1
|
Tong J, Wang Z, Zhang J, Gao R, Liu X, Liao Y, Guo X, Wei Y. Advanced Applications of Nanomaterials in Atherosclerosis Diagnosis and Treatment: Challenges and Future Prospects. ACS APPLIED MATERIALS & INTERFACES 2024; 16:58072-58099. [PMID: 39432384 DOI: 10.1021/acsami.4c13607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Atherosclerosis-induced coronary artery disease is a major cause of cardiovascular mortality. Clinically, conservative treatment strategies for atherosclerosis still focus on lifestyle interventions and the use of lipid-lowering and anticoagulant medications. Despite achieving some therapeutic effects, these approaches are limited by low bioavailability, long intervention periods, and significant side effects. With the advancement of nanotechnology, nanomaterials have demonstrated extraordinary potential in the biomedical field. Their excellent biocompatibility, surface modifiability, and high targeting capability not only enable efficient diagnosis of plaque progression but also allow precise drug delivery within atherosclerotic plaques, significantly enhancing drug bioavailability and reducing systemic side effects. Here, we systematically review the current research progress of nanomaterials in the field of atherosclerosis to summarize not only the types of nanomaterials but also their applications in both the diagnosis and treatment of atherosclerosis. Notably, in the context of plaque therapy, we provide a comprehensive overview of current nanomaterial applications based on their targeted therapeutic systems for different cell types within plaques. Additionally, we address the persistent challenge of clinical translation of nanomaterials by summarizing current issues and providing directions for innovation and improvement in nanomaterial design. Overall, we believe that this review systematically summarizes the applications and challenges of biomedical nanomaterials in atherosclerosis diagnosis and therapy, thereby offering insights and references for the development of therapeutic materials for atherosclerosis.
Collapse
Affiliation(s)
- Junran Tong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwen Wang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Jiahui Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ran Gao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiangfei Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuhan Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaopeng Guo
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yumiao Wei
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
2
|
Gill N, Srivastava I, Tropp J. Rational Design of NIR-II Emitting Conjugated Polymer Derived Nanoparticles for Image-Guided Cancer Interventions. Adv Healthc Mater 2024; 13:e2401297. [PMID: 38822530 DOI: 10.1002/adhm.202401297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/26/2024] [Indexed: 06/03/2024]
Abstract
Due to the reduced absorption, light scattering, and tissue autofluorescence in the NIR-II (1000-1700 nm) region, significant efforts are underway to explore diverse material platforms for in vivo fluorescence imaging, particularly for cancer diagnostics and image-guided interventions. Of the reported imaging agents, nanoparticles derived from conjugated polymers (CPNs) offer unique advantages to alternative materials including biocompatibility, remarkable absorption cross-sections, exceptional photostability, and tunable emission behavior independent of cell labeling functionalities. Herein, the current state of NIR-II emitting CPNs are summarized and structure-function-property relationships are highlighted that can be used to elevate the performance of next-generation CPNs. Methods for particle processing and incorporating cancer targeting modalities are discussed, as well as detailed characterization methods to improve interlaboratory comparisons of novel materials. Contemporary methods to specifically apply CPNs for cancer diagnostics and therapies are then highlighted. This review not only summarizes the current state of the field, but offers future directions and provides clarity to the advantages of CPNs over other classes of imaging agents.
Collapse
Affiliation(s)
- Nikita Gill
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Indrajit Srivastava
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, 79106, USA
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Joshua Tropp
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, 79106, USA
| |
Collapse
|
3
|
Vergari M, Niccolini B, Pitocco D, Rizzi A, Ciasca G, de Spirito M, Gavioli L. Optical discrimination of pathological red blood cells. Biotechnol Bioeng 2024; 121:3311-3318. [PMID: 38973124 DOI: 10.1002/bit.28798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/09/2024]
Abstract
Fast diagnostic methods are crucial to reduce the burden on healthcare systems. Currently, detection of diabetes complications such as neuropathy requires time-consuming approaches to observe the correlated red blood cells (RBCs) morphological changes. To tackle this issue, an optical analysis of RBCs in air was conducted in the 250-2500 nm range. The distinct oscillations present in the scattered and direct transmittance spectra have been analyzed with both Mie theory and anomalous diffraction approximation. The results provide information about the swelling at the ends of RBCs and directly relate the optical data to RBCs morphology and deformability. Both models agree on a reduction in the size and deformability of RBCs in diabetic patients, thus opening the way to diabetes diagnosis and disease progression assessment.
Collapse
Affiliation(s)
- Michele Vergari
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Brescia, Italy
| | - Benedetta Niccolini
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
| | - Dario Pitocco
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- UOSD Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Rizzi
- UOSD Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gabriele Ciasca
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- UOSD Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco de Spirito
- Dipartimento di Neuroscienze, Sezione di Fisica, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario "A. Gemelli", IRCCS, Rome, Italy
- UOSD Diabetologia, Fondazione Policlinico Universitario Agostino Gemelli, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Gavioli
- Interdisciplinary Laboratories for Advanced Materials Physics (i-LAMP) and Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, Brescia, Italy
| |
Collapse
|
4
|
Deng H, Xie K, Hu L, Liu X, Li Q, Xie D, Xiang F, Liu W, Zheng W, Xiao S, Zheng J, Tan X. Polyamine Derived Photosensitizer: A Novel Approach for Photodynamic Therapy of Cancer. Molecules 2024; 29:4277. [PMID: 39275124 PMCID: PMC11397399 DOI: 10.3390/molecules29174277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Polyamines play a pivotal role in cancer cell proliferation. The excessive polyamine requirement of these malignancies is satisfied through heightened biosynthesis and augmented extracellular uptake via the polyamine transport system (PTS) present on the cell membrane. Meanwhile, photodynamic therapy (PDT) emerges as an effective anti-cancer treatment devoid of drug resistance. Recognizing these intricacies, our study devised a novel polyamine-derived photosensitizer (PS) for targeted photodynamic treatment, focusing predominantly on pancreatic cancer cells. We synthesized and evaluated novel spermine-derived fluorescent probes (N2) and PS (N3), exhibiting selectivity towards pancreatic cancer cells via PTS. N3 showed minimal dark toxicity but significant phototoxicity upon irradiation, effectively causing cell death in vitro. A significant reduction in tumor volume was observed post-treatment with no pronounced dark toxicity using the pancreatic cancer CDX mouse model, affirming the therapeutic potential of N3. Overall, our findings introduce a promising new strategy for cancer treatment, highlighting the potential of polyamine-derived PSs in PDT.
Collapse
Affiliation(s)
- Hao Deng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China
| | - Ke Xie
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China
| | - Liling Hu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China
| | - Xiaowen Liu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Qingyun Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Donghui Xie
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Fengyi Xiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Wei Liu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China
| | - Weihong Zheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Shuzhang Xiao
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Jun Zheng
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China
| | - Xiao Tan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- The First College of Clinical Medical Science, China Three Gorges University, Yichang 443003, China
| |
Collapse
|
5
|
Omari F, Khaouane L, Laidi M, Ibrir A, Roubehie Fissa M, Hentabli M, Hanini S. Dragonfly algorithm-support vector machine approach for prediction the optical properties of blood. Comput Methods Biomech Biomed Engin 2024; 27:1119-1128. [PMID: 37376957 DOI: 10.1080/10255842.2023.2228957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/31/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Knowledge of the optical properties of blood plays important role in medical diagnostics and therapeutic applications in laser medicine. In this paper, we present a very rapid and accurate artificial intelligent approach using Dragonfly Algorithm/Support Vector Machine models to estimate the optical properties of blood, specifically the absorption coefficient, and the scattering coefficient using key parameters such as wavelength (nm), hematocrit percentage (%), and saturation of oxygen (%), in building very highly accurate Dragonfly Algorithm-Support Vector Regression models (DA-SVR). 1000 training and testing sets were selected in the wavelength range of 250-1200 nm and the hematocrit of 0-100%. The performance of the proposed method is characterized by high accuracy indicated in the correlation coefficients (R) of 0.9994 and 0.9957 for absorption and scattering coefficients, respectively. In addition, the root mean squared error values (RMSE) of 0.972 and 2.9193, as well as low mean absolute error values (MAE) of 0.2173 and 0.2423, this result showed a strong match with the experimental data. The models can be used to accurately predict the absorption and scattering coefficients of blood, and provide a reliable reference for future studies on the optical properties of human blood.
Collapse
Affiliation(s)
- Faiza Omari
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), Yahia Fares University, Medea, Algeria
| | - Latifa Khaouane
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), Yahia Fares University, Medea, Algeria
| | - Maamar Laidi
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), Yahia Fares University, Medea, Algeria
| | - Abdellah Ibrir
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), Yahia Fares University, Medea, Algeria
- Materials and Environment Laboratory (LME), Faculty of Technology, Yahia Fares University, Medea, Algeria
| | - Mohamed Roubehie Fissa
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), Yahia Fares University, Medea, Algeria
| | - Mohamed Hentabli
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), Yahia Fares University, Medea, Algeria
- Quality Control Laboratory, SAIDAL Complex of Medea, Medea, Algeria
| | - Salah Hanini
- Laboratory of Biomaterials and Transport Phenomena (LBMTP), Yahia Fares University, Medea, Algeria
| |
Collapse
|
6
|
Nguyen VP, Karoukis AJ, Qian W, Chen L, Perera ND, Yang D, Zhang Q, Zhe J, Henry J, Liu B, Zhang W, Fahim AT, Wang X, Paulus YM. Multimodal Imaging-Guided Stem Cell Ocular Treatment. ACS NANO 2024; 18:14893-14906. [PMID: 38801653 DOI: 10.1021/acsnano.3c10632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Stem cell therapies are gaining traction as promising treatments for a variety of degenerative conditions. Both clinical and preclinical studies of regenerative medicine are hampered by the lack of technologies that can evaluate the migration and behavior of stem cells post-transplantation. This study proposes an innovative method to longitudinally image in vivo human-induced pluripotent stem cells differentiated to retinal pigment epithelium (hiPSC-RPE) cells by multimodal photoacoustic microscopy, optical coherence tomography, and fluorescence imaging powered by ultraminiature chain-like gold nanoparticle cluster (GNC) nanosensors. The GNC exhibits an optical absorption peak in the near-infrared regime, and the 7-8 nm size in diameter after disassembly enables renal excretion and improved safety as well as biocompatibility. In a clinically relevant rabbit model, GNC-labeled hiPSC-RPE cells migrated to RPE degeneration areas and regenerated damaged tissues. The hiPSC-RPE cells' distribution and migration were noninvasively, longitudinally monitored for 6 months with exceptional sensitivity and spatial resolution. This advanced platform for cellular imaging has the potential to enhance regenerative cell-based therapies.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Athanasios J Karoukis
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Wei Qian
- IMRA America Inc., Ann Arbor, Michigan 48105, United States
| | - Lisheng Chen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Nirosha D Perera
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Dongshan Yang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qitao Zhang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Josh Zhe
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Jessica Henry
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Bing Liu
- IMRA America Inc., Ann Arbor, Michigan 48105, United States
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Abigail T Fahim
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
7
|
Paul S, Patel HS, Saha RK. Quantitative evaluation of the impact of variation of optical parameters on the estimation of blood hematocrit and oxygen saturation for dual-wavelength photoacoustics. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2024; 41:1128-1139. [PMID: 38856427 DOI: 10.1364/josaa.521238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/19/2024] [Indexed: 06/11/2024]
Abstract
Photoacoustic (PA) spectroscopy is considered to be one of the most effective ways to measure the levels of hematocrit (H) and oxygenation saturation (S O 2) of blood, which are essential for diagnosing blood-related illnesses. This simulation study aims to investigate the impact of individual optical parameters, i.e., optical absorption coefficient (μ a), scattering coefficient (μ s), and anisotropy factor (g), on the accuracy of this technique in estimating the blood properties. We first performed the Monte Carlo simulations, using realistic optical parameters, to obtain the fluence maps for various samples. The wavelengths of the incident light were chosen to be 532, 700, 1000, and 1064 nm. Thereafter, the k-Wave simulations were executed, incorporating those fluence maps to generate the PA signals. The blood properties were obtained using the PA signals. We introduced variations in μ a, μ s, and g ranging from -10% to +10%, -10% to +10%, and -5% to +1%, respectively, at 700 and 1000 nm wavelengths. One parameter, at both wavelengths, was changed at a time, keeping others fixed. Subsequently, we examined how accurately the blood parameters could be determined at physiological hematocrit levels. A 10% variation in μ a induces a 10% change in H estimation but no change in S O 2 determination. Almost no change has been seen for μ s variation. However, a 5% (-5% to 0%) variation in the g factor resulted in approximately 160% and 115% changes in the PA signal amplitudes at 700 and 1000 nm, respectively, leading to ≈125% error in hematocrit estimation and ≈14% deviation in S O 2 assessment when nominal S O 2=70%. It is clear from this study that the scattering anisotropy factor is a very sensitive parameter and a small change in its value can result in large errors in the PA estimation of blood properties. In the future, in vitro experiments with pathological blood (inducing variation in the g parameter) will be performed, and accordingly, the accuracy of the PA technique in quantifying blood H and S O 2 will be evaluated.
Collapse
|
8
|
Beach JM, Shoemaker B, Eckert GJ, Harris A, Siesky B, Arciero JC. Potential measurement error from vessel reflex and multiple light paths in dual-wavelength retinal oximetry. Acta Ophthalmol 2024; 102:e367-e380. [PMID: 37786359 PMCID: PMC10987395 DOI: 10.1111/aos.15776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 08/15/2023] [Accepted: 09/18/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE This study aims to characterize the dependence of measured retinal arterial and venous saturation on vessel diameter and central reflex in retinal oximetry, with an ultimate goal of identifying potential causes and suggesting approaches to improve measurement accuracy. METHODS In 10 subjects, oxygen saturation, vessel diameter and optical density are obtained using Oxymap Analyzer software without diameter correction. Diameter dependence of saturation is characterized using linear regression between measured values of saturation and diameter. Occurrences of negative values of vessel optical densities (ODs) associated with central vessel reflex are acquired from Oxymap Analyzer. A conceptual model is used to calculate the ratio of optical densities (ODRs) according to retinal reflectance properties and single and double-pass light transmission across fixed path lengths. Model-predicted values are compared with measured oximetry values at different vessel diameters. RESULTS Venous saturation shows an inverse relationship with vessel diameter (D) across subjects, with a mean slope of -0.180 (SE = 0.022) %/μm (20 < D < 180 μm) and a more rapid saturation increase at small vessel diameters reaching to over 80%. Arterial saturation yields smaller positive and negative slopes in individual subjects, with an average of -0.007 (SE = 0.021) %/μm (20 < D < 200 μm) across all subjects. Measurements where vessel brightness exceeds that of the retinal background result in negative values of optical density, causing an artifactual increase in saturation. Optimization of model reflectance values produces a good fit of the conceptual model to measured ODRs. CONCLUSION Measurement artefacts in retinal oximetry are caused by strong central vessel reflections, and apparent diameter sensitivity may result from single and double-pass transmission in vessels. Improvement in correction for vessel diameter is indicated for arteries however further study is necessary for venous corrections.
Collapse
Affiliation(s)
| | - Benjamin Shoemaker
- Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| | - George J Eckert
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Alon Harris
- Icahn School of Medicine, Mt. Sinai, New York, USA
| | - Brent Siesky
- Icahn School of Medicine, Mt. Sinai, New York, USA
| | - Julia C Arciero
- Indiana University - Purdue University Indianapolis (IUPUI), Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Genin VD, Bucharskaya AB, Kirillin MY, Kurakina DA, Navolokin NA, Terentyuk GS, Khlebtsov BN, Khlebtsov NG, Maslyakova GN, Tuchin VV, Genina EA. Monitoring of optical properties of tumors during laser plasmon photothermal therapy. JOURNAL OF BIOPHOTONICS 2024; 17:e202300322. [PMID: 38221797 DOI: 10.1002/jbio.202300322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
We studied grafted tumors obtained by subcutaneous implantation of kidney cancer cells into male white rats. Gold nanorods with a plasmon resonance of about 800 nm were injected intratumorally for photothermal heating. Experimental irradiation of tumors was carried out percutaneously using a near-infrared diode laser. Changes in the optical properties of the studied tissues in the spectral range 350-2200 nm under plasmonic photothermal therapy (PPT) were studied. Analysis of the observed changes in the absorption bands of water and hemoglobin made it possible to estimate the depth of thermal damage to the tumor. A significant decrease in absorption peaks was observed in the spectrum of the upper peripheral part and especially the tumor capsule. The obtained changes in the optical properties of tissues under laser irradiation can be used to optimize laboratory and clinical PPT procedures.
Collapse
Affiliation(s)
- Vadim D Genin
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Alla B Bucharskaya
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Mikhail Yu Kirillin
- Biophotonics Laboratory, Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
- Applied Mathematics Department, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Daria A Kurakina
- Biophotonics Laboratory, Institute of Applied Physics Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Nikita A Navolokin
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Georgy S Terentyuk
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Boris N Khlebtsov
- Laboratory of Nanobiotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences" (IBPPM RAS), Saratov, Russia
| | - Nikolai G Khlebtsov
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Nanobiotechnology, Institute of Biochemistry and Physiology of Plants and Microorganisms, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences" (IBPPM RAS), Saratov, Russia
| | - Galina N Maslyakova
- Core Facility of Experimental Oncology, Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
| | - Valery V Tuchin
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
- Laboratory of Laser Diagnostics of Technical and Living Systems, Institute of Precision Mechanics and Control, Federal Research Centre "Saratov Scientific Centre of the Russian Academy of Sciences", Saratov, Russia
| | - Elina A Genina
- Optics and Biophotonics Department, Saratov State University, Saratov, Russia
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| |
Collapse
|
10
|
Mazumder D, Kholiqov O, Srinivasan VJ. Interferometric near-infrared spectroscopy (iNIRS) reveals that blood flow index depends on wavelength. BIOMEDICAL OPTICS EXPRESS 2024; 15:2152-2174. [PMID: 38633063 PMCID: PMC11019706 DOI: 10.1364/boe.507373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 04/19/2024]
Abstract
Blood flow index (BFI) is an optically accessible parameter, with unit distance-squared-over-time, that is widely used as a proxy for tissue perfusion. BFI is defined as the dynamic scattering probability (i.e. the ratio of dynamic to overall reduced scattering coefficients) times an effective Brownian diffusion coefficient that describes red blood cell (RBC) motion. Here, using a wavelength division multiplexed, time-of-flight- (TOF) - resolved iNIRS system, we obtain TOF-resolved field autocorrelations at 773 nm and 855 nm via the same source and collector. We measure the human forearm, comprising biological tissues with mixed static and dynamic scattering, as well as a purely dynamic scattering phantom. Our primary finding is that forearm BFI increases from 773 nm to 855 nm, though the magnitude of this increase varies across subjects (23% ± 19% for N = 3). However, BFI is wavelength-independent in the purely dynamic scattering phantom. From these data, we infer that the wavelength-dependence of BFI arises from the wavelength-dependence of the dynamic scattering probability. This inference is further supported by RBC scattering literature. Our secondary finding is that the higher-order cumulant terms of the mean squared displacement (MSD) of RBCs are significant, but decrease with wavelength. Thus, laser speckle and related modalities should exercise caution when interpreting field autocorrelations.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| | - Oybek Kholiqov
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Radiology, New York University Langone Health, New York, NY 10016, USA
- Department of Ophthalmology, New York University Langone Health, New York, NY 10016, USA
| |
Collapse
|
11
|
Wu Y, Li F, Wu Y, Wang H, Gu L, Zhang J, Qi Y, Meng L, Kong N, Chai Y, Hu Q, Xing Z, Ren W, Li F, Zhu X. Lanthanide luminescence nanothermometer with working wavelength beyond 1500 nm for cerebrovascular temperature imaging in vivo. Nat Commun 2024; 15:2341. [PMID: 38491065 PMCID: PMC10943110 DOI: 10.1038/s41467-024-46727-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/08/2024] [Indexed: 03/18/2024] Open
Abstract
Nanothermometers enable the detection of temperature changes at the microscopic scale, which is crucial for elucidating biological mechanisms and guiding treatment strategies. However, temperature monitoring of micron-scale structures in vivo using luminescent nanothermometers remains challenging, primarily due to the severe scattering effect of biological tissue that compromises the imaging resolution. Herein, a lanthanide luminescence nanothermometer with a working wavelength beyond 1500 nm is developed to achieve high-resolution temperature imaging in vivo. The energy transfer between lanthanide ions (Er3+ and Yb3+) and H2O molecules, called the environment quenching assisted downshifting process, is utilized to establish temperature-sensitive emissions at 1550 and 980 nm. Using an optimized thin active shell doped with Yb3+ ions, the nanothermometer's thermal sensitivity and the 1550 nm emission intensity are enhanced by modulating the environment quenching assisted downshifting process. Consequently, minimally invasive temperature imaging of the cerebrovascular system in mice with an imaging resolution of nearly 200 μm is achieved using the nanothermometer. This work points to a method for high-resolution temperature imaging of micron-level structures in vivo, potentially giving insights into research in temperature sensing, disease diagnosis, and treatment development.
Collapse
Affiliation(s)
- Yukai Wu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Fang Li
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yanan Wu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Hao Wang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Liangtao Gu
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Jieying Zhang
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yukun Qi
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Lingkai Meng
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Na Kong
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Yingjie Chai
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China
| | - Qian Hu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Zhenyu Xing
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China
| | - Wuwei Ren
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Songhu Road, Shanghai, P.R. China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, P.R. China.
| | - Xingjun Zhu
- School of Physical Science and Technology & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, P.R. China.
| |
Collapse
|
12
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Jurga N, Ryszczyńska S, Grzyb T. Designing photon upconversion nanoparticles capable of intense emission in whole human blood. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123220. [PMID: 37542873 DOI: 10.1016/j.saa.2023.123220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/12/2023] [Accepted: 07/29/2023] [Indexed: 08/07/2023]
Abstract
The properties of upconverting nanoparticles (UCNPs) are crucial for their applications in biomedicine. For studies of organisms and biological materials, the penetration depth of excitation light is also essential as the depth from which the luminescence can be detected. Currently, many researchers are trying to obtain UCNPs with intense emission under excitation wavelengths from the biological transparency windows to increase the penetration depth. However, studies comparing the properties of various types of UCNPs in real conditions are rare. This article shows how deep the 808, 975, 1208, and 1532 nm laser radiation penetrates human blood. Moreover, we determined how thick a layer of blood still permits for observation of the luminescence signal. The measured luminescence properties indicated that the near-infrared light could pass through the blood even to a depth of 7.5 mm. The determined properties of core/shell NaErF4/NaYF4 materials are the most advantageous, and their emission is detectable through 3.0 mm of blood layer using a 1532 nm laser. We prove that the NaErF4/NaYF4 UCNPs can be perfect alternatives for the most studied NaYF4:Yb3+,Er3+/NaYF4. Additionally, the setup proposed in this article can potentially decrease reliance on animal testing in initial biomedicine research.
Collapse
Affiliation(s)
- Natalia Jurga
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Sylwia Ryszczyńska
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland
| | - Tomasz Grzyb
- Department of Rare Earths, Faculty of Chemistry, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
14
|
Wang Y, Li G, Kong L, Lin L. High-precision non-invasive RBC and HGB detection system based on spectral analysis. Anal Bioanal Chem 2023; 415:6733-6742. [PMID: 37740753 DOI: 10.1007/s00216-023-04950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Non-invasive blood composition analysis based on dynamic spectrum (DS) theory has gained significant attention due to its non-invasive, simple, and fast performance. However, most of the multi-wavelength photoplethysmography (PPG) detection devices used to obtain DS are composed of halogen light sources and spectrometers and cannot detect effective PPG signals in the visible light short band (400-620 nm), which limits the detection accuracy of blood components with significant absorption spectral differences in that band. Therefore, this paper designs a multi-wavelength spectral acquisition system that can measure high signal-to-noise ratio (SNR > 65 dB) PGG signals at wavelengths of 405, 430, 450, 505, 520, and 570 nm and combines this system with a halogen lamp spectrometer acquisition system for non-invasive blood component detection. Furthermore, this paper collects the DS of 272 subjects with the combined system and establishes a predictive model for DS with the content of red blood cell (RBC) and hemoglobin (HGB) components. The results show that, compared with the halogen lamp spectrometer acquisition system, the correlation coefficient (Rp) of RBC and HGB prediction model established by the combined system has increased by 0.0619 and 0.0489, respectively, and the root mean square error (RMSE) has decreased by 0.08 1e12/L and 0.85 g/L, which confirm the feasibility of the designed multi-wavelength spectrum acquisition system to enhance the accuracy of blood component detection.
Collapse
Affiliation(s)
- Yunyi Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
| | - Gang Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
| | - Li Kong
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China
| | - Ling Lin
- State Key Laboratory of Precision Measurement Technology and Instruments, Tianjin University, Tianjin, China.
| |
Collapse
|
15
|
Svendsen E, Randeberg LL, Føre M, Finstad B, Olsen RE, Bloecher N, Alfredsen JA. Data for characterization of the optical properties of Atlantic salmon (Salmo salar) blood. JOURNAL OF BIOPHOTONICS 2023; 16:e202300073. [PMID: 37264992 DOI: 10.1002/jbio.202300073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 06/03/2023]
Abstract
Photoplethysmography is a recent addition to physio-logging in Atlantic salmon which can be used for pulse oximetry provided that the properties for light propagation in salmon tissues are known. In this work, optical properties of three constituents of Atlantic salmon blood have been characterized using a photo spectrometer in the VIS-NIR range (450-920 nm). Furthermore, Atlantic salmon blood cell size has been measured using a Coulter counter as part of light scattering property evaluations. Results indicate that plasma contributes little to scattering and absorption for wavelengths typically used in pulse oximetry as opposed to blood cells which are highly scattering. Extinction spectra for oxygenated and deoxygenated hemoglobin indicate that Atlantic salmon hemoglobin is similar to that in humans. Pulse oximetry sensors originally intended for human applications may thus be used to estimate blood oxygenation levels for this species.
Collapse
Affiliation(s)
- Eirik Svendsen
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
- Department for Aquaculture, SINTEF Ocean AS, Trondheim, Norway
| | - Lise L Randeberg
- Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
| | - Martin Føre
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bengt Finstad
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Rolf Erik Olsen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nina Bloecher
- Department for Aquaculture, SINTEF Ocean AS, Trondheim, Norway
| | - Jo Arve Alfredsen
- Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
16
|
Elron E, Bromiker R, Gleisner O, Yosef-Hai O, Goldberg O, Nitzan I, Nitzan M. Overestimation of Oxygen Saturation Measured by Pulse Oximetry in Hypoxemia. Part 1: Effect of Optical Pathlengths-Ratio Increase. SENSORS (BASEL, SWITZERLAND) 2023; 23:1434. [PMID: 36772474 PMCID: PMC9921559 DOI: 10.3390/s23031434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
On average, arterial oxygen saturation measured by pulse oximetry (SpO2) is higher in hypoxemia than the true oxygen saturation measured invasively (SaO2), thereby increasing the risk of occult hypoxemia. In the current article, measurements of SpO2 on 17 cyanotic newborns were performed by means of a Nellcor pulse oximeter (POx), based on light with two wavelengths in the red and infrared regions (660 and 900 nm), and by means of a novel POx, based on two wavelengths in the infrared region (761 and 820 nm). The SpO2 readings from the two POxs showed higher values than the invasive SaO2 readings, and the disparity increased with decreasing SaO2. SpO2 measured using the two infrared wavelengths showed better correlation with SaO2 than SpO2 measured using the red and infrared wavelengths. After appropriate calibration, the standard deviation of the individual SpO2-SaO2 differences for the two-infrared POx was smaller (3.6%) than that for the red and infrared POx (6.5%, p < 0.05). The overestimation of SpO2 readings in hypoxemia was explained by the increase in hypoxemia of the optical pathlengths-ratio between the two wavelengths. The two-infrared POx can reduce the overestimation of SpO2 measurement in hypoxemia and the consequent risk of occult hypoxemia, owing to its smaller increase in pathlengths-ratio in hypoxemia.
Collapse
Affiliation(s)
- Eyal Elron
- Neonatal Intensive Care Unit, Schneider Children’s Medical Center, Petah Tikva 4920235, Israel
| | - Ruben Bromiker
- Neonatal Intensive Care Unit, Schneider Children’s Medical Center, Petah Tikva 4920235, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | | | - Ori Goldberg
- Neonatal Intensive Care Unit, Schneider Children’s Medical Center, Petah Tikva 4920235, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- Pediatric Pulmonology Institute, Schneider Children’s Medical Center, Petach Tikva 4920235, Israel
| | - Itamar Nitzan
- Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Department of Pediatrics, Hebrew University of Jerusalem Medical School, Jerusalem 9112102, Israel
| | - Meir Nitzan
- Lev Academic Center, Jerusalem 9116001, Israel
| |
Collapse
|
17
|
Chang B, Chen J, Bao J, Dong K, Chen S, Cheng Z. Design strategies and applications of smart optical probes in the second near-infrared window. Adv Drug Deliv Rev 2023; 192:114637. [PMID: 36476990 DOI: 10.1016/j.addr.2022.114637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/30/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Over the last decade, a series of synergistic advances in the synthesis chemistries and imaging instruments have largely boosted a significant revolution, in which large-scale biomedical applications are now benefiting from optical bioimaging in the second near-infrared window (NIR-II, 1000-1700 nm). The large tissue penetration and limited autofluorescence associated with long-wavelength imaging improve translational potential of NIR-II imaging over common visible-light (400-650 nm) and NIR-I (750-900 nm) imaging, with ongoing profound effects on the studies of precision medicine. Unfortunately, the majority of NIR-II probes are designed as "always-on" luminescent imaging contrasts, continuously generating unspecific signals regardless of whether they reach pathological locations. Thus, in vivo imaging by traditional NIR-II probes usually suffers from weak detect precision due to high background noise. In this context, the advances of optical imaging now enter into an era of precise control of NIR-II photophysical kinetics. Developing NIR-II optical probes that can efficiently activate their luminescent signal in response to biological targets of interest and substantially suppress the background interferences have become a highly prospective research frontier. In this review, the merits and demerits of optical imaging probes from visible-light, NIR-I to NIR-II windows are carefully discussed along with the lens of stimuli-responsive photophysical kinetics. We then highlight the latest development in engineering methods for designing smart NIR-II optical probes. Finally, to appreciate such advances, challenges and prospect in rapidly growing study of smart NIR-II probes are addressed in this review.
Collapse
Affiliation(s)
- Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jie Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Jiasheng Bao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Kangfeng Dong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Si Chen
- Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 88, Changsha 410008, China.
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264000, China.
| |
Collapse
|
18
|
Brezovec N, Kojc N, Erman A, Hladnik M, Stergar J, Milanič M, Tomšič M, Čučnik S, Sodin-Šemrl S, Perše M, Lakota K. Molecular and Cellular Markers in Chlorhexidine-Induced Peritoneal Fibrosis in Mice. Biomedicines 2022; 10:2726. [PMID: 36359246 PMCID: PMC9687430 DOI: 10.3390/biomedicines10112726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 08/29/2023] Open
Abstract
Understanding the tissue changes and molecular mechanisms of preclinical models is essential for creating an optimal experimental design for credible translation into clinics. In our study, a chlorhexidine (CHX)-induced mouse model of peritoneal fibrosis was used to analyze histological and molecular/cellular alterations induced by 1 and 3 weeks of intraperitoneal CHX application. CHX treatment for 1 week already caused injury, degradation, and loss of mesothelial cells, resulting in local inflammation, with the most severe structural changes occurring in the peritoneum around the ventral parts of the abdominal wall. The local inflammatory response in the abdominal wall showed no prominent differences between 1 and 3 weeks. We observed an increase in polymorphonuclear cells in the blood but no evidence of systemic inflammation as measured by serum levels of serum amyloid A and interleukin-6. CHX-induced fibrosis in the abdominal wall was more pronounced after 3 weeks, but the gene expression of fibrotic markers did not change over time. Complement system molecules were strongly expressed in the abdominal wall of CHX-treated mice. To conclude, both histological and molecular changes were already present in week 1, allowing examination at the onset of fibrosis. This is crucial information for refining further experiments and limiting the amount of unnecessary animal suffering.
Collapse
Affiliation(s)
- Neža Brezovec
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Nika Kojc
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Erman
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matjaž Hladnik
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Jošt Stergar
- Reactor Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Matija Milanič
- Reactor Physics Department, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
- Department of Complex Matter, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Snežna Sodin-Šemrl
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Martina Perše
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| |
Collapse
|
19
|
Fang R, Rubinoff I, Zhang HF. Multiple forward scattering reduces the measured scattering coefficient of whole blood in visible-light optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2022; 13:4510-4527. [PMID: 36187273 PMCID: PMC9484418 DOI: 10.1364/boe.459607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 05/10/2023]
Abstract
The optical properties of blood encode oxygen-dependent information. Noninvasive optical detection of these properties is increasingly desirable to extract biomarkers for tissue health. Recently, visible-light optical coherence tomography (vis-OCT) demonstrated retinal oxygen saturation (sO2) measurements by inversely measuring the oxygen-dependent absorption and scattering coefficients of whole blood. However, vis-OCT may be sensitive to optical scattering properties of whole blood, different from those reported in the literature. Incorrect assumptions of such properties can add additional uncertainties or biases to vis-OCT's sO2 model. This work investigates whole blood's scattering coefficient measured by vis-OCT. Using Monte Carlo simulation of a retinal vessel, we determined that vis-OCT almost exclusively detects multiple-scattered photons in whole blood. Meanwhile, photons mostly forward scatter in whole blood within the visible spectral range, allowing photons to maintain ballistic paths and penetrate deeply, leading to a reduction in the measured scattering coefficient. We defined a scattering scaling factor (SSF) to account for such a reduction and found that SSF varied with measurement conditions, such as numerical aperture, depth resolution, and depth selection. We further experimentally validated SSF in ex vivo blood phantoms with pre-set sO2 levels and in the human retina, both of which agreed well with our simulation.
Collapse
Affiliation(s)
- Raymond Fang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
- These authors contributed equally to this work
| | - Ian Rubinoff
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
- These authors contributed equally to this work
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208, USA
| |
Collapse
|
20
|
Taylor-Williams M, Spicer G, Bale G, Bohndiek SE. Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220074VR. [PMID: 35922891 PMCID: PMC9346606 DOI: 10.1117/1.jbo.27.8.080901] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Measurement and imaging of hemoglobin oxygenation are used extensively in the detection and diagnosis of disease; however, the applied instruments vary widely in their depth of imaging, spatiotemporal resolution, sensitivity, accuracy, complexity, physical size, and cost. The wide variation in available instrumentation can make it challenging for end users to select the appropriate tools for their application and to understand the relative limitations of different methods. AIM We aim to provide a systematic overview of the field of hemoglobin imaging and sensing. APPROACH We reviewed the sensing and imaging methods used to analyze hemoglobin oxygenation, including pulse oximetry, spectral reflectance imaging, diffuse optical imaging, spectroscopic optical coherence tomography, photoacoustic imaging, and diffuse correlation spectroscopy. RESULTS We compared and contrasted the ability of different methods to determine hemoglobin biomarkers such as oxygenation while considering factors that influence their practical application. CONCLUSIONS We highlight key limitations in the current state-of-the-art and make suggestions for routes to advance the clinical use and interpretation of hemoglobin oxygenation information.
Collapse
Affiliation(s)
- Michaela Taylor-Williams
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| | - Graham Spicer
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| | - Gemma Bale
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Electrical Division, Department of Engineering, Cambridge, United Kingdom, United Kingdom
| | - Sarah E Bohndiek
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| |
Collapse
|
21
|
Baranoski GVG, Van Leeuwen SR. Examining the Impact of Sample Thickness Variations on the Hyperspectral Radiometric Responses of Flowing Blood. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4727-4730. [PMID: 36085951 DOI: 10.1109/embc48229.2022.9871786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The hyperspectral reflectance and transmittance of flowing blood samples are employed in a wide range of biomedical applied research initiatives such as the detection and monitoring of hematological abnormalities. The success of these initiatives is tied to the correct interpretation of these radiometric quantities. This, in turn, requires a comprehensive understanding about their sensitivity to variations in the experimental conditions in which they have been obtained. In this paper, we aim to contribute to these efforts by systematically examining the effects of sample thickness variations on these quantities. More specifically, we employed controlled in silico experiments to assess these effects on samples with different biophysical characteristics, notably their hematocrit, hemolysis level and orientation of their constituent cells with respect to the flow direction. To ensure a high degree of fidelity in our experiments, we used a first-principles simulation framework supported by measured data. Our findings unveil distinct spectrally-dependent trends associated with reflectance and transmittance changes elicited by sample thickness variations.
Collapse
|
22
|
Stergar J, Lakota K, Perše M, Tomšič M, Milanič M. Hyperspectral evaluation of vasculature in induced peritonitis mouse models. BIOMEDICAL OPTICS EXPRESS 2022; 13:3461-3475. [PMID: 35781958 PMCID: PMC9208583 DOI: 10.1364/boe.460288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/28/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Imaging of blood vessel structure in combination with functional information about blood oxygenation can be important in characterizing many different health conditions in which the growth of new vessels contributes to the overall condition. In this paper, we present a method for extracting comprehensive maps of the vasculature from hyperspectral images that include tissue and vascular oxygenation. We also show results from a preclinical study of peritonitis in mice. First, we analyze hyperspectral images using Beer-Lambert exponential attenuation law to obtain maps of hemoglobin species throughout the sample. We then use an automatic segmentation algorithm to extract blood vessels from the hemoglobin map and combine them into a vascular structure-oxygenation map. We apply this methodology to a series of hyperspectral images of the abdominal wall of mice with and without induced peritonitis. Peritonitis is an inflammation of peritoneum that leads, if untreated, to complications such as peritoneal sclerosis and even death. Characteristic inflammatory response can also be accompanied by changes in vasculature, such as neoangiogenesis. We demonstrate a potential application of the proposed segmentation and processing method by introducing an abnormal tissue fraction metric that quantifies the amount of tissue that deviates from the average values of healthy controls. It is shown that the proposed metric successfully discriminates between healthy control subjects and model subjects with induced peritonitis and has a high statistical significance.
Collapse
Affiliation(s)
- Jošt Stergar
- J. Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000 Ljubljana, Slovenia
| | - Katja Lakota
- FAMNIT, University of Primorska, Glagoljaska 8, 6000 Koper, Slovenia
- University Medical Centre, Department of Rheumatology, Vodnikova ulica 62, 1000 Ljubljana, Slovenia
| | - Martina Perše
- Faculty of Medicine,University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Matija Tomšič
- University Medical Centre, Department of Rheumatology, Vodnikova ulica 62, 1000 Ljubljana, Slovenia
- Faculty of Medicine,University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Matija Milanič
- J. Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Furey BJ, Stacy BJ, Shah T, Barba-Barba RM, Carriles R, Bernal A, Mendoza BS, Korgel BA, Downer MC. Two-Photon Excitation Spectroscopy of Silicon Quantum Dots and Ramifications for Bio-Imaging. ACS NANO 2022; 16:6023-6033. [PMID: 35357114 DOI: 10.1021/acsnano.1c11428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Two-photon excitation in the near-infrared (NIR) of colloidal nanocrystalline silicon quantum dots (nc-SiQDs) with photoluminescence also in the NIR has potential opportunities in the field of deep biological imaging. Spectra of the degenerate two-photon absorption (2PA) cross section of colloidal nc-SiQDs are measured using two-photon excitation over a spectral range 1.46 < ℏω < 1.91 eV (wavelength 850 > λ > 650 nm) above the two-photon band gap Eg(QD)/2, and at a representative photon energy ℏω = 0.99 eV (λ = 1250 nm) below this gap. Two-photon excited photoluminescence (2PE-PL) spectra of nc-SiQDs with diameters d = 1.8 ± 0.2 nm and d = 2.3 ± 0.3 nm, each passivated with 1-dodecene and dispersed in toluene, are calibrated in strength against 2PE-PL from a known concentration of Rhodamine B dye in methanol. The 2PA cross section is observed to be smaller for the smaller diameter nanocrystals, and the onset of 2PA is observed to be blue shifted from the two-photon indirect band gap of bulk Si, as expected for quantum confinement of excitons. The efficiencies of nc-SiQDs for bioimaging using 2PE-PL are simulated in various biological tissues and compared to efficiencies of other quantum dots and molecular fluorophores and found to be comparable or superior at greater depths.
Collapse
Affiliation(s)
- Brandon J Furey
- Department of Physics, University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712, United States
| | - Benjamin J Stacy
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street, C0400, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, 204 E. Dean Keeton Street, C2201, Austin, Texas 78712, United States
| | - Tushti Shah
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street, C0400, Austin, Texas 78712, United States
| | - Rodrigo M Barba-Barba
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, Gto. 37150, México
| | - Ramon Carriles
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, Gto. 37150, México
| | - Alan Bernal
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, Gto. 37150, México
| | - Bernardo S Mendoza
- Centro de Investigaciones en Óptica, A.C., Loma del Bosque 115, Colonia Lomas del Campestre, León, Gto. 37150, México
| | - Brian A Korgel
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street, C0400, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, 204 E. Dean Keeton Street, C2201, Austin, Texas 78712, United States
| | - Michael C Downer
- Department of Physics, University of Texas at Austin, 2515 Speedway, C1600, Austin, Texas 78712, United States
| |
Collapse
|
24
|
Changes in Optical Properties of Model Cholangiocarcinoma after Plasmon-Resonant Photothermal Treatment. PHOTONICS 2022. [DOI: 10.3390/photonics9030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heating degree of the inner layers of tumor tissue is an important parameter required to optimize plasmonic photothermal therapy (PPT). This study reports the optical properties of tissue layers of transplanted cholangiocarcinoma and covering tissues in rats without treatment (control group) and after PPT using gold nanorods (experimental group). PPT was carried out for 15 min, and the temperature on the skin surface reached 54.8 ± 1.6 °С. The following samples were cut out ex vivo and studied: skin, subcutaneous connective tissue, tumor capsule, top, center, and bottom part of the tumor. The samples’ absorption and reduced scattering coefficients were calculated using the inverse adding–doubling method at 350–2250 nm wavelength. Diffuse reflectance spectra of skin surface above tumors were measured in vivo in the control and experimental groups before and immediately after PPT in the wavelength range of 350–2150 nm. Our results indicate significant differences between the optical properties of the tissues before and after PPT. The differences are attributed to edema and hemorrhage in the surface layers, tissue dehydration of the deep tumor layers, and morphological changes during the heating.
Collapse
|
25
|
Ajmal, Boonya-Ananta T, Rodriguez AJ, Du Le VN, Ramella-Roman JC. Monte Carlo analysis of optical heart rate sensors in commercial wearables: the effect of skin tone and obesity on the photoplethysmography (PPG) signal. BIOMEDICAL OPTICS EXPRESS 2021; 12:7445-7457. [PMID: 35003845 PMCID: PMC8713672 DOI: 10.1364/boe.439893] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 08/23/2023]
Abstract
Commercially available wearable devices have been used for fitness and health management and their demand has increased over the last ten years. These "general wellness" and heart-rate monitoring devices have been cleared by the Food and Drug Administration for over-the-counter use, yet anecdotal and more systematic reports seem to indicate that their error is higher when used by individuals with elevated skin tone and high body mass index (BMI). In this work, we used Monte Carlo modeling of a photoplethysmography (PPG) signal to study the theoretical limits of three different wearable devices (Apple Watch series 5, Fitbit Versa 2 and Polar M600) when used by individuals with a BMI range of 20 to 45 and a Fitzpatrick skin scale 1 to 6. Our work shows that increased BMI and skin tone can induce a relative loss of signal of up to 61.2% in Fitbit versa 2, 32% in Apple S5 and 32.9% in Polar M600 when considering the closest source-detector pair configuration in these devices.
Collapse
Affiliation(s)
- Ajmal
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
| | - Tananant Boonya-Ananta
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
| | - Andres J. Rodriguez
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
| | - V. N. Du Le
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
| | - Jessica C. Ramella-Roman
- Department of Biomedical Engineering,
Florida International University, 10555 W
Flagler St, Miami, FL 33174, USA
- Herbert Wertheim College of Medicine,
Florida International University, 11200 SW
8th St, Miami, FL 33199, USA
| |
Collapse
|
26
|
Chiba T, Murata M, Kawano T, Hashizume M, Akahoshi T. Reflectance spectra analysis for mucous assessment. World J Gastrointest Oncol 2021; 13:822-834. [PMID: 34457188 PMCID: PMC8371524 DOI: 10.4251/wjgo.v13.i8.822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
This review report represents an overview of research and development on medical hyperspectral imaging technology and its applications. Spectral imaging technology is attracting attention as a new imaging modality for medical applications, especially in disease diagnosis and image-guided surgery. Considering the recent advances in imaging, this technology provides an opportunity for two-dimensional mapping of oxygen saturation (SatO2) of blood with high accuracy, spatial spectral imaging, and its analysis and provides detection and diagnostic information about the tissue physiology and morphology. Multispectral imaging also provides information about tissue oxygenation, perfusion, and potential function during surgery. Analytical algorithm has been examined, and indication of accurate map of relative hemoglobin concentration and SatO2 can be indicated with preferable resolution and frame rate. This technology is expected to provide promising biomedical information in practical use. Several studies suggested that blood flow and SatO2 are associated with gastrointestinal disorders, particularly malignant tumor conditions. The use and analysis of spectroscopic images are expected to potentially play a role in the detection and diagnosis of these diseases.
Collapse
Affiliation(s)
- Toru Chiba
- Pentax_LifeCare, HOYA Corporation, Akishima-shi 196-0012, Tokyo, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka-shi 812-8582, Fukuoka, Japan
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka-shi 812-8582, Fukuoka, Japan
| | - Makoto Hashizume
- Center for Advanced Medical Innovation, Kyushu University, Fukuoka-shi 812-8582, Fukuoka, Japan
| | - Tomohiko Akahoshi
- Department of Disaster and Emergency Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka_shi 812-8582, Fukuoka, Japan
| |
Collapse
|
27
|
Mühle R, Markgraf W, Hilsmann A, Malberg H, Eisert P, Wisotzky EL. Comparison of different spectral cameras for image-guided organ transplantation. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210076RR. [PMID: 34304399 PMCID: PMC8305772 DOI: 10.1117/1.jbo.26.7.076007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE Hyperspectral and multispectral imaging (HMSI) in medical applications provides information about the physiology, morphology, and composition of tissues and organs. The use of these technologies enables the evaluation of biological objects and can potentially be applied as an objective assessment tool for medical professionals. AIM Our study investigates HMSI systems for their usability in medical applications. APPROACH Four HMSI systems (one hyperspectral pushbroom camera and three multispectral snapshot cameras) were examined and a spectrometer was used as a reference system, which was initially validated with a standardized color chart. The spectral accuracy of the cameras reproducing chemical properties of different biological objects (porcine blood, physiological porcine tissue, and pathological porcine tissue) was analyzed using the Pearson correlation coefficient. RESULTS All the HMSI cameras examined were able to provide the characteristic spectral properties of blood and tissues. A pushbroom camera and two snapshot systems achieve Pearson coefficients of at least 0.97 compared to the ground truth, indicating a very high positive correlation. Only one snapshot camera performs moderately to high positive correlation (0.59 to 0.85). CONCLUSION The knowledge of the suitability of HMSI cameras for accurate measurement of chemical properties of biological objects offers a good opportunity for the selection of the optimal imaging tool for specific medical applications, such as organ transplantation.
Collapse
Affiliation(s)
- Richard Mühle
- Technische Universität Dresden, Institute of Biomedical Engineering, Dresden, Germany
- Technische Universität Dresden, Department of Neurosurgery, Faculty of Medicine Carl Gustav Carus, Dresden, Germany
| | - Wenke Markgraf
- Technische Universität Dresden, Institute of Biomedical Engineering, Dresden, Germany
| | - Anna Hilsmann
- Fraunhofer Heinrich-Hertz-Institute, Department of Vision and Imaging Technologies, Berlin, Germany
| | - Hagen Malberg
- Technische Universität Dresden, Institute of Biomedical Engineering, Dresden, Germany
| | - Peter Eisert
- Fraunhofer Heinrich-Hertz-Institute, Department of Vision and Imaging Technologies, Berlin, Germany
- Humboldt Universität zu Berlin, Department of Visual Computing, Berlin, Germany
| | - Eric L. Wisotzky
- Fraunhofer Heinrich-Hertz-Institute, Department of Vision and Imaging Technologies, Berlin, Germany
- Humboldt Universität zu Berlin, Department of Visual Computing, Berlin, Germany
| |
Collapse
|
28
|
Matović V, Jeftić B, Trbojević-Stanković J, Matija L. Predicting anemia using NIR spectrum of spent dialysis fluid in hemodialysis patients. Sci Rep 2021; 11:10549. [PMID: 34006867 PMCID: PMC8131692 DOI: 10.1038/s41598-021-88821-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 04/08/2021] [Indexed: 11/24/2022] Open
Abstract
Anemia is commonly present in hemodialysis (HD) patients and significantly affects their survival and quality of life. NIR spectroscopy and machine learning were used as a method to detect anemia in hemodialysis patients. The aim of this investigation has been to evaluate the near-infrared spectroscopy (NIRS) as a method for non-invasive on-line detection of anemia parameters from HD effluent by assessing the correlation between the spectrum of spent dialysate in the wavelength range of 700–1700 nm and the levels of hemoglobin (Hb), red blood cells (RBC), hematocrit (Hct), iron (Fe), total iron binding capacity (TIBC), ferritin (FER), mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC) in patient blood. The obtained correlation coefficient (R) for RBC was 0.93, for Hb 0.92, for Fe 0.94, for TIBC 0.96, for FER 0.91, for Hct 0.94, for MCV 0.92, for MCHC 0.92 and for MCH 0.93. The observed high correlations between the NIR spectrum of the dialysate fluid and the levels of the studied variables support the use of NIRS as a promising method for on-line monitoring of anemia and iron saturation parameters in HD patients.
Collapse
Affiliation(s)
- Valentina Matović
- Faculty of Mechanical Engineering, Belgrade University, Kraljice Marije 16, 11120, Belgrade, Serbia.
| | - Branislava Jeftić
- Faculty of Mechanical Engineering, Belgrade University, Kraljice Marije 16, 11120, Belgrade, Serbia
| | - Jasna Trbojević-Stanković
- Faculty of Medicine, Belgrade University, Dr Subotica 8, 11000, Belgrade, Serbia.,Clinic of Urology, University Hospital Center "Dr Dragiša Mišović-Dedinje", Heroja Milana Tepića 1, 11000, Belgrade, Serbia
| | - Lidija Matija
- Faculty of Mechanical Engineering, Belgrade University, Kraljice Marije 16, 11120, Belgrade, Serbia
| |
Collapse
|
29
|
Endovenous laser coagulation: asymmetrical heat transfer and coagulation (modeling in blood plasma). Lasers Med Sci 2021; 37:627-638. [PMID: 33830382 DOI: 10.1007/s10103-021-03314-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
The objective of this study was to describe the dynamics of blood plasma heating and coagulation processes carried out by continuous laser radiation with wavelengths 1.55 and 1.94 μm through bare-tip fibers and fibers with radial output (radial fibers) used for endovenous laser coagulation (EVLC). The study was performed in previously thawed frozen donor blood plasma using high-speed shooting of the heating process through the shadow optical method. It has been shown that in the case of highly water-absorbed laser radiations, convection, explosive, and small-bubble boiling play a major role in the process of heat transfer and coagulation. It has been shown that in the case of radiation with wavelength λ = 1.94 μm, effective heat transfer begins at significantly lower levels of power compared to radiations with λ = 1.55 μm. It has been established that heat transfer is sharply asymmetrical and is directed mainly upwards and forwards (bare-tip fiber) or upwards (radial fibers). For a wavelength of 1.94 μm, the effect of self-cleaning of the fiber surface from coagulated plasma fragments was found. Except for short-term acts of explosive boiling, the heat transfer is asymmetrical and directed mainly upwards. This effect should lead to uneven heating and thermal damage to the vein wall with the maximum at its upper part. For EVLC, the use of radiation with a wavelength of 1.94 μm is more efficient and safer.
Collapse
|
30
|
Kovalenko AD, Pavlov AA, Ustinovich ID, Kalyakina AS, Goloveshkin AS, Marciniak Ł, Lepnev LS, Burlov AS, Schepers U, Bräse S, Utochnikova VV. Highly NIR-emitting ytterbium complexes containing 2-(tosylaminobenzylidene)-N-benzoylhydrazone anions: structure in solution and use for bioimaging. Dalton Trans 2021; 50:3786-3791. [PMID: 33704306 DOI: 10.1039/d0dt03913f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution behaviour in DMSO using 1D and 2D NMR spectroscopy was performed for lanthanide complexes Ln(L)(HL) and Ln(HL)2Cl, containing non-macrocyclic 2-(tosylamino)-benzylidene-N-benzoylhydrazone (H2L), and the structure of [Yb(L)]+ cation in solution was determined. Based on the NMR data, the possibility to obtain novel complexes containing [Ln(L)2]- was predicted, which was successfully synthesized, and the crystal structure of K(C2H5OH)3[Yb(L)2] was determined. Thanks to its high quantum yield of NIR luminescence (1.3 ± 0.2%), high absorption, low toxicity, and the stability of its anion against dissociation in DMSO, K(H2O)3[Yb(L)2] was successfully used for bioimaging.
Collapse
Affiliation(s)
- Anton D Kovalenko
- Department of Material Sciences, Lomonosov Moscow State University, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Xing F, Lee JH, Polucha C, Lee J. Design and optimization of line-field optical coherence tomography at visible wavebands. BIOMEDICAL OPTICS EXPRESS 2021; 12:1351-1365. [PMID: 33796358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Parallel line-field Fourier-domain optical coherence tomography (LF-FDOCT) has emerged to enable relatively higher speeds than the conventional FDOCT system. In the LF-FDOCT, one B-scan is captured at a time instead of scanning the beam to acquire hundreds of A-scans. On the other hand, spectroscopic OCT using the visible waveband provides absorption information over multiple wavelengths at each voxel. This information of spectral absorption enables quantitative measurement of blood oxygenation, voxel by voxel. Here, we presented the design and optimization of a LF-FDOCT system at the visible waveband (520-620 nm), especially using a generic Camera Link area sensor (2048 × 1088 pixels). To optimize the axial resolution and depth of imaging volume, we simulated various parameters and found that two Nyquist optima can exist, the origin and implication of which has been discussed. As a result, our system acquired 1088 A-scans in parallel at the camera's frame rate of 281 frame per second, achieving an equivalent rate of over 300,000 A-scan/s, while minimizing sacrifice in the point spread function (2.8 × 3.1 × 3.2 µm3, x × y × z) and the field of view (750 × 750 × 750 µm3). As an example of application, we presented high-speed imaging of blood oxygenation in the rodent brain cortex.
Collapse
Affiliation(s)
- Fangjian Xing
- School of Computer and Electronic information, Nanjing Normal University, Nanjing, 210023, China
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Jang-Hoon Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Collin Polucha
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Jonghwan Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
32
|
Liu HC, Abbasi M, Ding YH, Polley EC, Fitzgerald S, Kadirvel R, Kallmes DF, Brinjikji W, Urban MW. Characterizing thrombus with multiple red blood cell compositions by optical coherence tomography attenuation coefficient. JOURNAL OF BIOPHOTONICS 2021; 14:e202000364. [PMID: 33314731 PMCID: PMC8258800 DOI: 10.1002/jbio.202000364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Embolectomy is one of the emergency procedures performed to remove emboli. Assessing the composition of human blood clots is an important diagnostic factor and could provide guidance for an appropriate treatment strategy for interventional physicians. Immunostaining has been used to identity compositions of clots as a gold-standard procedure, but it is time-consuming and cannot be performed in situ. Here, we proposed that the optical attenuation coefficient of optical coherence tomography (OCT) can be a reliable indicator as a new imaging modality to differentiate clot compositions. Fifteen human blood clots with multiple red blood cell (RBC) compositions from 21% to 95% were prepared using healthy human whole blood. A homogeneous gelatin phantom experiment and numerical simulation based on the Lambert-Beer's law were examined to verify the validity of the attenuation coefficient estimation. The results displayed that optical attenuation coefficients were strongly correlated with RBC compositions. We reported that attenuation coefficients could be a promising biomarker to guide the choice of an appropriate interventional device in a clinical setting and assist in characterizing blood clots.
Collapse
Affiliation(s)
- Hsiao-Chuan Liu
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Mehdi Abbasi
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Yong Hong Ding
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Eric C. Polley
- Health Sciences Research, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Seán Fitzgerald
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Deptartment of Physiology, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ramanathan Kadirvel
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - David F. Kallmes
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Waleed Brinjikji
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Matthew W. Urban
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| |
Collapse
|
33
|
Xing F, Lee JH, Polucha C, Lee J. Design and optimization of line-field optical coherence tomography at visible wavebands. BIOMEDICAL OPTICS EXPRESS 2021; 12:1351-1365. [PMID: 33796358 PMCID: PMC7984778 DOI: 10.1364/boe.413424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 06/17/2023]
Abstract
Parallel line-field Fourier-domain optical coherence tomography (LF-FDOCT) has emerged to enable relatively higher speeds than the conventional FDOCT system. In the LF-FDOCT, one B-scan is captured at a time instead of scanning the beam to acquire hundreds of A-scans. On the other hand, spectroscopic OCT using the visible waveband provides absorption information over multiple wavelengths at each voxel. This information of spectral absorption enables quantitative measurement of blood oxygenation, voxel by voxel. Here, we presented the design and optimization of a LF-FDOCT system at the visible waveband (520-620 nm), especially using a generic Camera Link area sensor (2048 × 1088 pixels). To optimize the axial resolution and depth of imaging volume, we simulated various parameters and found that two Nyquist optima can exist, the origin and implication of which has been discussed. As a result, our system acquired 1088 A-scans in parallel at the camera's frame rate of 281 frame per second, achieving an equivalent rate of over 300,000 A-scan/s, while minimizing sacrifice in the point spread function (2.8 × 3.1 × 3.2 µm3, x × y × z) and the field of view (750 × 750 × 750 µm3). As an example of application, we presented high-speed imaging of blood oxygenation in the rodent brain cortex.
Collapse
Affiliation(s)
- Fangjian Xing
- School of Computer and Electronic information, Nanjing Normal University, Nanjing, 210023, China
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Jang-Hoon Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Collin Polucha
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Jonghwan Lee
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
- Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
34
|
Gonzalez MA, Walker AS, Cao KJ, Lazzari-Dean JR, Settineri NS, Kong EJ, Kramer RH, Miller EW. Voltage Imaging with a NIR-Absorbing Phosphine Oxide Rhodamine Voltage Reporter. J Am Chem Soc 2021; 143:2304-2314. [PMID: 33501825 PMCID: PMC7986050 DOI: 10.1021/jacs.0c11382] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The development of fluorescent dyes that emit and absorb light at wavelengths greater than 700 nm and that respond to biochemical and biophysical events in living systems remains an outstanding challenge for noninvasive optical imaging. Here, we report the design, synthesis, and application of near-infrared (NIR)-absorbing and -emitting optical voltmeter based on a sulfonated, phosphine-oxide (po) rhodamine for voltage imaging in intact retinas. We find that po-rhodamine based voltage reporters, or poRhoVRs, display NIR excitation and emission profiles at greater than 700 nm, show a range of voltage sensitivities (13 to 43% ΔF/F per 100 mV in HEK cells), and can be combined with existing optical sensors, like Ca2+-sensitive fluorescent proteins (GCaMP), and actuators, like light-activated opsins ChannelRhodopsin-2 (ChR2). Simultaneous voltage and Ca2+ imaging reveals differences in activity dynamics in rat hippocampal neurons, and pairing poRhoVR with blue-light based ChR2 affords all-optical electrophysiology. In ex vivo retinas isolated from a mouse model of retinal degeneration, poRhoVR, together with GCaMP-based Ca2+ imaging and traditional multielectrode array (MEA) recording, can provide a comprehensive physiological activity profile of neuronal activity, revealing differences in voltage and Ca2+ dynamics within hyperactive networks of the mouse retina. Taken together, these experiments establish that poRhoVR will open new horizons in optical interrogation of cellular and neuronal physiology in intact systems.
Collapse
Affiliation(s)
- Monica A. Gonzalez
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alison S. Walker
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| | - Kevin J. Cao
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
| | - Julia R. Lazzari-Dean
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicholas S. Settineri
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Eui Ju Kong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richard H. Kramer
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| | - Evan W. Miller
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular & Cell Biology, University of California, Berkeley, California 94720, United States
- Department of Helen Wills Neuroscience Institute. University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Recent progress in development and applications of second near-infrared (NIR-II) nanoprobes. Arch Pharm Res 2021; 44:165-181. [PMID: 33538959 DOI: 10.1007/s12272-021-01313-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/16/2021] [Indexed: 02/03/2023]
Abstract
Optical probes for near-infrared (NIR) light have clear advantages over UV/VIS-based optical probes, such as their low levels of interfering auto-fluorescence and high tissue penetration. The second NIR (NIR-II) window (1000-1350 nm) offers better light penetration, lower background signal, higher safety limit, and higher maximum permitted exposure than the first NIR (NIR-I) window (650-950 nm). Therefore, NIR-II laser-based photoacoustic (PA) and fluorescence (FL) imaging can offer higher sensitivity and penetration depth than was previously available, and deeper lesions can be treated in vivo by photothermal therapy (PTT) and photodynamic therapy (PDT) with an NIR-II laser than with an NIR-I laser. Advances in creation of novel nanomaterials have increased options for improving light-induced bioimaging and treatment. Nanotechnology can provide advantages such as good disease targeting ability and relatively long circulation times to supplement the advantages of optical technologies. In this review, we present recent progress in development and applications of NIR-II light-based nanoplatforms for FL, PA, image-guided surgery, PDT, and PTT. We also discuss recent advances in smart NIR-II nanoprobes that can respond to stimuli in the tumor microenvironment and inflamed sites. Finally, we consider the challenges involved in using NIR-II nanomedicine for effective diagnosis and treatment.
Collapse
|
36
|
Boonya-ananta T, Rodriguez AJ, Ajmal A, Du Le VN, Hansen AK, Hutcheson JD, Ramella-Roman JC. Synthetic photoplethysmography (PPG) of the radial artery through parallelized Monte Carlo and its correlation to body mass index (BMI). Sci Rep 2021; 11:2570. [PMID: 33510428 PMCID: PMC7843978 DOI: 10.1038/s41598-021-82124-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/14/2021] [Indexed: 01/30/2023] Open
Abstract
Cardiovascular disease is one of the leading causes of death in the United States and obesity significantly increases the risk of cardiovascular disease. The measurement of blood pressure (BP) is critical in monitoring and managing cardiovascular disease hence new wearable devices are being developed to make BP more accessible to physicians and patients. Several wearables utilize photoplethysmography from the wrist vasculature to derive BP assessment although many of these devices are still at the experimental stage. With the ultimate goal of supporting instrument development, we have developed a model of the photoplethysmographic waveform derived from the radial artery at the volar surface of the wrist. To do so we have utilized the relation between vessel biomechanics through Finite Element Method and Monte Carlo light transport model. The model shows similar features to that seen in PPG waveform captured using an off the shelf device. We observe the influence of body mass index on the PPG signal. A degradation the PPG signal of up to 40% in AC to DC signal ratio was thus observed.
Collapse
Affiliation(s)
- Tananant Boonya-ananta
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Andres J. Rodriguez
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Ajmal Ajmal
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Vinh Nguyen Du Le
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Anders K. Hansen
- grid.5170.30000 0001 2181 8870Department of Photonics Engineering, Technical University of Denmark, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Joshua D. Hutcheson
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA
| | - Jessica C. Ramella-Roman
- grid.65456.340000 0001 2110 1845Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174 USA ,grid.65456.340000 0001 2110 1845Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St, Miami, FL 33199 USA
| |
Collapse
|
37
|
Iorizzo TW, Jermain PR, Salomatina E, Muzikansky A, Yaroslavsky AN. Temperature induced changes in the optical properties of skin in vivo. Sci Rep 2021; 11:754. [PMID: 33436982 PMCID: PMC7803738 DOI: 10.1038/s41598-020-80254-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/17/2020] [Indexed: 12/02/2022] Open
Abstract
Knowledge of temperature-induced changes of skin optical properties is required for accurate dosimetry of photothermal treatments. We determined and compared in vivo optical properties of mouse ear skin at different temperatures. The diffuse reflectance, total and diffuse transmittance were measured in the spectral range from 400 to 1650 nm using an integrating sphere spectrometer at the temperatures of 25 °C, 36 °C and 60 °C. Target temperatures were attained and maintained using an automated heater equipped with a sensor for feed-back and control. Temperature and temperature induced morphological changes of skin were monitored using an infrared thermal camera and reflectance confocal microscopy, respectively. An inverse Monte Carlo technique was utilized to determine absorption, scattering, and anisotropy factors from the measured quantities. Our results indicate significant differences between the optical properties of skin at different temperatures. Absorption and scattering coefficients increased, whereas anisotropy factors decreased with increasing temperature. Changes in absorption coefficients indicate deoxygenation of hemoglobin, and a blue shift of water absorption bands. Confocal imaging confirmed that our observations can be explained by temperature induced protein denaturation and blood coagulation. Monitoring spectral responses of treated tissue may become a valuable tool for accurate dosimetry of light treatments.
Collapse
Affiliation(s)
- Tyler W Iorizzo
- Advanced Biophotonics Laboratory, University of Massachusetts Lowell, 175 Cabot Street, Lowell, MA, 01854, USA
| | - Peter R Jermain
- Advanced Biophotonics Laboratory, University of Massachusetts Lowell, 175 Cabot Street, Lowell, MA, 01854, USA
| | - Elena Salomatina
- Department of Dermatology, Massachusetts General Hospital, 50 Staniford Street, Boston, MA, 02114, USA
| | - Alona Muzikansky
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Anna N Yaroslavsky
- Advanced Biophotonics Laboratory, University of Massachusetts Lowell, 175 Cabot Street, Lowell, MA, 01854, USA. .,Department of Dermatology, Massachusetts General Hospital, 50 Staniford Street, Boston, MA, 02114, USA.
| |
Collapse
|
38
|
Morita N, Sakota D, Oota-Ishigaki A, Kosaka R, Maruyama O, Nishida M, Kondo K, Takeshita T, Iwasaki W. Real-time, non-invasive thrombus detection in an extracorporeal circuit using micro-optical thrombus sensors. Int J Artif Organs 2020; 44:565-573. [PMID: 33300399 PMCID: PMC8366175 DOI: 10.1177/0391398820978656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introduction: Real-time, non-invasive monitoring of thrombus formation in extracorporeal circuits has yet to be achieved. To address the challenges of conventional optical thrombus detection methods requiring large devices that limit detection capacity, we developed a micro-optical thrombus sensor. Methods: The proposed micro-optical thrombus sensor can detect the intensity of light scattered by blood at wavelengths of 660 and 855 nm. Two thrombus sensors were installed on in vitro circuit: one at the rotary blood pump and one at a flow channel. To evaluate the variation in the ratio of incident light intensity at each wavelength of the two sensors, Rfluct (for 660 nm) and Ifluct (for 855 nm) were defined. Using fresh porcine blood as a working fluid, we performed in vitro tests of haematocrit (Hct) and oxygen saturation (SaO2) variation and thrombus detection. Thrombus tests were terminated after Rfluct or Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. Results: In all three thrombus detection tests, Ifluct showed a larger change than the maximum range of those in the Hct and SaO2 variation test. After the tests, thrombus formation was confirmed in the pump, and there was no thrombus in the flow channel. The results indicate that Ifluct is an effective parameter for identifying the presence of a thrombus. Conclusion: Thrombus detection in an extracorporeal circuit using the developed micro-optical sensors was successfully demonstrated in an in vitro test.
Collapse
Affiliation(s)
- Nobutomo Morita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Daisuke Sakota
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Akiko Oota-Ishigaki
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Ryo Kosaka
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Osamu Maruyama
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Masahiro Nishida
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Kazuki Kondo
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Toshihiro Takeshita
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| | - Wataru Iwasaki
- Sensing System Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tosu, Saga, Japan
| |
Collapse
|
39
|
Zhang Z, Rahmat JN, Mahendran R, Zhang Y. Controllable Assembly of Upconversion Nanoparticles Enhanced Tumor Cell Penetration and Killing Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001831. [PMID: 33344124 PMCID: PMC7739948 DOI: 10.1002/advs.202001831] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/03/2020] [Indexed: 05/22/2023]
Abstract
The use of upconversion nanoparticles (UCNPs) for treating deep-seated cancers and large tumors has recently been gaining momentum. Conventional approaches for loading photosensitizers (PS) to UCNPs using noncovalent physical adsorption and covalent conjugation had been previously described. However, these methods are time-consuming and require extra modification steps. Incorporating PS loading during the controlled UCNPs assembly process is seldom reported. In this study, an amphiphilic copolymer, poly(styrene-co-maleic anhydride), is used to instruct UCNPs assembly formations into well-controlled UCNPs clusters of various sizes, and the gap zones formed between individual UCNPs can be used to encapsulate PS. This nanostructure production process results in a considerably simpler and reliable method to load PS and other compounds. Also, after considering factors such as PS loading quantity, penetration in 3D bladder tumor organoids, and singlet oxygen production, the small UCNPs clusters displayed superior cell killing efficacy compared to single and big sized clusters. Therefore, these UCNPs clusters with different sizes could facilitate a clear and deep understanding of nanoparticle-based delivery platform systems for cell killing and may pave a new way for other fields of UCNPs based applications.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Juwita Norasmara Rahmat
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
| | - Ratha Mahendran
- Department of SurgeryYong Loo Lin School of MedicineNational University of SingaporeSingapore119228Singapore
| | - Yong Zhang
- Department of Biomedical EngineeringFaculty of EngineeringNational University of SingaporeSingapore117583Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore117456Singapore
| |
Collapse
|
40
|
New Insights into Cutaneous Laser Stimulation - Dependency on Skin and Laser Type. Neuroscience 2020; 448:71-84. [PMID: 32931847 DOI: 10.1016/j.neuroscience.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022]
Abstract
Cutaneous laser stimulation is a proficient tool to investigate the function of the nociceptive system. However, variations in laser-skin interactions, causes by different skin anatomies and laser wavelength, affects the robustness of nociceptor activation. Thus, thoroughly understanding how the skin is heated by a laser pulse is important to characterize the thermal response properties of nociceptors. The study aim was to investigate how skin type and laser wavelength influences nociceptor activation during laser stimulation. Ten healthy subjects were exposed to brief CO2 (low skin penetrance) and Nd:YAP (high skin penetrance) laser stimuli delivered to the dorsum and palm of the hand, using three different intensities. Reaction times and perception intensities were recorded. A computational model simulated heat transfer in the skin and nociceptor activation in different skin types across different wavelengths and intensities. Intensity ratings were significantly lower and reaction-times significantly increased for CO2 laser stimuli in the palm compared to the dorsum. This was not the case for Nd:YAP laser stimuli. The computational model showed that these differences can be explained by the different skin absorption of CO2 and Nd:YAP lasers. For CO2 laser stimuli, the thicker stratum corneum of the glabrous skin reduces nociceptor activation, whereas the high penetrating Nd:YAP laser elicits a similar nociceptor activation, irrespective of skin type. Nociceptor activation during laser stimulation highly depends on skin composition and laser wavelength, especially for lasers having a low penetrance wavelength. A computational model showed that this difference could be explained primarily due to differences in skin composition.
Collapse
|
41
|
Nitzan M, Nitzan I, Arieli Y. The Various Oximetric Techniques Used for the Evaluation of Blood Oxygenation. SENSORS 2020; 20:s20174844. [PMID: 32867184 PMCID: PMC7506757 DOI: 10.3390/s20174844] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Adequate oxygen delivery to a tissue depends on sufficient oxygen content in arterial blood and blood flow to the tissue. Oximetry is a technique for the assessment of blood oxygenation by measurements of light transmission through the blood, which is based on the different absorption spectra of oxygenated and deoxygenated hemoglobin. Oxygen saturation in arterial blood provides information on the adequacy of respiration and is routinely measured in clinical settings, utilizing pulse oximetry. Oxygen saturation, in venous blood (SvO2) and in the entire blood in a tissue (StO2), is related to the blood supply to the tissue, and several oximetric techniques have been developed for their assessment. SvO2 can be measured non-invasively in the fingers, making use of modified pulse oximetry, and in the retina, using the modified Beer–Lambert Law. StO2 is measured in peripheral muscle and cerebral tissue by means of various modes of near infrared spectroscopy (NIRS), utilizing the relative transparency of infrared light in muscle and cerebral tissue. The primary problem of oximetry is the discrimination between absorption by hemoglobin and scattering by tissue elements in the attenuation measurement, and the various techniques developed for isolating the absorption effect are presented in the current review, with their limitations.
Collapse
Affiliation(s)
- Meir Nitzan
- Department of Physics/Electro-Optics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., Jerusalem 91160, Israel;
- Correspondence:
| | - Itamar Nitzan
- Monash Newborn, Monash Children’s Hospital, Melbourne 3168, Australia;
- Department of Neonatology, Shaare Zedek Medical Center, Shmuel Bait St 12, Jerusalem 9103102, Israel
| | - Yoel Arieli
- Department of Physics/Electro-Optics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., Jerusalem 91160, Israel;
| |
Collapse
|
42
|
Kuku KO, Singh M, Ozaki Y, Dan K, Chezar-Azerrad C, Waksman R, Garcia-Garcia HM. Near-Infrared Spectroscopy Intravascular Ultrasound Imaging: State of the Art. Front Cardiovasc Med 2020; 7:107. [PMID: 32695796 PMCID: PMC7338425 DOI: 10.3389/fcvm.2020.00107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/21/2020] [Indexed: 12/13/2022] Open
Abstract
Acute coronary syndromes (ACS) secondary to coronary vessel plaques represent a major cause of cardiovascular morbidity and mortality worldwide. Advancements in imaging technology over the last 3 decades have continuously enabled the study of coronary plaques via invasive imaging methods like intravascular ultrasound (IVUS) and optical coherence tomography (OCT). The introduction of near-infrared spectroscopy (NIRS) as a modality that could detect the lipid (cholesterol) content of atherosclerotic plaques in the early nineties, opened the potential of studying “vulnerable” or rupture-prone, lipid-rich coronary plaques in ACS patients. Most recently, the ability of NIRS-IVUS to identify patients at risk of future adverse events was shown in a prospective multicenter trial, the Lipid-Rich-plaque Study. Intracoronary NIRS-IVUS imaging offers a unique method of coronary lipid-plaque characterization and could become a valuable clinical diagnostic and treatment monitoring tool.
Collapse
Affiliation(s)
- Kayode O Kuku
- MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, MedStar Health Research Institute, Washington, DC, United States.,Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Manavotam Singh
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Yuichi Ozaki
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Kazuhiro Dan
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Chava Chezar-Azerrad
- Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Ron Waksman
- MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, MedStar Health Research Institute, Washington, DC, United States.,Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| | - Hector M Garcia-Garcia
- MedStar Cardiovascular Research Network, MedStar Washington Hospital Center, MedStar Health Research Institute, Washington, DC, United States.,Section of Interventional Cardiology MedStar Washington Hospital Center, MedStar Heart and Vascular Institute, Washington, DC, United States.,Georgetown University Department of Medicine, Washington, DC, United States
| |
Collapse
|
43
|
Moreno MJ, Ling B, Stanimirovic DB. In vivo near-infrared fluorescent optical imaging for CNS drug discovery. Expert Opin Drug Discov 2020; 15:903-915. [PMID: 32396023 DOI: 10.1080/17460441.2020.1759549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
INTRODUCTION In vivo imaging technologies have become integral and essential component of drug discovery, development, and clinical assessment for central nervous system (CNS) diseases. Near-infrared (NIR) fluorescence imaging in the range of 650-950 nm is widely used for pre-clinical in vivo imaging studies. The recent expansion of NIR imaging into the shortwave infrared (SWIR, 1000-1700 nm) window enabled improvements in tissue penetration and resolution required for anatomical, dynamic, and molecular neuroimaging with high potential for clinical translation. AREAS COVERED This review focuses on the latest progress in near-infrared (NIR)-fluorescent optical imaging modalities with an emphasis on the SWIR window. Advantages and challenges in developing novel organic and inorganic SWIR emitters, with special attention to their toxicology and pharmacology, are discussed. Examples of their application in preclinical imaging of brain function and pathology provide a platform to assess the potential for their clinical translation. EXPERT OPINION Propelled through concomitant technological advancements in imaging instrumentation, algorithms and new SWIR emitters, SWIR imaging has addressed key barriers to optical imaging modalities used in pre-clinical studies addressing the CNS. Development of biocompatible SWIR emitters and adoption of SWIR into multi-modal imaging modalities promise to rapidly advance optical imaging into translational studies and clinical applications.
Collapse
Affiliation(s)
- Maria J Moreno
- Human Health Therapeutics Research Center, National Research Council Canada , Ottawa, ON, Canada
| | - Binbing Ling
- Human Health Therapeutics Research Center, National Research Council Canada , Ottawa, ON, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Center, National Research Council Canada , Ottawa, ON, Canada
| |
Collapse
|
44
|
Du Le VN, Srinivasan VJ. Beyond diffuse correlations: deciphering random flow in time-of-flight resolved light dynamics. OPTICS EXPRESS 2020; 28:11191-11214. [PMID: 32403635 PMCID: PMC7340374 DOI: 10.1364/oe.385202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Diffusing wave spectroscopy (DWS) and diffuse correlation spectroscopy (DCS) can assess blood flow index (BFI) of biological tissue with multiply scattered light. Though the main biological function of red blood cells (RBCs) is advection, in DWS/DCS, RBCs are assumed to undergo Brownian motion. To explain this discrepancy, we critically examine the cumulant approximation, a major assumption in DWS/DCS. We present a precise criterion for validity of the cumulant approximation, and in realistic tissue models, identify conditions that invalidate it. We show that, in physiologically relevant scenarios, the first cumulant term for random flow and second cumulant term for Brownian motion alone can cancel each other. In such circumstances, assuming pure Brownian motion of RBCs and the first cumulant approximation, a routine practice in DWS/DCS of BFI, can yield good agreement with data, but only because errors due to two incorrect assumptions cancel out. We conclude that correctly assessing random flow from scattered light dynamics requires going beyond the cumulant approximation and propose a more accurate model to do so.
Collapse
Affiliation(s)
- V. N. Du Le
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | - Vivek J. Srinivasan
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
- Department of Ophthalmology and Vision Science, University of California Davis, Davis School of Medicine, Sacramento, CA 96817, USA
| |
Collapse
|
45
|
Wisotzky EL, Arens P, Dommerich S, Hilsmann A, Eisert P, Uecker FC. Determination of the optical properties of cholesteatoma in the spectral range of 250 to 800 nm. BIOMEDICAL OPTICS EXPRESS 2020; 11:1489-1500. [PMID: 32206424 PMCID: PMC7075596 DOI: 10.1364/boe.384742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 05/04/2023]
Abstract
Cholesteatoma of the ear can lead to life-threatening complications and its only treatment is surgery. The smallest remnants of cholesteatoma can lead to recurrence of this disease. Therefore, the optical properties of this tissue are of high importance to identify and remove all cholesteatoma during therapy. In this paper, we determine the absorption coefficient µ a and scattering coefficient µ s ' of cholesteatoma and bone samples in the wavelength range of 250 nm to 800 nm obtained during five surgeries. These values are determined by high precision integrating sphere measurements in combination with an optimized inverse Monte Carlo simulation (iMCS). To conserve the optical behavior of living tissues, the optical spectroscopy measurements are performed immediately after tissue removal and preparation. It is shown that in the near-UV and visible spectrum clear differences exist between cholesteatoma and bone tissue. While µ a is decreasing homogeneously for cholesteatoma, it retains at the high level for bone in the region of 350 nm to 580 nm. Further, the results for the cholesteatoma measurements correspond to published healthy epidermis data. These differences in the optical parameters reveal the future possibility to detect and identify, automatically or semi-automatically, cholesteatoma tissue for active treatment decisions during image-guided surgery leading to a better surgical outcome.
Collapse
Affiliation(s)
- Eric L Wisotzky
- Fraunhofer Heinrich-Hertz-Institute, Computer Vision and Graphics, Berlin, Germany
- Humboldt-Universität zu Berlin, Visual Computing, Berlin, Germany
- Eric L. Wisotzky and Philipp Arens contribute as joint first author
| | - Philipp Arens
- Charité - Universitätsmedizin Berlin, Department of Otorhinolaryngology, Berlin, Germany
- Eric L. Wisotzky and Philipp Arens contribute as joint first author
| | - Steffen Dommerich
- Charité - Universitätsmedizin Berlin, Department of Otorhinolaryngology, Berlin, Germany
| | - Anna Hilsmann
- Fraunhofer Heinrich-Hertz-Institute, Computer Vision and Graphics, Berlin, Germany
| | - Peter Eisert
- Fraunhofer Heinrich-Hertz-Institute, Computer Vision and Graphics, Berlin, Germany
- Humboldt-Universität zu Berlin, Visual Computing, Berlin, Germany
| | - Florian C Uecker
- Charité - Universitätsmedizin Berlin, Department of Otorhinolaryngology, Berlin, Germany
| |
Collapse
|
46
|
Cao J, Zhu B, Zheng K, He S, Meng L, Song J, Yang H. Recent Progress in NIR-II Contrast Agent for Biological Imaging. Front Bioeng Biotechnol 2020; 7:487. [PMID: 32083067 PMCID: PMC7002322 DOI: 10.3389/fbioe.2019.00487] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 12/21/2022] Open
Abstract
Fluorescence imaging technology has gradually become a new and promising tool for in vivo visualization detection. Because it can provide real-time sub-cellular resolution imaging results, it can be widely used in the field of biological detection and medical detection and treatment. However, due to the limited imaging depth (1-2 mm) and self-fluorescence background of tissue emitted in the visible region (400-700 nm), it fails to reveal biological complexity in deep tissues. The traditional near infrared wavelength (NIR-I, 650-950 nm) is considered as the first biological window, because it reduces the NIR absorption and scattering from blood and water in organisms. NIR fluorescence bioimaging's penetration is larger than that of visible light. In fact, NIR-I fluorescence bioimaging is still interfered by tissue autofluorescence (background noise), and the existence of photon scattering, which limits the depth of tissue penetration. Recent experimental and simulation results show that the signal-to-noise ratio (SNR) of bioimaging can be significantly improved at the second region near infrared (NIR-II, 1,000-1,700 nm), also known as the second biological window. NIR-II bioimaging is able to explore deep-tissues information in the range of centimeter, and to obtain micron-level resolution at the millimeter depth, which surpass the performance of NIR-I fluorescence imaging. The key of fluorescence bioimaging is to achieve highly selective imaging thanks to the functional/targeting contrast agent (probe). However, the progress of NIR-II probes is very limited. To date, there are a few reports about NIR-II fluorescence probes, such as carbon nanotubes, Ag2S quantum dots, and organic small molecular dyes. In this paper, we surveyed the development of NIR-II imaging contrast agents and their application in cancer imaging, medical detection, vascular bioimaging, and cancer diagnosis. In addition, the hotspots and challenges of NIR-II bioimaging are discussed. It is expected that our findings will lay a foundation for further theoretical research and practical application of NIR-II bioimaging, as well as the inspiration of new ideas in this field.
Collapse
Affiliation(s)
- Jie Cao
- Fuzhou University Postdoctoral Research Station of Chemical Engineering and Technology, Fuzhou University, Fuzhou, China
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Binling Zhu
- Fujian Police College Judicial Expertise Center, Fuzhou, China
- Department of Forensic Science, Fujian Police College, Fuzhou, China
- Engineering Research Center, Fujian Police College, Fuzhou, China
| | - Kefang Zheng
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Songguo He
- Scientific Research and Experiment Center, Fujian Police College, Fuzhou, China
- Fujian Police College Judicial Expertise Center, Fuzhou, China
| | - Liang Meng
- Department of Forensic Science, Fujian Police College, Fuzhou, China
- Engineering Research Center, Fujian Police College, Fuzhou, China
| | - Jibin Song
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE and Fujian Province, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, China
| |
Collapse
|
47
|
Wisotzky EL, Uecker FC, Dommerich S, Hilsmann A, Eisert P, Arens P. Determination of optical properties of human tissues obtained from parotidectomy in the spectral range of 250 to 800 nm. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-7. [PMID: 31797647 PMCID: PMC6890295 DOI: 10.1117/1.jbo.24.12.125001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/07/2019] [Indexed: 05/18/2023]
Abstract
The optical properties of human tissues are an important parameter in medical diagnostics and therapy. The knowledge of these parameters can encourage the development of automated, computer-driven optical tissue analysis methods. We determine the absorption coefficient μa and scattering coefficient μ s ' of different tissue types obtained during parotidectomy in the wavelength range of 250 to 800 nm. These values are determined by high precision integrating sphere measurements in combination with an optimized inverse Monte Carlo simulation. To conserve the optical behavior of living tissues, the optical spectroscopy measurements are performed immediately after tissue removal. Our study includes fresh samples of the ear, nose, and throat (ENT) region, as muscle tissue, nervous tissue, white adipose tissue, stromal tissue, parotid gland, and tumorous tissue of five patients. The measured behavior of adipose corresponds well with the literature, which sustains the applied method. It is shown that muscle is well supplied with blood as it features the same characteristic peaks at 430 and 555 nm in the absorption curve. The parameter μ s ' decreases for all tissue types above 570 nm. The accuracy is adequate for the purposes of providing μa and μ s ' of different human tissue types as muscle, fat, nerve, or gland tissue, which are embedded in large complex structures such as in the ENT area. It becomes possible for the first time to present reasonable results for the optical behavior of human soft tissue located in the ENT area and in the near-UV, visual, and near-infrared areas.
Collapse
Affiliation(s)
- Eric L. Wisotzky
- Fraunhofer Heinrich-Hertz-Institute, Computer Vision and Graphics, Berlin, Germany
- Humboldt-Universität zu Berlin, Visual Computing, Berlin, Germany
| | - Florian C. Uecker
- Charité—Universitätsmedizin Berlin, Department of Otorhinolaryngology, Berlin, Germany
| | - Steffen Dommerich
- Charité—Universitätsmedizin Berlin, Department of Otorhinolaryngology, Berlin, Germany
| | - Anna Hilsmann
- Fraunhofer Heinrich-Hertz-Institute, Computer Vision and Graphics, Berlin, Germany
| | - Peter Eisert
- Fraunhofer Heinrich-Hertz-Institute, Computer Vision and Graphics, Berlin, Germany
- Humboldt-Universität zu Berlin, Visual Computing, Berlin, Germany
| | - Philipp Arens
- Charité—Universitätsmedizin Berlin, Department of Otorhinolaryngology, Berlin, Germany
| |
Collapse
|
48
|
Xia F, Wu C, Sinefeld D, Li B, Qin Y, Xu C. In vivo label-free confocal imaging of the deep mouse brain with long-wavelength illumination. BIOMEDICAL OPTICS EXPRESS 2018; 9:6545-6555. [PMID: 31065448 PMCID: PMC6490975 DOI: 10.1364/boe.9.006545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/06/2018] [Accepted: 11/20/2018] [Indexed: 05/03/2023]
Abstract
Optical microscopy is a valuable tool for in vivo monitoring of biological structures and functions because of its non-invasiveness. However, imaging deep into biological tissues is challenging due to the scattering and absorption of light. Previous research has shown that 1300 nm and 1700 nm are the two best wavelength windows for deep brain imaging. Here, we combined long-wavelength illumination of ~1700 nm with reflectance confocal microscopy and achieved an imaging depth of ~1.3 mm with ~1-micrometer spatial resolution in adult mouse brains, which is 3-4 times deeper than that of conventional confocal microscopy using visible wavelength. We showed that the method can be added to any laser-scanning microscopy with simple and low-cost sources and detectors, such as continuous-wave diode lasers and InGaAs photodiodes. The long-wavelength, reflectance confocal imaging we demonstrated is label-free, and requires low illumination power. Furthermore, the imaging system is simple and low-cost, potentially creating new opportunities for biomedical research and clinical applications.
Collapse
Affiliation(s)
- Fei Xia
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - Chunyan Wu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
- These authors contributed equally
| | - David Sinefeld
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Bo Li
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Yifan Qin
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China
| | - Chris Xu
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
49
|
He Y, Cao Y, Wang Y. Progress on Photothermal Conversion in the Second NIR Window Based on Conjugated Polymers. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800450] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yonglin He
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| | - Yuanyuan Cao
- Beijing Key Laboratory of Environmental Toxicology; Department of Toxicology and Sanitary Chemistry; School of Public Health; Capital Medical University; Beijing 100069 China
| | - Yapei Wang
- Department of Chemistry; Renmin University of China; Beijing 100872 China
| |
Collapse
|
50
|
Yossef Hay O, Cohen M, Nitzan I, Kasirer Y, Shahroor-Karni S, Yitzhaky Y, Engelberg S, Nitzan M. Pulse Oximetry with Two Infrared Wavelengths without Calibration in Extracted Arterial Blood. SENSORS 2018; 18:s18103457. [PMID: 30326552 PMCID: PMC6211094 DOI: 10.3390/s18103457] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/18/2018] [Accepted: 10/08/2018] [Indexed: 11/29/2022]
Abstract
Oxygen saturation in arterial blood (SaO2) provides information about the performance of the respiratory system. Non-invasive measurement of SaO2 by commercial pulse oximeters (SpO2) make use of photoplethysmographic pulses in the red and infrared regions and utilizes the different spectra of light absorption by oxygenated and de-oxygenated hemoglobin. Because light scattering and optical path-lengths differ between the two wavelengths, commercial pulse oximeters require empirical calibration which is based on SaO2 measurement in extracted arterial blood. They are still prone to error, because the path-lengths difference between the two wavelengths varies among different subjects. We have developed modified pulse oximetry, which makes use of two nearby infrared wavelengths that have relatively similar scattering constants and path-lengths and does not require an invasive calibration step. In measurements performed on adults during breath holding, the two-infrared pulse oximeter and a commercial pulse oximeter showed similar changes in SpO2. The two pulse oximeters showed similar accuracy when compared to SaO2 measurement in extracted arterial blood (the gold standard) performed in intensive care units on newborns and children with an arterial line. Errors in SpO2 because of variability in path-lengths difference between the two wavelengths are expected to be smaller in the two-infrared pulse oximeter.
Collapse
Affiliation(s)
- Ohad Yossef Hay
- Department of Physics/Electro-Optics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., 91160 Jerusalem, Israel.
- Department of Electro-Optical Engineering, Ben-Gurion University of the Negev. 1 Ben-Gurion Blvd, 8410501 Beer Sheva, Israel.
| | - Meir Cohen
- Department of Physics/Electro-Optics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., 91160 Jerusalem, Israel.
| | - Itamar Nitzan
- Department of Neonatology, Shaare Zedek Medical Center, Shmuel Bait St 12, 9103102 Jerusalem, Israel.
| | - Yair Kasirer
- Department of Neonatology, Shaare Zedek Medical Center, Shmuel Bait St 12, 9103102 Jerusalem, Israel.
| | - Sarit Shahroor-Karni
- Pediatric Intensive Care Unit, Shaare Zedek Medical Center, Shmuel Bait St 12, 9103102 Jerusalem, Israel.
| | - Yitzhak Yitzhaky
- Department of Electro-Optical Engineering, Ben-Gurion University of the Negev. 1 Ben-Gurion Blvd, 8410501 Beer Sheva, Israel.
| | - Shlomo Engelberg
- Department of Electrical and Electronics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., 91160 Jerusalem, Israel.
| | - Meir Nitzan
- Department of Physics/Electro-Optics Engineering, Jerusalem College of Technology, 21 Havaad Haleumi St., 91160 Jerusalem, Israel.
| |
Collapse
|