1
|
Morgan ML, Brideau C, Teo W, Caprariello AV, Stys PK. Label-free assessment of myelin status using birefringence microscopy. J Neurosci Methods 2021; 360:109226. [PMID: 34052286 DOI: 10.1016/j.jneumeth.2021.109226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Label-free methods for quantifying myelination can reduce expense, time, and variability in results when examining tissue white matter pathology. NEW METHOD We sought to determine whether the optical birefringent properties of myelin could be exploited to determine myelination status of white matter in tissue sections. Sections of forebrains of mice (normal, and treated with cuprizone to cause demyelination) were examined by birefringence using a birefringence imaging system (Thorlabs LCC7201), and results compared with sections stained using Luxol Fast Blue. RESULTS Quantitative birefringence analysis of myelin was not only reliable in detecting demyelination, but also showed abnormalities that preceded myelin loss in cuprizone-treated mice. COMPARISON WITH EXISTING METHODS Subtle myelin pathology visible with electron microscopy but not with conventional histopathological staining was readily detected with birefringence microscopy. CONCLUSIONS Birefringence imaging provides a rapid, label-free method of analyzing the myelin content and nanostructural status in longitudinal white matter structures, being sensitive to subtle myelin changes that precede overt pathological damage.
Collapse
Affiliation(s)
- Megan Lynn Morgan
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Craig Brideau
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Wulin Teo
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Andrew Vincent Caprariello
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| | - Peter K Stys
- University of Calgary, Hotchkiss Brain Institute, Calgary Cumming School of Medicine, Department of Clinical Neurosciences, 3330 Hospital Drive N.W. HRIC 1B37A, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
2
|
Polarization-Sensitive Digital Holographic Imaging for Characterization of Microscopic Samples: Recent Advances and Perspectives. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polarization-sensitive digital holographic imaging (PS-DHI) is a recent imaging technique based on interference among several polarized optical beams. PS-DHI allows simultaneous quantitative three-dimensional reconstruction and quantitative evaluation of polarization properties of a given sample with micrometer scale resolution. Since this technique is very fast and does not require labels/markers, it finds application in several fields, from biology to microelectronics and micro-photonics. In this paper, a comprehensive review of the state-of-the-art of PS-DHI techniques, the theoretical principles, and important applications are reported.
Collapse
|
3
|
Ravanfar M, Yao G. Measurement of biaxial optical birefringence in articular cartilage. APPLIED OPTICS 2019; 58:2021-2027. [PMID: 30874069 DOI: 10.1364/ao.58.002021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/16/2019] [Indexed: 05/24/2023]
Abstract
Optical birefringence is a valuable parameter in evaluating collagen organization and assessing collagen degeneration in articular cartilage. A uniaxial birefringent model is implied when using existing methods such as polarized light microscopy in characterizing birefringence in cartilage. However, some studies suggest the existence of a sheet-like collagen organization in articular cartilage, which requires a biaxial birefringence model to describe. In this study, we applied a multi-incident birefringence measurement procedure to investigate the biaxial birefringence in articular cartilage. The results supported the existence of a small yet significant biaxial birefringence effect, which was in agreement with the expectation from a sheet-like collagen organization.
Collapse
|
4
|
Spiesz EM, Thorpe CT, Thurner PJ, Screen HRC. Structure and collagen crimp patterns of functionally distinct equine tendons, revealed by quantitative polarised light microscopy (qPLM). Acta Biomater 2018; 70:281-292. [PMID: 29409868 PMCID: PMC5894809 DOI: 10.1016/j.actbio.2018.01.034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 01/15/2023]
Abstract
Structure-function relationships in tendons are directly influenced by the arrangement of collagen fibres. However, the details of such arrangements in functionally distinct tendons remain obscure. This study demonstrates the use of quantitative polarised light microscopy (qPLM) to identify structural differences in two major tendon compartments at the mesoscale: fascicles and interfascicular matrix (IFM). It contrasts functionally distinct positional and energy storing tendons, and considers changes with age. Of particular note, the technique facilitates the analysis of crimp parameters, in which cutting direction artefact can be accounted for and eliminated, enabling the first detailed analysis of crimp parameters across functionally distinct tendons. IFM shows lower birefringence (0.0013 ± 0.0001 [−]), as compared to fascicles (0.0044 ± 0.0005 [−]), indicating that the volume fraction of fibres must be substantially lower in the IFM. Interestingly, no evidence of distinct fibre directional dispersions between equine energy storing superficial digital flexor tendons (SDFTs) and positional common digital extensor tendons (CDETs) were noted, suggesting either more subtle structural differences between tendon types or changes focused in the non-collagenous components. By contrast, collagen crimp characteristics are strongly tendon type specific, indicating crimp specialisation is crucial in the respective mechanical function. SDFTs showed much finer crimp (21.1 ± 5.5 µm) than positional CDETs (135.4 ± 20.1 µm). Further, tendon crimp was finer in injured tendon, as compared to its healthy equivalents. Crimp angle differed strongly between tendon types as well, with average of 6.5 ± 1.4° in SDFTs and 13.1 ± 2.0° in CDETs, highlighting a substantially tighter crimp in the SDFT, likely contributing to its effective recoil capacity. Statement of Significance This is the first study to quantify birefringence in fascicles and interfascicular matrix of functionally distinct energy storing and positional tendons. It adopts a novel method – quantitative polarised light microscopy (qPLM) to measure collagen crimp angle, avoiding artefacts related to the direction of histological sectioning, and provides the first direct comparison of crimp characteristics of functionally distinct tendons of various ages. A comparison of matched picrosirius red stained and unstained tendons sections identified non-homogenous staining effects, and leads us to recommend that only unstained sections are analysed in the quantitative manner. qPLM is successfully used to assess birefringence in soft tissue sections, offering a promising tool for investigating the structural arrangements of fibres in (soft) tissues and other composite materials.
Collapse
Affiliation(s)
- Ewa M Spiesz
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London E1 4NS, United Kingdom; Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Chavaunne T Thorpe
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London E1 4NS, United Kingdom; Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom.
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, TU Wien, Getreidemarkt 9, A-1060 Vienna, Austria.
| | - Hazel R C Screen
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Rd, London E1 4NS, United Kingdom.
| |
Collapse
|
5
|
Ravanfar M, Pfeiffer FM, Bozynski CC, Wang Y, Yao G. Parametric imaging of collagen structural changes in human osteoarthritic cartilage using optical polarization tractography. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-10. [PMID: 29197177 DOI: 10.1117/1.jbo.22.12.121708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/14/2017] [Indexed: 05/18/2023]
Abstract
Collagen degeneration is an important pathological feature of osteoarthritis. The purpose of this study is to investigate whether the polarization-sensitive optical coherence tomography (PSOCT)-based optical polarization tractography (OPT) can be useful in imaging collagen structural changes in human osteoarthritic cartilage samples. OPT eliminated the banding artifacts in conventional PSOCT by calculating the depth-resolved local birefringence and fiber orientation. A close comparison between OPT and PSOCT showed that OPT provided improved visualization and characterization of the zonal structure in human cartilage. Experimental results obtained in this study also underlined the importance of knowing the collagen fiber orientation in conventional polarized light microscopy assessment. In addition, parametric OPT imaging was achieved by quantifying the surface roughness, birefringence, and fiber dispersion in the superficial zone of the cartilage. These quantitative parametric images provided complementary information on the structural changes in cartilage, which can be useful for a comprehensive evaluation of collagen damage in osteoarthritic cartilage.
Collapse
Affiliation(s)
- Mohammadreza Ravanfar
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
| | - Ferris M Pfeiffer
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
- University of Missouri, Department of Orthopedic Surgery, Columbia, Missouri, United States
| | - Chantelle C Bozynski
- University of Missouri, Department of Orthopedic Surgery, Columbia, Missouri, United States
| | - Yuanbo Wang
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
| | - Gang Yao
- University of Missouri, Department of Bioengineering, Columbia, Missouri, United States
| |
Collapse
|
6
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
7
|
Okoro C, Toussaint KC. Second-harmonic patterned polarization-analyzed reflection confocal microscope. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-8. [PMID: 28836417 DOI: 10.1117/1.jbo.22.8.086007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/31/2017] [Indexed: 05/02/2023]
Abstract
We introduce the second-harmonic patterned polarization-analyzed reflection confocal (SPPARC) microscope-a multimodal imaging platform that integrates Mueller matrix polarimetry with reflection confocal and second-harmonic generation (SHG) microscopy. SPPARC microscopy provides label-free three-dimensional (3-D), SHG-patterned confocal images that lend themselves to spatially dependent, linear polarimetric analysis for extraction of rich polarization information based on the Mueller calculus. To demonstrate its capabilities, we use SPPARC microscopy to analyze both porcine tendon and ligament samples and find differences in both circular degree-of-polarization and depolarization parameters. Moreover, using the collagen-generated SHG signal as an endogenous counterstain, we show that the technique can be used to provide 3-D polarimetric information of the surrounding extrafibrillar matrix plus cells or EFMC region. The unique characteristics of SPPARC microscopy holds strong potential for it to more accurately and quantitatively describe microstructural changes in collagen-rich samples in three spatial dimensions.
Collapse
Affiliation(s)
- Chukwuemeka Okoro
- University of Illinois at Urbana-Champaign, PROBE Lab, Department of Electrical and Computer Enginee, United States
| | - Kimani C Toussaint
- University of Illinois at Urbana-Champaign, PROBE Lab, Department of Mechanical Science and Engineer, United States
- University of Illinois at Urbana-Champaign, PROBE Lab, Affiliate in the Department of Electrical and, United States
| |
Collapse
|
8
|
Dohmen M, Menzel M, Wiese H, Reckfort J, Hanke F, Pietrzyk U, Zilles K, Amunts K, Axer M. Understanding fiber mixture by simulation in 3D Polarized Light Imaging. Neuroimage 2015; 111:464-75. [PMID: 25700950 DOI: 10.1016/j.neuroimage.2015.02.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 02/04/2015] [Accepted: 02/10/2015] [Indexed: 02/04/2023] Open
Abstract
3D Polarized Light Imaging (3D-PLI) is a neuroimaging technique that has opened up new avenues to study the complex architecture of nerve fibers in postmortem brains. The spatial orientations of the fibers are derived from birefringence measurements of unstained histological brain sections that are interpreted by a voxel-based analysis. This, however, implies that a single fiber orientation vector is obtained for each voxel and reflects the net effect of all comprised fibers. The mixture of various fiber orientations within an individual voxel is a priori not accessible by a standard 3D-PLI measurement. In order to better understand the effects of fiber mixture on the measured 3D-PLI signal and to improve the interpretation of real data, we have developed a simulation method referred to as SimPLI. By means of SimPLI, it is possible to reproduce the entire 3D-PLI analysis starting from synthetic fiber models in user-defined arrangements and ending with measurement-like tissue images. For the simulation, each synthetic fiber is considered as an optical retarder, i.e., multiple fibers within one voxel are described by multiple retarder elements. The investigation of different synthetic crossing fiber arrangements generated with SimPLI demonstrated that the derived fiber orientations are strongly influenced by the relative mixture of crossing fibers. In case of perpendicularly crossing fibers, for example, the derived fiber direction corresponds to the predominant fiber direction. The derived fiber inclination turned out to be not only influenced by myelin density but also systematically overestimated due to signal attenuation. Similar observations were made for synthetic models of optic chiasms of a human and a hooded seal which were opposed to experimental 3D-PLI data sets obtained from the chiasms of both species. Our study showed that SimPLI is a powerful method able to test hypotheses on the underlying fiber structure of brain tissue and, therefore, to improve the reliability of the extraction of nerve fiber orientations with 3D-PLI.
Collapse
Affiliation(s)
- Melanie Dohmen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany.
| | - Miriam Menzel
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Hendrik Wiese
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Julia Reckfort
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| | - Frederike Hanke
- Institute of Biosciences, Sensory and Cognitive Ecology, University of Rostock, Germany
| | - Uwe Pietrzyk
- Institute of Neuroscience and Medicine (INM-4), Research Centre Jülich, Germany; Faculty of Mathematics and Natural Sciences, University of Wuppertal, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Aachen, 52074 Aachen, Germany and JARA Jülich-Aachen Research Alliance, Translational Brain Medicine, 52425 Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany; C. and O. Vogt Institute of Brain Research, University of Düsseldorf, Germany
| | - Markus Axer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
| |
Collapse
|
9
|
Yamanari M, Nagase S, Fukuda S, Ishii K, Tanaka R, Yasui T, Oshika T, Miura M, Yasuno Y. Scleral birefringence as measured by polarization-sensitive optical coherence tomography and ocular biometric parameters of human eyes in vivo. BIOMEDICAL OPTICS EXPRESS 2014; 5:1391-402. [PMID: 24877003 PMCID: PMC4026890 DOI: 10.1364/boe.5.001391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 03/26/2014] [Accepted: 03/31/2014] [Indexed: 05/03/2023]
Abstract
The relationship between scleral birefringence and biometric parameters of human eyes in vivo is investigated. Scleral birefringence near the limbus of 21 healthy human eyes was measured using polarization-sensitive optical coherence tomography. Spherical equivalent refractive error, axial eye length, and intraocular pressure (IOP) were measured in all subjects. IOP and scleral birefringence of human eyes in vivo was found to have statistically significant correlations (r = -0.63, P = 0.002). The slope of linear regression was -2.4 × 10(-2) deg/μm/mmHg. Neither spherical equivalent refractive error nor axial eye length had significant correlations with scleral birefringence. To evaluate the direct influence of IOP to scleral birefringence, scleral birefringence of 16 ex vivo porcine eyes was measured under controlled IOP of 5-60 mmHg. In these ex vivo porcine eyes, the mean linear regression slope between controlled IOP and scleral birefringence was -9.9 × 10(-4) deg/μm/mmHg. In addition, porcine scleral collagen fibers were observed with second-harmonic-generation (SHG) microscopy. SHG images of porcine sclera, measured on the external surface at the superior side to the cornea, showed highly aligned collagen fibers parallel to the limbus. In conclusion, scleral birefringence of healthy human eyes was correlated with IOP, indicating that the ultrastructure of scleral collagen was correlated with IOP. It remains to show whether scleral collagen ultrastructure of human eyes is affected by IOP as a long-term effect.
Collapse
Affiliation(s)
- Masahiro Yamanari
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
- Tomey Corporation, Nagoya, Aichi, Japan
| | - Satoko Nagase
- Department of Ophthalmology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Shinichi Fukuda
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Kotaro Ishii
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Ryosuke Tanaka
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takeshi Yasui
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
- Institute of Technology and Science, The University of Tokushima, Tokushima, Tokushima, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Masahiro Miura
- Department of Ophthalmology, Tokyo Medical University Ibaraki Medical Center, Ami, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Raub CB, Hsu SC, Chan EF, Shirazi R, Chen AC, Chnari E, Semler EJ, Sah RL. Microstructural remodeling of articular cartilage following defect repair by osteochondral autograft transfer. Osteoarthritis Cartilage 2013; 21:860-8. [PMID: 23528954 PMCID: PMC3684698 DOI: 10.1016/j.joca.2013.03.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 03/13/2013] [Accepted: 03/15/2013] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess collagen network alterations occurring with flow and other abnormalities of articular cartilage at medial femoral condyle (MFC) sites repaired with osteochondral autograft (OATS) after 6 and 12 months, using quantitative polarized light microscopy (qPLM) and other histopathological methods. DESIGN The collagen network structure of articular cartilage of OATS-repaired defects and non-operated contralateral control sites were compared by qPLM analysis of parallelism index (PI), orientation angle (α) relative to the local tissue axes, and retardance (Γ) as a function of depth. qPLM parameter maps were also compared to ICRS and Modified O'Driscoll grades, and cell and matrix sub-scores, for sections stained with H&E and Safranin-O, and for Collagen-I and II. RESULTS Relative to non-operated normal cartilage, OATS-repaired regions exhibited structural deterioration, with low PI and more horizontal α, and unique structural alteration in adjacent host cartilage: more aligned superficial zone, and reoriented deep zone lateral to the graft, and matrix disorganization in cartilage overhanging the graft. Shifts in α and PI from normal site-specific values were correlated with histochemical abnormalities and co-localized with changes in cell organization/orientation, cloning, or loss, indicative of cartilage flow, remodeling, and deterioration, respectively. CONCLUSIONS qPLM reveals a number of unique localized alterations of the collagen network in both adjacent host and implanted cartilage in OATS-repaired defects, associated with abnormal chondrocyte organization. These alterations are consistent with mechanobiological processes and the direction and magnitude of cartilage strain.
Collapse
Affiliation(s)
- CB Raub
- Department of Bioengineering, University of California-San Diego, La Jolla, CA
| | - SC Hsu
- Department of Bioengineering, University of California-San Diego, La Jolla, CA
| | - EF Chan
- Department of Bioengineering, University of California-San Diego, La Jolla, CA
| | - R Shirazi
- Department of Bioengineering, University of California-San Diego, La Jolla, CA
| | - AC Chen
- Department of Bioengineering, University of California-San Diego, La Jolla, CA
| | - E Chnari
- Musculoskeletal Transplant Foundation, Edison, NJ
| | - EJ Semler
- Musculoskeletal Transplant Foundation, Edison, NJ
| | - RL Sah
- Department of Bioengineering, University of California-San Diego, La Jolla, CA,Department of Orthopaedic Surgery, University of California-San Diego, La Jolla, CA,Center for Musculoskeletal Research, Institute of Engineering in Medicine, University of California-San Diego, La Jolla, CA
| |
Collapse
|
11
|
Stender ME, Raub CB, Yamauchi KA, Shirazi R, Vena P, Sah RL, Hazelwood SJ, Klisch SM. Integrating qPLM and biomechanical test data with an anisotropic fiber distribution model and predictions of TGF-β1 and IGF-1 regulation of articular cartilage fiber modulus. Biomech Model Mechanobiol 2012; 12:1073-88. [PMID: 23266906 DOI: 10.1007/s10237-012-0463-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022]
Abstract
A continuum mixture model with distinct collagen (COL) and glycosaminoglycan elastic constituents was developed for the solid matrix of immature bovine articular cartilage. A continuous COL fiber volume fraction distribution function and a true COL fiber elastic modulus ([Formula: see text] were used. Quantitative polarized light microscopy (qPLM) methods were developed to account for the relatively high cell density of immature articular cartilage and used with a novel algorithm that constructs a 3D distribution function from 2D qPLM data. For specimens untreated and cultured in vitro, most model parameters were specified from qPLM analysis and biochemical assay results; consequently, [Formula: see text] was predicted using an optimization to measured mechanical properties in uniaxial tension and unconfined compression. Analysis of qPLM data revealed a highly anisotropic fiber distribution, with principal fiber orientation parallel to the surface layer. For untreated samples, predicted [Formula: see text] values were 175 and 422 MPa for superficial (S) and middle (M) zone layers, respectively. TGF-[Formula: see text]1 treatment was predicted to increase and decrease [Formula: see text] values for the S and M layers to 281 and 309 MPa, respectively. IGF-1 treatment was predicted to decrease [Formula: see text] values for the S and M layers to 22 and 26 MPa, respectively. A novel finding was that distinct native depth-dependent fiber modulus properties were modulated to nearly homogeneous values by TGF-[Formula: see text]1 and IGF-1 treatments, with modulated values strongly dependent on treatment.
Collapse
Affiliation(s)
- Michael E Stender
- Mechanical Engineering Department, California Polytechnic State University, San Luis Obispo, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yamanari M, Ishii K, Fukuda S, Lim Y, Duan L, Makita S, Miura M, Oshika T, Yasuno Y. Optical rheology of porcine sclera by birefringence imaging. PLoS One 2012; 7:e44026. [PMID: 22970158 PMCID: PMC3435379 DOI: 10.1371/journal.pone.0044026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 08/01/2012] [Indexed: 11/18/2022] Open
Abstract
PURPOSE To investigate a relationship between birefringence and elasticity of porcine sclera ex vivo using polarization-sensitive optical coherence tomography (PS-OCT). METHODS Elastic parameters and birefringence of 19 porcine eyes were measured. Four pieces of scleral strips which were parallel to the limbus, with a width of 4 mm, were dissected from the optic nerve head to the temporal side of each porcine eye. Birefringence of the sclera was measured with a prototype PS-OCT. The strain and force were measured with a uniaxial material tester as the sample was stretched with a speed of 1.8 mm/min after preconditioning. A derivative of the exponentially-fitted stress-strain curve at 0% strain was extracted as the tangent modulus. Power of exponential stress-strain function was also extracted from the fitting. To consider a net stiffness of sclera, structural stiffness was calculated as a product of tangent modulus and thickness. Correlations between birefringence and these elastic parameters were examined. RESULTS Statistically significant correlations between birefringence and all of the elastic parameters were found at 2 central positions. Structural stiffness and power of exponential stress-strain function were correlated with birefringence at the position near the optic nerve head. No correlation was found at the position near the equator. CONCLUSIONS The evidence of correlations between birefringence and elasticity of sclera tested uniaxially was shown for the first time. This work may become a basis for in vivo measurement of scleral biomechanics using PS-OCT.
Collapse
Affiliation(s)
- Masahiro Yamanari
- Computational Optics Group in the University of Tsukuba, Tsukuba, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Japan
| | - Kotaro Ishii
- Department of Ophthalmology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Japan
| | - Shinichi Fukuda
- Department of Ophthalmology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Japan
| | - Yiheng Lim
- Computational Optics Group in the University of Tsukuba, Tsukuba, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Japan
| | - Lian Duan
- Computational Optics Group in the University of Tsukuba, Tsukuba, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Japan
| | - Shuichi Makita
- Computational Optics Group in the University of Tsukuba, Tsukuba, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Japan
| | - Masahiro Miura
- Department of Ophthalmology, Tokyo Medical University Ibaraki Medical Center, Ami, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, Institute of Clinical Medicine, University of Tsukuba, Tsukuba, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group in the University of Tsukuba, Tsukuba, Japan
- Computational Optics and Ophthalmology Group, Tsukuba, Japan
- * E-mail:
| |
Collapse
|
13
|
Turunen MJ, Saarakkala S, Helminen HJ, Jurvelin JS, Isaksson H. Age-related changes in organization and content of the collagen matrix in rabbit cortical bone. J Orthop Res 2012; 30:435-42. [PMID: 21882239 DOI: 10.1002/jor.21538] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 07/29/2011] [Indexed: 02/04/2023]
Abstract
The organization and composition of the collagen matrix of cortical bone changes as the bone matures due to growth and mechanical loading. We aimed to investigate the composition and organization of the collagen matrix in rabbit cortical bone during maturation using Fourier transform infrared (FTIR) microspectroscopy and polarized light microscopy (PLM). FTIR and PLM findings were compared to biochemical analysis from an earlier study. Mid-diaphyseal samples from left femora of female New Zealand White rabbits were used. The animal age ranged from newborn to 18-month old (5 age groups, n = 10 per group). The bones had earlier been decalcified and evaluated with biochemistry. In this study, collagen content, orientation, collagen cross-linking and spatial heterogeneity of all parameters was evaluated. Similar results were obtained when collagen content was evaluated with FTIR and PLM compared to the collagen content assessed with BA. Collagen content, orientation and collagen maturity increased significantly until the age of 3 months and remained similar thereafter. Simultaneously, spatial heterogeneity of the measured parameters decreased. Based on these findings, it seems that the collagen matrix of rabbit bone attains its mature state around 3 months of age, which is before the overall skeletal maturity is reached.
Collapse
Affiliation(s)
- Mikael J Turunen
- Department of Applied Physics, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | | | | | | | | |
Collapse
|
14
|
Biochemical and anisotropical properties of tendons. Micron 2011; 43:205-14. [PMID: 21890364 DOI: 10.1016/j.micron.2011.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 07/26/2011] [Accepted: 07/26/2011] [Indexed: 01/30/2023]
Abstract
Tendons are formed by dense connective tissue composed of an abundant extracellular matrix (ECM) that is constituted mainly of collagen molecules, which are organized into fibrils, fibers, fiber bundles and fascicles helicoidally arranged along the largest axis of the tendon. The biomechanical properties of tendons are directly related to the organization of the collagen molecules that aggregate to become a super-twisted cord. In addition to collagen, the ECM of tendons is composed of non-fibrillar components, such as proteoglycans and non-collagenous glycoproteins. The capacity of tendons to resist mechanical stress is directly related to the structural organization of the ECM. Collagen is a biopolymer and presents optical anisotropies, such as birefringence and linear dichroism, that are important optical properties in the characterization of the supramolecular organization of the fibers. The objective of this study was to present a review of the composition and organization of the ECM of tendons and to highlight the importance of the anisotropic optical properties in the study of alterations in the ECM.
Collapse
|
15
|
Wang YQ, Liang ZT, Li Q, Yang H, Chen HB, Zhao ZZ, Li P. Identification of powdered Chinese herbal medicines by fluorescence microscopy, Part 1: Fluorescent characteristics of mechanical tissues, conducting tissues, and ergastic substances. Microsc Res Tech 2011; 74:269-80. [DOI: 10.1002/jemt.20901] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 06/02/2010] [Indexed: 11/09/2022]
|
16
|
van Turnhout MC, Schipper H, van Lagen B, Zuilhof H, Kranenbarg S, van Leeuwen JL. Postnatal development of depth-dependent collagen density in ovine articular cartilage. BMC DEVELOPMENTAL BIOLOGY 2010; 10:108. [PMID: 20969753 PMCID: PMC2987790 DOI: 10.1186/1471-213x-10-108] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 10/22/2010] [Indexed: 11/10/2022]
Abstract
Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Adult AC is characterised by a depth-dependent composition and structure of the extracellular matrix that results in depth-dependent mechanical properties, important for the functions of adult AC. Collagen is the most abundant solid component and it affects the mechanical behaviour of AC. The current objective is to quantify the postnatal development of depth-dependent collagen density in sheep (Ovis aries) AC between birth and maturity. We use Fourier transform infra-red micro-spectroscopy to investigate collagen density in 48 sheep divided over ten sample points between birth (stillborn) and maturity (72 weeks). In each animal, we investigate six anatomical sites (caudal, distal and rostral locations at the medial and lateral side of the joint) in the distal metacarpus of a fore leg and a hind leg. Results Collagen density increases from birth to maturity up to our last sample point (72 weeks). Collagen density increases at the articular surface from 0.23 g/ml ± 0.06 g/ml (mean ± s.d., n = 48) at 0 weeks to 0.51 g/ml ± 0.10 g/ml (n = 46) at 72 weeks. Maximum collagen density in the deeper cartilage increases from 0.39 g/ml ± 0.08 g/ml (n = 48) at 0 weeks to 0.91 g/ml ± 0.13 g/ml (n = 46) at 72 weeks. Most collagen density profiles at 0 weeks (85%) show a valley, indicating a minimum, in collagen density near the articular surface. At 72 weeks, only 17% of the collagen density profiles show a valley in collagen density near the articular surface. The fraction of profiles with this valley stabilises at 36 weeks. Conclusions Collagen density in articular cartilage increases in postnatal life with depth-dependent variation, and does not stabilize up to 72 weeks, the last sample point in our study. We find strong evidence for a valley in collagen densities near the articular surface that is present in the youngest animals, but that has disappeared in the oldest animals. We discuss that the retardance valley (as seen with polarised light microscopy) in perinatal animals reflects a decrease in collagen density, as well as a decrease in collagen fibril anisotropy.
Collapse
Affiliation(s)
- Mark C van Turnhout
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University, PO Box 338, 6700 AH, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Wallenburg MA, Wood MFG, Ghosh N, Vitkin IA. Polarimetry-based method to extract geometry-independent metrics of tissue anisotropy. OPTICS LETTERS 2010; 35:2570-2. [PMID: 20680061 DOI: 10.1364/ol.35.002570] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recently, we have used polarimetry as a method for assessing the linear retardance of infarcted myocardium. While linear retardance reflects tissue anisotropy, experimental geometry has a confounding effect due to dependence of the linear retardance on the orientation of the sample with respect to the probing beam. Here, polarimetry imaging of an 8mm diameter birefringent polystyrene sphere of known anisotropy axis was used to test a dual-projection method by which the anisotropy axis and its true magnitude can be reconstructed, thus eliminating the confounding effect of anisotropy axis orientation. Feasibility is demonstrated in ex-vivo tissue imaging.
Collapse
Affiliation(s)
- Marika A Wallenburg
- Ontario Cancer Institute, University Health Network, and Department of Medical Biophysics,University of Toronto, Toronto, Ontario, Canada M5G 2M9
| | | | | | | |
Collapse
|
18
|
van Turnhout MC, Schipper H, Engel B, Buist W, Kranenbarg S, van Leeuwen JL. Postnatal development of collagen structure in ovine articular cartilage. BMC DEVELOPMENTAL BIOLOGY 2010; 10:62. [PMID: 20529268 PMCID: PMC2906441 DOI: 10.1186/1471-213x-10-62] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 06/07/2010] [Indexed: 12/01/2022]
Abstract
Background Articular cartilage (AC) is the layer of tissue that covers the articulating ends of the bones in diarthrodial joints. Across species, adult AC shows an arcade-like structure with collagen predominantly perpendicular to the subchondral bone near the bone, and collagen predominantly parallel to the articular surface near the articular surface. Recent studies into collagen fibre orientation in stillborn and juvenile animals showed that this structure is absent at birth. Since the collagen structure is an important factor for AC mechanics, the absence of the adult Benninghoff structure has implications for perinatal AC mechanobiology. The current objective is to quantify the dynamics of collagen network development in a model animal from birth to maturity. We further aim to show the presence or absence of zonal differentiation at birth, and to assess differences in collagen network development between different anatomical sites of a single joint surface. We use quantitative polarised light microscopy to investigate properties of the collagen network and we use the sheep (Ovis aries) as our model animal. Results Predominant collagen orientation is parallel to the articular surface throughout the tissue depth for perinatal cartilage. This remodels to the Benninghoff structure before the sheep reach sexual maturity. Remodelling of predominant collagen orientation starts at a depth just below the future transitional zone. Tissue retardance shows a minimum near the articular surface at all ages, which indicates the presence of zonal differentiation at all ages. The absolute position of this minimum does change between birth and maturity. Between different anatomical sites, we find differences in the dynamics of collagen remodelling, but no differences in adult collagen structure. Conclusions The collagen network in articular cartilage remodels between birth and sexual maturity from a network with predominant orientation parallel to the articular surface to a Benninghoff network. The retardance minimum near, but not at, the articular surface at all ages shows that a zonal differentiation is already present in the perinatal animals. In these animals, the zonal differentiation can not be correlated to the collagen network orientation. We find no difference in adult collagen structure in the nearly congruent metacarpophalangeal joint, but we do find differences in the dynamics of collagen network remodelling.
Collapse
Affiliation(s)
- Mark C van Turnhout
- Wageningen University, Department of Animal Sciences, Experimental Zoology Group, 6700 AH Wageningen, the Netherlands.
| | | | | | | | | | | |
Collapse
|
19
|
Fanjul-Vélez F, Arce-Diego JL. Polarimetry of birefringent biological tissues with arbitrary fibril orientation and variable incidence angle. OPTICS LETTERS 2010; 35:1163-5. [PMID: 20410953 DOI: 10.1364/ol.35.001163] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Polarimetric optical techniques such as polarization microscopy or polarization-sensitive optical coherence tomography normally assume that light is perpendicular to the sample surface and that fibrils of a birefringent biological tissue are arranged in a plane parallel to this surface. The approaches that describe quantitatively polarimetric data from tissues with nonparallel fibril orientation and/or off-axis incidence usually lack a rigorous theoretical analysis. We present a polarimetric model with arbitrary fibril orientation and/or variable incidence angle by means of the extended Jones matrix theory, the polar decomposition, and Poincaré equivalence theorem. The model, suitable for diagnosis or tissue structure analysis, is applied to articular cartilage.
Collapse
Affiliation(s)
- Félix Fanjul-Vélez
- Applied Optical Techniques Group, Electronics Technology, Systems and Automation Engineering Department,University of Cantabria, Avenida de los Castros S/N, 39005 Santander, Cantabria, Spain.
| | | |
Collapse
|