for biological imaging.
Collapse
Affiliation(s)
- Prathyush Samineni
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Baolei Li
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Jesse W. Wilson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Warren S. Warren
- Departments of Chemistry, Radiology, and Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | - Martin C. Fischer
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Corresponding author:
| |
Collapse
|
21
|
Probing near-infrared photorelaxation pathways in eumelanins and pheomelanins. J Phys Chem A 2011; 114:11483-91. [PMID: 20882951 DOI: 10.1021/jp103608d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet-visible spectroscopy readily discerns the two types of melanin pigments (eumelanin and pheomelanin), although fundamental details regarding the optical properties and pigment heterogeneity are more difficult to disentangle via analysis of the broad featureless absorption spectrum alone. We employed nonlinear transient absorption spectroscopy to study different melanin pigments at near-infrared wavelengths. Excited-state absorption, ground-state depletion, and stimulated emission signal contributions were distinguished for natural and synthetic eumelanins and pheomelanins. A starker contrast among the pigments is observed in the nonlinear excitation regime because they all exhibit distinct transient absorptive amplitudes, phase shifts, and nonexponential population dynamics spanning the femtosecond-nanosecond range. In this manner, different pigments within the pheomelanin subclass were distinguished in synthetic and human hair samples. These results highlight the potential of nonlinear spectroscopies to deliver an in situ analysis of natural melanins in tissue that are otherwise difficult to extract and purify.
Collapse
|
22
|
Matthews TE, Piletic IR, Selim MA, Simpson MJ, Warren WS. Pump-probe imaging differentiates melanoma from melanocytic nevi. Sci Transl Med 2011; 3:71ra15. [PMID: 21346168 DOI: 10.1126/scitranslmed.3001604] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melanoma diagnosis is clinically challenging: the accuracy of visual inspection by dermatologists is highly variable and heavily weighted toward false positives. Even the current gold standard of biopsy results in varying diagnoses among pathologists. We have developed a multiphoton technique (based on pump-probe spectroscopy) that directly determines the microscopic distribution of eumelanin and pheomelanin in pigmented lesions of human skin. Our initial results showed a marked difference in the chemical variety of melanin between nonmalignant nevi and melanoma, as well as a number of substantial architectural differences. We examined slices from 42 pigmented lesions and found that melanomas had an increased eumelanin content compared to nonmalignant nevi. When used as a diagnostic criterion, the ratio of eumelanin to pheomelanin captured all investigated melanomas but excluded three-quarters of dysplastic nevi and all benign dermal nevi. Additional evaluation of architectural and cytological features revealed by multiphoton imaging, including the maturation of melanocytes, presence of pigmented melanocytes in the dermis, number and location of melanocytic nests, and confluency of pigmented cells in the epidermis, further increased specificity, allowing rejection of more than half of the remaining false-positive results. We then adapted this multiphoton imaging technique to hematoxylin and eosin (H&E)-stained slides. By adding melanin chemical contrast to H&E-stained slides, pathologists will gain complementary information to increase the ease and accuracy of melanoma diagnosis.
Collapse
|
23
|
Cicchi R, Pavone FS. Non-linear fluorescence lifetime imaging of biological tissues. Anal Bioanal Chem 2011; 400:2687-97. [PMID: 21455652 DOI: 10.1007/s00216-011-4896-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
In recent years fluorescence microscopy has become a widely used tool for tissue imaging and spectroscopy. Optical techniques, based on both linear and non-linear excitation, have been broadly applied to imaging and characterization of biological tissues. Among fluorescence techniques used in tissue imaging applications, in recent years two and three-photon excited fluorescence have gained increased importance because of their high-resolution deep tissue imaging capability inside optically turbid samples. The main limitation of steady-state fluorescence imaging techniques consists in providing only morphological information; functional information is not detectable without technical improvements. A spectroscopic approach, based on lifetime measurement of tissue fluorescence, can provide functional information about tissue conditions, including its environment, red-ox state, and pH, and hence physiological characterization of the tissue under investigation. Measurement of the fluorescence lifetime is a very important issue for characterizing a biological tissue. Deviation of this property from a control value can be taken as an indicator of disorder and/or malignancy in diseased tissues. Even if much work on this topic has still to be done, including the interpretation of fluorescence lifetime data, we believe that this methodology will gain increasing importance in the field of biophotonics. In this paper, we review methodologies, potentials and results obtained by using fluorescence lifetime imaging microscopy for the investigation of biological tissues.
Collapse
Affiliation(s)
- Riccardo Cicchi
- European Laboratory for Non-linear Spectroscopy, University of Florence, Sesto Fiorentino, Italy.
| | | |
Collapse
|
24
|
Freudiger CW, Min W, Holtom GR, Xu B, Dantus M, Xie XS. Highly specific label-free molecular imaging with spectrally tailored excitation stimulated Raman scattering (STE-SRS) microscopy. NATURE PHOTONICS 2011; 5:103-109. [PMID: 23015809 PMCID: PMC3454352 DOI: 10.1038/nphoton.2010.294] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Label-free microscopy with chemical contrast and high acquisition speed up to video-rate has recently been made possible by stimulated Raman scattering (SRS) microscopy. While SRS imaging offers superb sensitivity, the spectral specificity of the original narrowband implementation is limited, making distinguishing chemical species with overlapping Raman bands difficult. Here we present a highly specific imaging method that allows mapping of a particular chemical species in the presence of interfering species based on tailored multiplex excitation of its vibrational spectrum. This is done by spectral modulation of a broadband pump beam at a high-frequency (>1MHz), allowing detection of the stimulated Raman gain signal of the narrowband Stokes beam with high sensitivity. Using the scheme, we demonstrate quantification of cholesterol in the presence of lipids, and real-time three-dimensional spectral imaging of protein, stearic acid and oleic acid in live C.elegans.
Collapse
Affiliation(s)
- Christian W. Freudiger
- Department of Physics, Harvard University, Cambridge (MA)
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge (MA)
| | - Wei Min
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge (MA)
| | - Gary R. Holtom
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge (MA)
| | - Bingwei Xu
- Biophotonic Solutions Inc., East Lansing (MI)
| | - Marcos Dantus
- Department of Chemistry and Department of Physics, Michigan State University, East Lansing (MI)
| | - X. Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge (MA)
- corresponding author ()
| |
Collapse
|
25
|
Samineni P, Perret Z, Warren WS, Fischer MC. Measurements of nonlinear refractive index in scattering media. OPTICS EXPRESS 2010; 18:12727-35. [PMID: 20588401 PMCID: PMC3397776 DOI: 10.1364/oe.18.012727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have recently developed a spectral re-shaping technique to simultaneously measure nonlinear refractive index and nonlinear absorption. In this technique, the information about the nonlinearities is encoded in the frequency domain, rather than in the spatial domain as in the conventional Z-scan method. Here we show that frequency encoding is much more robust with respect to scattering. We compare spectral re-shaping and Z-scan measurements in a highly scattering environment and show that reliable spectral re-shaping measurements can be performed even in a regime that precludes standard Z-scans.
Collapse
Affiliation(s)
| | - Zachary Perret
- Department of Chemistry, Duke University, Durham, NC 27708, USA
| | - Warren S. Warren
- Departments of Chemistry, Radiology, and Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
26
|
Targeting Non-Fluorescent Molecules by Nonlinear Optical Imaging. Chemphyschem 2010; 11:1619-22. [DOI: 10.1002/cphc.200900979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Cui L, Knox WH. Forty-five degree backscattering-mode nonlinear absorption imaging in turbid media. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:026004. [PMID: 20459249 DOI: 10.1117/1.3368995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Two-color nonlinear absorption imaging has been previously demonstrated with endogenous contrast of hemoglobin and melanin in turbid media using transmission-mode detection and a dual-laser technology approach. For clinical applications, it would be generally preferable to use backscattering mode detection and a simpler single-laser technology. We demonstrate that imaging in backscattering mode in turbid media using nonlinear absorption can be obtained with as little as 1-mW average power per beam with a single laser source. Images have been achieved with a detector receiving backscattered light at a 45-deg angle relative to the incoming beams' direction. We obtain images of capillary tube phantoms with resolution as high as 20 microm and penetration depth up to 0.9 mm for a 300-microm tube at SNR approximately 1 in calibrated scattering solutions. Simulation results of the backscattering and detection process using nonimaging optics are demonstrated. A Monte Carlo-based method shows that the nonlinear signal drops exponentially as the depth increases, which agrees well with our experimental results. Simulation also shows that with our current detection method, only 2% of the signal is typically collected with a 5-mm-radius detector.
Collapse
Affiliation(s)
- Liping Cui
- University of Rochester, The Institute of Optics, 275 Hutchinson Road, Rochester, New York 14627, USA.
| | | |
Collapse
|
28
|
Piletic IR, Matthews TE, Warren WS. Estimation of molar absorptivities and pigment sizes for eumelanin and pheomelanin using femtosecond transient absorption spectroscopy. J Chem Phys 2009; 131:181106. [PMID: 19916591 PMCID: PMC4108625 DOI: 10.1063/1.3265861] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Accepted: 10/28/2009] [Indexed: 11/14/2022] Open
Abstract
Fundamental optical and structural properties of melanins are not well understood due to their poor solubility characteristics and the chemical disorder present during biomolecular synthesis. We apply nonlinear transient absorption spectroscopy to quantify molar absorptivities for eumelanin and pheomelanin and thereby get an estimate for their average pigment sizes. We determine that pheomelanin exhibits a larger molar absorptivity at near IR wavelengths (750 nm), which may be extended to shorter wavelengths. Using the molar absorptivities, we estimate that melanin pigments contain approximately 46 and 28 monomer units for eumelanin and pheomelanin, respectively. This is considerably larger than the oligomeric species that have been recently proposed to account for the absorption spectrum of eumelanin and illustrates that larger pigments comprise a significant fraction of the pigment distribution.
Collapse
Affiliation(s)
- Ivan R Piletic
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, USA
| | | | | |
Collapse
|
29
|
Abstract
For the past two decades, nonlinear microscopy has been developed to overcome the scattering problem in thick tissue imaging. Owing to its increased imaging depth and high spatial resolution, nonlinear microscopy becomes the first choice for imaging living tissues. The use of nonlinear optical effects not only facilitates the signal originating from an extremely small volume defined by light focusing but also provides novel contrast mechanisms with molecular specificity. Nonlinear absorption is a nonlinear optical effect in which the absorption coefficient depends on excitation intensity. As a commonly used spectroscopy tool, nonlinear absorption measurement uncovers many photophysical and photochemical processes correlated with electronic states of molecules. Recently we have been focusing on adapting this spectroscopy method to a microscopy imaging technique. The effort leads to a novel modality in nonlinear microscopy-nonlinear absorption microscopy. This article summarizes the principles and instrumentation of this imaging technique and highlights some of the recent progress in applying it to imaging skin pigmentation and microvasculature under ex vivo or in vivo conditions.
Collapse
Affiliation(s)
- Tong Ye
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, USA.
| | | | | |
Collapse
|
30
|
Marchesini R, Bono A, Carrara M. In vivo characterization of melanin in melanocytic lesions: spectroscopic study on 1671 pigmented skin lesions. JOURNAL OF BIOMEDICAL OPTICS 2009; 14:014027. [PMID: 19256715 DOI: 10.1117/1.3080140] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The purpose of this study is to determine the role of melanin in the various steps of progression of melanocytic neoplasia. To this aim, we perform a retrospective analysis on 1671 multispectral images of in vivo pigmented skin lesions previously recruited in the framework of a study focused on the computer-assisted diagnosis of melanoma. The series included 288 melanomas in different phases of progression, i.e., in situ, horizontal and vertical growth phase invasive melanomas, 424 dysplastic nevi, and other 957 melanocytic lesions. Analysis of the absorbance spectra in the different groups shows that the levels of eumelanin and pheomelanin increase and decrease, respectively, from dysplastic nevi to invasive melanomas. In both cases, the trend of melanin levels is associated to the progression from dysplastic nevi to vertical growth phase melanomas, reflecting a possible hierarchy in the natural history of the early phases of the disease. Our results suggest that diffuse reflectance spectroscopy used to differentiate eumelanin and pheomelanin in in vivo lesions is a promising technique useful to develop better strategies for the characterization of various melanocytic lesions, for instance, by monitoring melanin in a time-lapse study of a lesion that was supposed to be benign.
Collapse
Affiliation(s)
- Renato Marchesini
- Fondazione Istituto Nazionale Tumori, Medical Physics Unit, Via Venezian 1, I-20133 Milan, Italy
| | | | | |
Collapse
|