2
|
Okawa S, Yano A, Uchida K, Mitsui Y, Yoshida M, Takekoshi M, Marjono A, Gao F, Hoshi Y, Kida I, Masamoto K, Yamada Y. Phantom and mouse experiments of time-domain fluorescence tomography using total light approach. BIOMEDICAL OPTICS EXPRESS 2013; 4:635-651. [PMID: 23577297 PMCID: PMC3617724 DOI: 10.1364/boe.4.000635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/12/2013] [Accepted: 02/14/2013] [Indexed: 06/02/2023]
Abstract
Phantom and mouse experiments of time-domain fluorescence tomography were conducted to demonstrate the total light approach which was previously proposed by authors. The total light approach reduces the computation time to solve the forward model for light propagation. Time-resolved temporal profiles were acquired for cylindrical phantoms having single or double targets containing indocyanine green (ICG) solutions. The reconstructed images of ICG concentration reflected the true distributions of ICG concentration with a spatial resolution of about 10 mm. In vivo experiments were conducted using a mouse in which an ICG capsule was embedded beneath the skin in the abdomen. The reconstructed image of the ICG concentration again reflected the true distribution of ICG although artifacts due to autofluorescence appeared in the vicinity of the skin. The effectiveness of the total light approach was demonstrated by the phantom and mouse experiments.
Collapse
Affiliation(s)
- Shinpei Okawa
- Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
- Currently with the Department of Medical Engineering, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akira Yano
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Kazuki Uchida
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Yohei Mitsui
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Masaki Yoshida
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Masashi Takekoshi
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Andhi Marjono
- Graduate students of the Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Feng Gao
- College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yoko Hoshi
- Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Ikuhiro Kida
- Integrated Neuroscience Research Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kami-kitazawa, Setagaya, Tokyo 156-8506, Japan
| | - Kazuto Masamoto
- Center for Frontier Science and Engineering, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| | - Yukio Yamada
- Department of Mechanical Engineering and Intelligent Systems, University of Electro-Communications, 1-5-1 Chofuga-oka, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|
3
|
Venugopal V, Intes X. Adaptive wide-field optical tomography. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:036006. [PMID: 23475290 PMCID: PMC3591745 DOI: 10.1117/1.jbo.18.3.036006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 02/02/2013] [Accepted: 02/05/2013] [Indexed: 05/20/2023]
Abstract
We describe a wide-field optical tomography technique, which allows the measurement-guided optimization of illumination patterns for enhanced reconstruction performances. The iterative optimization of the excitation pattern aims at reducing the dynamic range in photons transmitted through biological tissue. It increases the number of measurements collected with high photon counts resulting in a dataset with improved tomographic information. Herein, this imaging technique is applied to time-resolved fluorescence molecular tomography for preclinical studies. First, the merit of this approach is tested by in silico studies in a synthetic small animal model for typical illumination patterns. Second, the applicability of this approach in tomographic imaging is validated in vitro using a small animal phantom with two fluorescent capillaries occluded by a highly absorbing inclusion. The simulation study demonstrates an improvement of signal transmitted (∼2 orders of magnitude) through the central portion of the small animal model for all patterns considered. A corresponding improvement in the signal at the emission wavelength by 1.6 orders of magnitude demonstrates the applicability of this technique for fluorescence molecular tomography. The successful discrimination and localization (∼1 mm error) of the two objects with higher resolution using the optimized patterns compared with nonoptimized illumination establishes the improvement in reconstruction performance when using this technique.
Collapse
Affiliation(s)
- Vivek Venugopal
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180
| | - Xavier Intes
- Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180
- Address all correspondence to: Xavier Intes, Rensselaer Polytechnic Institute, Department of Biomedical Engineering, 110 8th Street, Troy, New York 12180. Tel: (518) 276-6964; E-mail:
| |
Collapse
|