1
|
Kaur G, Roy B. Decoding Tumor Angiogenesis for Therapeutic Advancements: Mechanistic Insights. Biomedicines 2024; 12:827. [PMID: 38672182 PMCID: PMC11048662 DOI: 10.3390/biomedicines12040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Tumor angiogenesis, the formation of new blood vessels within the tumor microenvironment, is considered a hallmark of cancer progression and represents a crucial target for therapeutic intervention. The tumor microenvironment is characterized by a complex interplay between proangiogenic and antiangiogenic factors, regulating the vascularization necessary for tumor growth and metastasis. The study of angiogenesis involves a spectrum of techniques, spanning from biomarker assessment to advanced imaging modalities. This comprehensive review aims to provide insights into the molecular intricacies, regulatory dynamics, and clinical implications of tumor angiogenesis. By delving into these aspects, we gain a deeper understanding of the processes driving vascularization in tumors, paving the way for the development of novel and effective antiangiogenic therapies in the fight against cancer.
Collapse
Affiliation(s)
- Geetika Kaur
- Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA;
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48202, USA
| | - Bipradas Roy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
2
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
3
|
|
4
|
Zanganeh S, Xu Y, Hamby CV, Backer MV, Backer JM, Zhu Q. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:126014. [PMID: 24346856 PMCID: PMC3893938 DOI: 10.1117/1.jbo.18.12.126014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/25/2013] [Accepted: 11/18/2013] [Indexed: 05/27/2023]
Abstract
To develop an indocyanine green (ICG) tracer with slower clearance kinetics, we explored ICG-encapsulating liposomes (Lip) in three different formulations: untargeted (Lip/ICG), targeted to vascular endothelial growth factor (VEGF) receptors (scVEGF-Lip/ICG) by the receptor-binding moiety single-chain VEGF (scVEGF), or decorated with inactivated scVEGF (inactive-Lip/ICG) that does not bind to VEGF receptors. Experiments were conducted with tumor-bearing mice that were placed in a scattering medium with tumors located at imaging depths of either 1.5 or 2.0 cm. Near-infrared fluorescence diffuse optical tomography that provides depth-resolved spatial distributions of fluorescence in tumor was used for the detection of postinjection fluorescent signals. All liposome-based tracers, as well as free ICG, were injected intravenously into mice in the amounts corresponding to 5 nmol of ICG/mouse, and the kinetics of increase and decrease of fluorescent signals in tumors were monitored. A signal from free ICG reached maximum at 15-min postinjection and then rapidly declined with t1/2 of ~20 min. The signals from untargeted Lip/ICG and inactive-Lip/ICG also reached maximum at 15-min postinjection, however, declined somewhat slower than free ICG with t1/2 of ~30 min. By contrast, a signal from targeted scVEGF-Lip/ICG grew slower than that of all other tracers, reaching maximum at 30-min postinjection and declined much slower than that of other tracers with t1/2 of ~90 min, providing a more extended observation window. Higher scVEGF-Lip/ICG tumor accumulation was further confirmed by the analysis of fluorescence on cryosections of tumors that were harvested from animals at 400 min after injection with different tracers.
Collapse
Affiliation(s)
- Saeid Zanganeh
- University of Connecticut, Departments of Bioengineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| | - Yan Xu
- University of Connecticut, Departments of Bioengineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| | - Carl V. Hamby
- New York Medical College, Department of Microbiology and Immunology, Valhalla, New York 10595
| | - Marina V. Backer
- SibTech, Inc., 115A Commerce Drive, Brookfield, Connecticut 06804
| | - Joseph M. Backer
- SibTech, Inc., 115A Commerce Drive, Brookfield, Connecticut 06804
| | - Quing Zhu
- University of Connecticut, Departments of Bioengineering and Electrical and Computer Engineering, Storrs, Connecticut 06269
| |
Collapse
|
5
|
Alexander VM, Choyke PL, Kobayashi H. Fluorescent molecular imaging: technical progress and current preclinical and clinical applications in urogynecologic diseases. Curr Mol Med 2013; 13:1568-78. [PMID: 24206135 DOI: 10.2174/1566524013666131111125758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/18/2012] [Accepted: 09/10/2013] [Indexed: 02/02/2023]
Abstract
Many molecular imaging probes have been developed in recent years that hold great promise for both diagnostic and therapeutic functions in urogynecologic disease. Historically, optical probe designs were based on either endogenous or exogenous fluorophores. More recently, organic fluorophore probes have been engineered to target specific tissues and emit fluorescence only upon binding to targets. Several different photochemical mechanisms of activation exist. This review presents a discussion of the history and development of molecular imaging probe designs and provides an overview of successful preclinical and clinical models employing molecular probes for in vivo imaging of urogynecologic cancers.
Collapse
Affiliation(s)
- V M Alexander
- Molecular Imaging Program, NCI/NIH, Building 10, Room B3B69, MSC 1088, Bethesda, Maryland 20892-1088, USA.
| | | | | |
Collapse
|
6
|
Xu Y, Zanganeh S, Mohammad I, Aguirre A, Wang T, Yang Y, Kuhn L, Smith MB, Zhu Q. Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:66009. [PMID: 23764695 PMCID: PMC3680745 DOI: 10.1117/1.jbo.18.6.066009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 04/23/2013] [Accepted: 05/02/2013] [Indexed: 05/15/2023]
Abstract
Tumor hypoxia is a major indicator of treatment resistance to chemotherapeutic drugs, and fluorescence optical tomography has tremendous potential to provide clinically useful, functional information by identifying tumor hypoxia. The synthesis of a 2-nitroimidazole-indocyanine green conjugate using a piperazine linker (piperazine-2-nitroimidazole-ICG) capable of robust fluorescent imaging of tumor hypoxia is described. In vivo mouse tumor imaging studies were completed and demonstrate an improved imaging capability of the new dye relative to an earlier version of the dye that was synthesized with an ethanolamine linker (ethanolamine-2-nitroimidazole-ICG). Mouse tumors located at imaging depths of 1.5 and 2.0 cm in a turbid medium were imaged at various time points after intravenous injection of the dyes. On average, the reconstructed maximum fluorescence concentration of the tumors injected with piperazine-2-nitroimidazole-ICG was twofold higher than that injected with ethanolamine-2-nitroimidazole-ICG within 3 h postinjection period and 1.6 to 1.7 times higher beyond 3 h postinjection. The untargeted bis-carboxylic acid ICG completely washed out after 3 h postinjection. Thus, the optimal window to assess tumor hypoxia is beyond 3 h postinjection. These findings were supported with fluorescence images of histological sections of tumor samples and an immunohistochemistry technique for identifying tumor hypoxia.
Collapse
Affiliation(s)
- Yan Xu
- University of Connecticut, Electrical and Computer Engineering and Biomedical Engineering Departments, Storrs, Connecticut 06269
| | - Saeid Zanganeh
- University of Connecticut, Electrical and Computer Engineering and Biomedical Engineering Departments, Storrs, Connecticut 06269
| | - Innus Mohammad
- University of Connecticut, Chemistry Department, Storrs, Connecticut 06269
| | - Andres Aguirre
- University of Connecticut, Electrical and Computer Engineering and Biomedical Engineering Departments, Storrs, Connecticut 06269
| | - Tianheng Wang
- University of Connecticut, Electrical and Computer Engineering and Biomedical Engineering Departments, Storrs, Connecticut 06269
| | - Yi Yang
- University of Connecticut, Electrical and Computer Engineering and Biomedical Engineering Departments, Storrs, Connecticut 06269
| | - Liisa Kuhn
- University of Connecticut Health Center, Department of Reconstructive Sciences, Farmington, Connecticut 06030
| | - Michael B. Smith
- University of Connecticut, Chemistry Department, Storrs, Connecticut 06269
| | - Quing Zhu
- University of Connecticut, Electrical and Computer Engineering and Biomedical Engineering Departments, Storrs, Connecticut 06269
| |
Collapse
|
7
|
Yuan B, Rychak J. Tumor functional and molecular imaging utilizing ultrasound and ultrasound-mediated optical techniques. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:305-11. [PMID: 23219728 DOI: 10.1016/j.ajpath.2012.07.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/30/2012] [Indexed: 12/01/2022]
Abstract
Tumor functional and molecular imaging has significantly contributed to cancer preclinical research and clinical applications. Among typical imaging modalities, ultrasonic and optical techniques are two commonly used methods; both share several common features such as cost efficiency, absence of ionizing radiation, relatively inexpensive contrast agents, and comparable maximum-imaging depth. Ultrasonic and optical techniques are also complementary in imaging resolution, molecular sensitivity, and imaging space (vascular and extravascular). The marriage between ultrasonic and optical techniques takes advantages of both techniques. This review introduces tumor functional and molecular imaging using microbubble-based ultrasound and ultrasound-mediated optical imaging techniques.
Collapse
Affiliation(s)
- Baohong Yuan
- Department of Bioengineering, University of Texas at Arlington, Arlington, Texas 76010, USA.
| | | |
Collapse
|
8
|
Mo W, Rohrbach D, Sunar U. Imaging a photodynamic therapy photosensitizer in vivo with a time-gated fluorescence tomography system. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:071306. [PMID: 22894467 PMCID: PMC3381019 DOI: 10.1117/1.jbo.17.7.071306] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/20/2012] [Accepted: 03/05/2012] [Indexed: 05/29/2023]
Abstract
We report the tomographic imaging of a photodynamic therapy (PDT) photosensitizer, 2-(1-hexyloxyethyl)-2-devinyl pyropheophorbide-a (HPPH) in vivo with time-domain fluorescence diffuse optical tomography (TD-FDOT). Simultaneous reconstruction of fluorescence yield and lifetime of HPPH was performed before and after PDT. The methodology was validated in phantom experiments, and depth-resolved in vivo imaging was achieved through simultaneous three-dimensional (3-D) mappings of fluorescence yield and lifetime contrasts. The tomographic images of a human head-and-neck xenograft in a mouse confirmed the preferential uptake and retention of HPPH by the tumor 24-h post-injection. HPPH-mediated PDT induced significant changes in fluorescence yield and lifetime. This pilot study demonstrates that TD-FDOT may be a good imaging modality for assessing photosensitizer distributions in deep tissue during PDT monitoring.
Collapse
Affiliation(s)
- Weirong Mo
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Daniel Rohrbach
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| | - Ulas Sunar
- Roswell Park Cancer Institute, Department of Cell Stress Biology and PDT Center, Elm and Carlton Streets, Buffalo, New York, 14263
| |
Collapse
|
9
|
Biswal NC, Pavlik C, Smith MB, Aguirre A, Xu Y, Zanganeh S, Kuhn LT, Claffey KP, Zhu Q. Imaging tumor hypoxia by near-infrared fluorescence tomography. JOURNAL OF BIOMEDICAL OPTICS 2011; 16:066009. [PMID: 21721810 PMCID: PMC3133800 DOI: 10.1117/1.3589348] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 04/08/2011] [Accepted: 04/19/2011] [Indexed: 05/27/2023]
Abstract
We have developed a novel nitroimidazole indocyanine dye conjugate for tumor-targeted hypoxia fluorescence tomography. The hypoxia probe has been evaluated in vitro using tumor cell lines and in vivo with tumor targeting in mice. The in vitro cell studies were performed to assess fluorescence labeling differences between hypoxia and normoxia conditions. When treated with the hypoxia probe, a fluorescence emission ratio of 2.5-fold was found between the cells incubated under hypoxia compared to the cells in normoxia condition. Hypoxia specificity was also confirmed by comparing the cells treated with indocyanine dye alone. In vivo tumor targeting in mice showed that the fluorescence signals measured at the tumor site were twice those at the normal site after 150 min post-injection of the hypoxia probe. On the other hand, the fluorescence signals measured after injection of indocyanine dye were the same at tumor and normal sites. In vivo fluorescence tomography images of mice injected with the hypoxia probe showed that the probe remained for more than 5 to 7 h in the tumors, however, the images of mice injected with indocyanine only dye confirmed that the unbound dye washed out in less than 3 h. These findings are supported with fluorescence images of histological sections of tumor samples using a Li-COR scanner and immunohistochemistry technique for tumor hypoxia.
Collapse
Affiliation(s)
- Nrusingh C Biswal
- University of Connecticut, Department of Electrical and Computer Engineering, Storrs, Connecticut 06269, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Napp J, Mathejczyk JE, Alves F. Optical imaging in vivo with a focus on paediatric disease: technical progress, current preclinical and clinical applications and future perspectives. Pediatr Radiol 2011; 41:161-75. [PMID: 21221568 PMCID: PMC3032188 DOI: 10.1007/s00247-010-1907-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/20/2010] [Accepted: 10/10/2010] [Indexed: 12/30/2022]
Abstract
To obtain information on the occurrence and location of molecular events as well as to track target-specific probes such as antibodies or peptides, drugs or even cells non-invasively over time, optical imaging (OI) technologies are increasingly applied. Although OI strongly contributes to the advances made in preclinical research, it is so far, with the exception of optical coherence tomography (OCT), only very sparingly applied in clinical settings. Nevertheless, as OI technologies evolve and improve continuously and represent relatively inexpensive and harmful methods, their implementation as clinical tools for the assessment of children disease is increasing. This review focuses on the current preclinical and clinical applications as well as on the future potential of OI in the clinical routine. Herein, we summarize the development of different fluorescence and bioluminescence imaging techniques for microscopic and macroscopic visualization of microstructures and biological processes. In addition, we discuss advantages and limitations of optical probes with distinct mechanisms of target-detection as well as of different bioluminescent reporter systems. Particular attention has been given to the use of near-infrared (NIR) fluorescent probes enabling observation of molecular events in deeper tissue.
Collapse
Affiliation(s)
- Joanna Napp
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany ,Department of Hematology and Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Julia E. Mathejczyk
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Department of Molecular Biology of Neuronal Signals, Max-Planck-Institute for Experimental Medicine, Hermann-Rein-Str. 3, 37075 Göttingen, Germany ,Department of Hematology and Oncology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
11
|
Kagadis GC, Loudos G, Katsanos K, Langer SG, Nikiforidis GC. In vivosmall animal imaging: Current status and future prospects. Med Phys 2010; 37:6421-42. [DOI: 10.1118/1.3515456] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|