1
|
Heck JR, Miele E, Mouthaan RP, Frosz MH, Knowles TPJ, Euser TG. Label-free monitoring of proteins in optofluidic hollow-core photonic crystal fibres. Methods Appl Fluoresc 2022; 10. [PMID: 36084629 DOI: 10.1088/2050-6120/ac9113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022]
Abstract
The fluorescent detection of proteins without labels or stains, which affect their behaviour and require additional genetic or chemical preparation, has broad applications to biological research. However, standard approaches require large sample volumes or analyse only a small fraction of the sample. Here we use optofluidic hollow-core photonic crystal fibres to detect and quantify sub-microlitre volumes of unmodified bovine serum albumin (BSA) protein down to 100 nM concentrations. The optofluidic fibre's waveguiding properties are optimised for guidance at the (auto)fluorescence emission wavelength, enabling fluorescence collection from a 10 cm long excitation region, increasing sensitivity. The observed spectra agree with spectra taken from a conventional cuvette-based fluorimeter, corrected for the guidance properties of the fibre. The BSA fluorescence depended linearly on BSA concentration, while only a small hysteresis effect was observed, suggesting limited biofouling of the fibre sensor. Finally, we briefly discuss how this method could be used to study aggregation kinetics. With small sample volumes, the ability to use unlabelled proteins, and continuous flow, the method will be of interest to a broad range of protein-related research.
Collapse
Affiliation(s)
- Jan Robert Heck
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, CB3 071, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ermanno Miele
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ralf P Mouthaan
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Michael H Frosz
- Max Planck Institute for the Science of Light, Max-Planck-Institut fuer die Physik des Lichts, Staudtstr. 2, Erlangen, 91058, GERMANY
| | - Tuomas P J Knowles
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Tijmen G Euser
- Department of Physics, Cambridge University, JJ Thomson Ave, Cambridge, Cambridgeshire, CB2 1TN, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
2
|
Chia YY, Theverajah TM, Alias Y, Khor SM. Three-dimensional porous calcium alginate fluorescence bead-based immunoassay for highly sensitive early diagnosis of breast cancer. Anal Bioanal Chem 2021; 414:1359-1373. [PMID: 34839383 DOI: 10.1007/s00216-021-03758-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
A sensitive biosensor capable of detecting trace concentrations of several cancer biomarkers in clinical samples is critical for early detection of cancer because different cancer biomarkers may be expressed at different stages of cancer. Previous multiplex studies using microarrays or color-coded beads had limited multiplex detection in a single well, and difficulty in optimizing and unifying the incubation parameters for all tests made in different wells had posed challenges to small sample size and lengthened assay time. Herein, we proposed a novel approach to achieve multiplex analysis on a single three-dimensional porous calcium alginate bead. Because of the high surface area to volume ratio of the calcium alginate immuno-bead, the sensitivity and linear dynamic range of the as-proposed multiplex analysis method are significantly improved. Based on the direct sandwich immunoassay principle, dual-capturing antibodies were encapsulated into a single 3D porous calcium alginate bead as a proof-of-concept for multiplexity detection of serum-HER2 and serum-CA125 breast cancer biomarkers. High sensitivity was attained, with LODs of 0.004 ng mL-1 for serum HER2, and 0.005 U mL-1 for serum CA125, both of which are below the clinical cutoff values, enabling for early breast cancer diagnosis. Stability tests revealed that the 3D immuno-beads were stable at 4 °C and room temperature (25 °C) for at least 14 days. Most importantly, the results obtained using the developed system were in good agreement with those obtained using standard methods while analyzing real clinical samples. In addition, the analysis required only approximately 30 min, which was much less time than typical ELISA techniques. When endogenous interferences were introduced, no cross-reactivity was observed. We anticipate this approach to be potentially used in the multiplex assays and biosensors.
Collapse
Affiliation(s)
- Ying Yao Chia
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - T Malathi Theverajah
- Department of Pathology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Sook Mei Khor
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia. .,Centre for Innovation in Medical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
3
|
Trends in the Design of Intensity-Based Optical Fiber Biosensors (2010-2020). BIOSENSORS-BASEL 2021; 11:bios11060197. [PMID: 34203715 PMCID: PMC8232210 DOI: 10.3390/bios11060197] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/29/2022]
Abstract
There exists an increasing interest in monitoring low concentrations of biochemical species, as they allow the early-stage detection of illnesses or the monitoring of the environment quality. Thus, both companies and research groups are focused on the development of accurate, fast and highly sensitive biosensors. Optical fiber sensors have been widely employed for these purposes because they provide several advantages for their use in point-of-care and real-time applications. In particular, this review is focused on optical fiber biosensors based on luminescence and absorption. Apart from the key parameters that determine the performance of a sensor (limit of detection, sensibility, cross-sensibility, etc.), other features are analyzed, such as the optical fiber dimensions, the sensing set ups and the fiber functionalization. The aim of this review is to have a comprehensive insight of the different aspects that must be taken into account when working with this kind of sensors.
Collapse
|
4
|
Microstructured optical fibers sensor modified by deep eutectic solvent: Liquid-phase microextraction and detection in one analytical device. Talanta 2021; 232:122305. [PMID: 34074383 DOI: 10.1016/j.talanta.2021.122305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 12/18/2022]
Abstract
A sensitive optical sensor based on hollow core microstructure optical fibers modified with deep eutectic solvent was produced for the first time. An easy procedure for the modification of hollow-core microstructure optical fibers with deep eutectic solvent was developed. Deep eutectic solvents based on natural monoterpenoids and fatty acids were investigated for glass surface modification. The sensor was used for the determination of non-steroidal anti-inflammatory drugs (mefenamic acid, diclofenac, flurbiprofen and ketoprofen) in human urine samples. The mechanism of the sensor response was investigated and discussed. Liquid-phase microextraction of non-steroidal anti-inflammatory drugs was implemented in deep eutectic solvent phase supported in the inner surface of hollow-core microstructure optical fibers followed by transmission spectra measurement in one analytical device. The preconcentration step performed directly in the analytical device allowed to obtain high sensitivity and selectivity. The limits of detection calculated from the calibration plots based on 3σ were 3 μg L-1 for all target analytes.
Collapse
|
5
|
Nair RV, Yi PJ, Padmanabhan P, Gulyás B, Murukeshan VM. Au nano-urchins enabled localized surface plasmon resonance sensing of beta amyloid fibrillation. NANOSCALE ADVANCES 2020; 2:2693-2698. [PMID: 36132375 PMCID: PMC9417577 DOI: 10.1039/d0na00164c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 05/17/2023]
Abstract
Early stage detection of neurodegenerative diseases such as Alzheimer's disease (AD) is of utmost importance, as it has become one of the leading causes of death of millions of people. The gradual intellectual decline in AD patients is an outcome of fibrillation of amyloid beta 1-42 (Aβ1-42) peptides in the brain. In this paper, we present localized surface plasmon resonance (LSPR) based sensing of Aβ1-42 fibrillation using Au nano-urchins. Strongly localized field confinement at the spiky nanostructures of nano-urchin surfaces enables them to detect very low concentrations of Aβ1-42. In addition, the LSPR peak of Au nano-urchins, which is very sensitive to ambient conditions, shows significant responses at different fibrillation stages of Aβ1-42. Reduction in LSPR peak intensity with an increase in the fibrillation is chosen as the sensing parameter here. This paper in this context provides LSPR based highly sensitive, label-free and real-time sensing of Aβ1-42 fibrillation that is highly advantageous compared to the existing techniques which require binding additives or fluorescent biomarkers.
Collapse
Affiliation(s)
- Radhika V Nair
- Center for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU) 639798 Singapore
| | - Pae Jian Yi
- Center for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU) 639798 Singapore
| | | | - Balázs Gulyás
- Lee Kong Chian School of Medicine, Nanyang Technological University 639798 Singapore
| | - V M Murukeshan
- Center for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University (NTU) 639798 Singapore
| |
Collapse
|
6
|
Pidenko SA, Burmistrova NA, Shuvalov AA, Chibrova AA, Skibina YS, Goryacheva IY. Microstructured optical fiber-based luminescent biosensing: Is there any light at the end of the tunnel? - A review. Anal Chim Acta 2018; 1019:14-24. [DOI: 10.1016/j.aca.2017.12.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 11/26/2022]
|
7
|
Uliana CV, Peverari CR, Afonso AS, Cominetti MR, Faria RC. Fully disposable microfluidic electrochemical device for detection of estrogen receptor alpha breast cancer biomarker. Biosens Bioelectron 2017; 99:156-162. [PMID: 28755608 DOI: 10.1016/j.bios.2017.07.043] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/05/2017] [Accepted: 07/16/2017] [Indexed: 02/08/2023]
Abstract
A novel fully disposable microfluidic electrochemical array device (µFED) was developed and successfully applied for detection of the biomarker estrogen receptor alpha (ERα). The µFED was constructed using low-cost materials and an inexpensive home cutter printer enabled the manufacture of dozens of µFEDs in less than 2h, at a cost of less than US$ 0.20 in material per device. The µFED incorporates counter and reference electrodes and eight carbon-based working electrodes, which were modified with DNA sequences known as estrogen response elements (DNA-ERE), where ERα binds specifically. Paramagnetic particles heavily decorated with anti-ERα antibody and horseradish peroxidase (MP-Ab-HRP) were used to efficiently capture ERα from the sample solution. The ERα-MP-Ab-HRP bioconjugate formed was injected into the µFED and incubated with the DNA-ERE-modified electrodes, followed by amperometric detection with application of -0.2V vs. Ag|AgCl while a mixture of H2O2 and hydroquinone was injected into the microfluidic device. An ultralow limit of detection of 10.0 fg mL-1 was obtained with the proposed method. The performance of the assay, in terms of sensitivity and reproducibility, was studied using undiluted calf serum, and excellent recoveries in the range of 94.7-108% were achieved for the detection of ERα in MCF-7 cell lysate. The µFED system can be easily constructed and applied for multiplex biomarker detection, making the device an excellent cost-effective alternative for cancer diagnosis, especially in developing countries.
Collapse
Affiliation(s)
- Carolina V Uliana
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Camila R Peverari
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - André S Afonso
- Institute of Science, Engineering and Technology, UFVJM, Teófilo Otoni 39803-371, MG, Brazil
| | - Marcia R Cominetti
- Department of Gerontology, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil
| | - Ronaldo C Faria
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil.
| |
Collapse
|
8
|
Liu X, Song X, Dong Z, Meng X, Chen Y, Yang L. Photonic crystal fiber-based immunosensor for high-performance detection of alpha fetoprotein. Biosens Bioelectron 2017; 91:431-435. [PMID: 28063391 DOI: 10.1016/j.bios.2016.12.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/20/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
|
9
|
A targeted illumination optical fiber probe for high resolution fluorescence imaging and optical switching. Sci Rep 2017; 7:45654. [PMID: 28368033 PMCID: PMC5377356 DOI: 10.1038/srep45654] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/01/2017] [Indexed: 12/30/2022] Open
Abstract
An optical imaging probe with targeted multispectral and spatiotemporal illumination features has applications in many diagnostic biomedical studies. However, these systems are mostly adapted in conventional microscopes, limiting their use for in vitro applications. We present a variable resolution imaging probe using a digital micromirror device (DMD) with an achievable maximum lateral resolution of 2.7 μm and an axial resolution of 5.5 μm, along with precise shape selective targeted illumination ability. We have demonstrated switching of different wavelengths to image multiple regions in the field of view. Moreover, the targeted illumination feature allows enhanced image contrast by time averaged imaging of selected regions with different optical exposure. The region specific multidirectional scanning feature of this probe has facilitated high speed targeted confocal imaging.
Collapse
|
10
|
Folded cladding porous shaped photonic crystal fiber with high sensitivity in optical sensing applications: Design and analysis. SENSING AND BIO-SENSING RESEARCH 2017. [DOI: 10.1016/j.sbsr.2016.11.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
Inan H, Poyraz M, Inci F, Lifson MA, Baday M, Cunningham BT, Demirci U. Photonic crystals: emerging biosensors and their promise for point-of-care applications. Chem Soc Rev 2017; 46:366-388. [PMID: 27841420 PMCID: PMC5529146 DOI: 10.1039/c6cs00206d] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Biosensors are extensively employed for diagnosing a broad array of diseases and disorders in clinical settings worldwide. The implementation of biosensors at the point-of-care (POC), such as at primary clinics or the bedside, faces impediments because they may require highly trained personnel, have long assay times, large sizes, and high instrumental cost. Thus, there exists a need to develop inexpensive, reliable, user-friendly, and compact biosensing systems at the POC. Biosensors incorporated with photonic crystal (PC) structures hold promise to address many of the aforementioned challenges facing the development of new POC diagnostics. Currently, PC-based biosensors have been employed for detecting a variety of biotargets, such as cells, pathogens, proteins, antibodies, and nucleic acids, with high efficiency and selectivity. In this review, we provide a broad overview of PCs by explaining their structures, fabrication techniques, and sensing principles. Furthermore, we discuss recent applications of PC-based biosensors incorporated with emerging technologies, including telemedicine, flexible and wearable sensing, smart materials and metamaterials. Finally, we discuss current challenges associated with existing biosensors, and provide an outlook for PC-based biosensors and their promise at the POC.
Collapse
Affiliation(s)
- Hakan Inan
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Muhammet Poyraz
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Fatih Inci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Mark A Lifson
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Murat Baday
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA.
| | - Brian T Cunningham
- Department of Electrical and Computer Engineering, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Utkan Demirci
- Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Stanford University School of Medicine, Department of Radiology, Canary Center at Stanford for Cancer Early Detection, 3155 Porter Drive, Palo Alto, CA 94304, USA. and Department of Electrical Engineering (by courtesy), Stanford University, Stanford, CA, USA
| |
Collapse
|
12
|
Shinoj VK, Murukeshan VM. Hollow-core photonic crystal fiber based multifunctional optical system for trapping, position sensing, and detection of fluorescent particles. OPTICS LETTERS 2012; 37:1607-1609. [PMID: 22627511 DOI: 10.1364/ol.37.001607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We demonstrate a novel multifunctional optical system that is capable of trapping, imaging, position sensing, and fluorescence detection of micrometer-sized fluorescent test particles using hollow-core photonic crystal fiber (HC-PCF). This multifunctional optical system for trapping, position sensing, and fluorescent detection is designed such that a near-IR laser light is used to create an optical trap across a liquid-filled HC-PCF, and a 473 nm laser is employed as a source for fluorescence excitation. This proposed system and the obtained results are expected to significantly enable an efficient integrated trapping platform employing HC-PCF for diagnostic biomedical applications.
Collapse
Affiliation(s)
- V K Shinoj
- The Centre for Optical & Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | | |
Collapse
|
13
|
Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens Bioelectron 2012; 33:293-8. [DOI: 10.1016/j.bios.2011.12.056] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 12/23/2011] [Accepted: 12/28/2011] [Indexed: 11/21/2022]
|
14
|
Shinoj VK, Murukeshan VM. An HC-PCF Fluorescence Spectrocopy for Detection of Microsphere Samples Based on Refractive Index Scaling Law. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/opj.2011.12014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|