1
|
Kessel D. Critical PDT Theory VI: Detection of Reactive Oxygen Species: Trials and Errors. Photochem Photobiol 2023; 99:1216-1217. [PMID: 36625179 DOI: 10.1111/php.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Fluorescence intensity of DCFH-DA in hepatoma 1c1c7 cells after 10 min incubations.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
2
|
Kessel D. Critical PDT Theory III: Events at the Molecular and Cellular Level. Int J Mol Sci 2022; 23:6195. [PMID: 35682870 PMCID: PMC9181573 DOI: 10.3390/ijms23116195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/27/2022] Open
Abstract
Photodynamic therapy (PDT) is capable of eradicating neoplastic cells that are accessible to sufficient light and oxygen. There is adequate information now available for assessing conditions where PDT might be the therapy of choice, but limited access to clinical facilities and impediments to regulatory approval of new agents have limited clinical usage. Early reports mainly involved clinical data with few thoughts towards finding death pathways. In 2022, there is a clear understanding of the determinants of successful tumor eradication. While PDT may be the optimal method for many clinical indications, support for this approach has lagged. This report provides a commentary on some elements of recent progress in PDT at the molecular and cellular levels, along with a discussion of some of the limitations in current research efforts.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
3
|
Wang C, Wang Z, Zeng B, Zheng M, Xiao N, Zhao Z. Fenton-like reaction of the iron(II)-histidine complex generates hydroxyl radicals: implications for oxidative stress and Alzheimer's disease. Chem Commun (Camb) 2021; 57:12293-12296. [PMID: 34734220 DOI: 10.1039/d1cc05000a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hydroxyl radical (˙OH), generated from Fenton/Fenton-like reactions of iron(II) species in biology, can oxidatively damage biomolecules, inducing oxidative stress and diseases. However, this common understanding has been questioned recently after a carbonate radical was observed from the Fenton-like reaction of the iron(II)-carbonate complex. Herein, we report that the Fenton-like reaction of the iron(II)-histidine complex, one major iron(II) species in blood plasma, can occur at neutral pH to generate ˙OH, not iron(IV). Our findings and critical analyses on relevant studies clarify the above doubt, reveal a new pathway of causing oxidative stress by the iron(II) species, and have implications for Alzheimer's disease.
Collapse
Affiliation(s)
- Can Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Zheng Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Binglin Zeng
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Meiqing Zheng
- Core Facility Center, Capital Medical University, Beijing 100069, China
| | - Nao Xiao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| | - Zhongwei Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
De Castro F, Vergaro V, Benedetti M, Baldassarre F, Del Coco L, Dell'Anna MM, Mastrorilli P, Fanizzi FP, Ciccarella G. Visible Light-Activated Water-Soluble Platicur Nanocolloids: Photocytotoxicity and Metabolomics Studies in Cancer Cells. ACS APPLIED BIO MATERIALS 2020; 3:6836-6851. [PMID: 35019346 DOI: 10.1021/acsabm.0c00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle-based drug delivery systems for cancer therapy offer a great promising opportunity as they specifically target cancer cells, also increasing the bioavailability of anticancer drugs characterized by low water solubility. Platicur, [Pt(cur) (NH3)2](NO3), is a cis-diamine-platinum(II) complex linked to curcumin. In this work, an ultrasonication method, coupled with layer by layer technology, allows us to obtain highly aqueous stable Platicur nanocolloids of about 100 nm. The visible light-activated Platicur nanocolloids showed an increased drug release and antitumor activity on HeLa cells, with respect to Platicur nanocolloids in darkness. This occurrence could give very interesting insight into selective activation of the nanodelivered Pt(II) complex and possible side-effect lowering. For the first time, the metabolic effects of Platicur nanocolloid photoactivation, in the HeLa cell line, have been investigated using an NMR-based metabolomics approach coupled with statistical multivariate data analysis. The reported results highlight specific metabolic differences between photoactivated and non-photoactivated Platicur NC-treated HeLa cancer cells.
Collapse
Affiliation(s)
- Federica De Castro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| | - Michele Benedetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Francesca Baldassarre
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| | - Laura Del Coco
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | | | | | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, via Monteroni, 73100 Lecce, Italy.,Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Chennoufi R, Trinh ND, Simon F, Bordeau G, Naud-Martin D, Moussaron A, Cinquin B, Bougherara H, Rambaud B, Tauc P, Frochot C, Teulade-Fichou MP, Mahuteau-Betzer F, Deprez E. Interplay between Cellular Uptake, Intracellular Localization and the Cell Death Mechanism in Triphenylamine-Mediated Photoinduced Cell Death. Sci Rep 2020; 10:6881. [PMID: 32327691 PMCID: PMC7181850 DOI: 10.1038/s41598-020-63991-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/08/2020] [Indexed: 12/19/2022] Open
Abstract
Triphenylamines (TPAs) were previously shown to trigger cell death under prolonged one- or two-photon illumination. Their initial subcellular localization, before prolonged illumination, is exclusively cytoplasmic and they translocate to the nucleus upon photoactivation. However, depending on their structure, they display significant differences in terms of precise initial localization and subsequent photoinduced cell death mechanism. Here, we investigated the structural features of TPAs that influence cell death by studying a series of molecules differing by the number and chemical nature of vinyl branches. All compounds triggered cell death upon one-photon excitation, however to different extents, the nature of the electron acceptor group being determinant for the overall cell death efficiency. Photobleaching susceptibility was also an important parameter for discriminating efficient/inefficient compounds in two-photon experiments. Furthermore, the number of branches, but not their chemical nature, was crucial for determining the cellular uptake mechanism of TPAs and their intracellular fate. The uptake of all TPAs is an active endocytic process but two- and three-branch compounds are taken up via distinct endocytosis pathways, clathrin-dependent or -independent (predominantly caveolae-dependent), respectively. Two-branch TPAs preferentially target mitochondria and photoinduce both apoptosis and a proper necrotic process, whereas three-branch TPAs preferentially target late endosomes and photoinduce apoptosis only.
Collapse
Affiliation(s)
- Rahima Chennoufi
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Ngoc-Duong Trinh
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Françoise Simon
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Guillaume Bordeau
- UMR9187, CNRS, INSERM, Institut Curie, PSL Research University, Université Paris-Saclay, F-91405, Orsay, France.,Laboratoire des IMRCP, Université de Toulouse, CNRS UMR5623, Université Toulouse-III - Paul Sabatier, F-31400, Toulouse, France
| | - Delphine Naud-Martin
- UMR9187, CNRS, INSERM, Institut Curie, PSL Research University, Université Paris-Saclay, F-91405, Orsay, France
| | - Albert Moussaron
- LRGP, UMR7274 CNRS-Université de Lorraine, F-54000, Nancy, France
| | - Bertrand Cinquin
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Houcine Bougherara
- Institut Cochin, INSERM U1016-CNRS UMR8104-Université Paris Descartes, Sorbonne Paris Cité, F-75014, Paris, France.,Institut de Recherches Servier SA, F-78290, Croissy-sur-Seine, France
| | - Béatrice Rambaud
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Patrick Tauc
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France
| | - Céline Frochot
- LRGP, UMR7274 CNRS-Université de Lorraine, F-54000, Nancy, France
| | - Marie-Paule Teulade-Fichou
- UMR9187, CNRS, INSERM, Institut Curie, PSL Research University, Université Paris-Saclay, F-91405, Orsay, France.
| | - Florence Mahuteau-Betzer
- UMR9187, CNRS, INSERM, Institut Curie, PSL Research University, Université Paris-Saclay, F-91405, Orsay, France.
| | - Eric Deprez
- Laboratory of Biology and Applied Pharmacology (LBPA), CNRS UMR8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, F-91190, Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Oliveira MS, Chorociejus G, Angeli JPF, Vila Verde G, Aquino GLB, Ronsein GE, Oliveira MCBD, Barbosa LF, Medeiros MHG, Greer A, Di Mascio P. Heck reaction synthesis of anthracene and naphthalene derivatives as traps and clean chemical sources of singlet molecular oxygen in biological systems. Photochem Photobiol Sci 2020; 19:1590-1602. [DOI: 10.1039/d0pp00153h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Our study shows that new anthracene and naphthalene derivatives function as compounds for trapping and chemically generating singlet molecular oxygen [O2(1Δg)], respectively. The syntheses of these derivatives are described, as well as some localization testing in cells.
Collapse
Affiliation(s)
| | - Gabriel Chorociejus
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - José Pedro F. Angeli
- Rudolf Virchow Center for Translational Bioimaging
- University of Würzburg
- 97080 Würzburg
- Germany
| | - Giuliana Vila Verde
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Gilberto L. B. Aquino
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo
- Universidade Estadual de Goiás
- 75001-970 Anápolis
- Brazil
| | - Graziella E. Ronsein
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | | | - Livea F. Barbosa
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Marisa H. G. Medeiros
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| | - Alexander Greer
- Department of Chemistry
- Brooklyn College
- City University of New York
- Brooklyn
- USA
| | - Paolo Di Mascio
- Departamento de Bioquímica
- Instituto de Química
- Universidade de São Paulo
- São Paulo
- Brazil
| |
Collapse
|
7
|
Huang J, Hou L, Bian X, Chang K. Analysis of intracellular reactive oxygen species by micellar electrokinetic capillary chromatography with laser-induced-fluorescence detector. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1625369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jianping Huang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
- Henan Engineering Research Center of Water Pollution and Soil Damage Remediation, Zhengzhou, China
- Henan Key Laboratory of Water Environment Simulation and Treatment, Zhengzhou, China
| | - Lijun Hou
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Xiaozheng Bian
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
| | - Kai Chang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou, China
| |
Collapse
|
8
|
Zeng B, Zhang P, Zheng M, Xiao N, Han J, Wang C, Wang Z, Zhao Z. Detection and identification of the oxidizing species generated from the physiologically important Fenton-like reaction of iron(II)-citrate with hydrogen peroxide. Arch Biochem Biophys 2019; 668:39-45. [PMID: 31100219 DOI: 10.1016/j.abb.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 12/18/2022]
Abstract
The Fenton-like reaction of iron(II)-citrate with hydrogen peroxide is physiologically important because it is associated with the oxidative stress and pathological processes induced by the redox-active iron pool in vivo. However, the oxidizing species generated from this reaction at neutral pH has not been convincingly identified because two extremely unstable and hard-to-differentiate species, the hydroxyl radical (•OH) and iron(IV) (ferryl) species, can be produced. Identifying this species is essential for understanding the reaction mechanism. Although there were few data that reported the detection of •OH from this reaction by using the EPR and fluorescence techniques, most of these data were obtained without the necessary assessment with a •OH scavenger. Furthermore, these two techniques may not be able to differentiate the •OH and iron(IV) species. Thus, these reported data cannot lead to a convincing conclusion that the •OH, not the iron(IV) species, was generated. Therefore, in the study reported herein, we carried out systematic investigations first by using the EPR and fluorescence techniques combined with a •OH scavenger to detect the oxidizing species generated from this Fenton-like reaction. Then we utilized NMR spectroscopy and for the first time obtained convincing evidence to demonstrate that this oxidizing species is the •OH rather than iron(IV) species. We also determined the second-order rate constant of the reaction, 3.6 × 103 M-1s-1 (pH7.0, 25 °C), by using the stopped-flow spectrophotometry. On the basis of these findings, a scheme is proposed for the mechanism of this physiologically important Fenton-like reaction.
Collapse
Affiliation(s)
- Binglin Zeng
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Peifeng Zhang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Meiqing Zheng
- Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Nao Xiao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Jialun Han
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Can Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Zheng Wang
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China
| | - Zhongwei Zhao
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, 100069, China; Beijing Area Major Laboratory of Peptide and Small Molecular Drugs; Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing, China; Present address: College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Acute-on-chronic liver disease enhances phenylephrine-induced endothelial nitric oxide release in rat mesenteric resistance arteries through enhanced PKA, PI3K/AKT and cGMP signalling pathways. Sci Rep 2019; 9:6993. [PMID: 31061522 PMCID: PMC6502824 DOI: 10.1038/s41598-019-43513-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 04/15/2019] [Indexed: 12/15/2022] Open
Abstract
Acute-on-chronic liver disease is a clinical syndrome characterized by decompensated liver fibrosis, portal hypertension and splanchnic hyperdynamic circulation. We aimed to determine whether the alpha-1 agonist phenylephrine (Phe) facilitates endothelial nitric oxide (NO) release by mesenteric resistance arteries (MRA) in rats subjected to an experimental microsurgical obstructive liver cholestasis model (LC). Sham-operated (SO) and LC rats were maintained for eight postoperative weeks. Phe-induced vasoconstriction (in the presence/absence of the NO synthase –NOS- inhibitor L-NAME) and vasodilator response to NO donor DEA-NO were analysed. Phe-induced NO release was determined in the presence/absence of either H89 (protein kinase –PK- A inhibitor) or LY 294002 (PI3K inhibitor). PKA and PKG activities, alpha-1 adrenoceptor, endothelial NOS (eNOS), PI3K, AKT and soluble guanylate cyclase (sGC) subunit expressions, as well as eNOS and AKT phosphorylation, were determined. The results show that LC blunted Phe-induced vasoconstriction, and enhanced DEA-NO-induced vasodilation. L-NAME increased the Phe-induced contraction largely in LC animals. The Phe-induced NO release was greater in MRA from LC animals. Both H89 and LY 294002 reduced NO release in LC. Alpha-1 adrenoceptor, eNOS, PI3K and AKT expressions were unchanged, but sGC subunit expression, eNOS and AKT phosphorylation and the activities of PKA and PKG were higher in MRA from LC animals. In summary, these mechanisms may help maintaining splanchnic vasodilation and hypotension observed in decompensated LC.
Collapse
|
10
|
Photosensitization in Porphyrias and Photodynamic Therapy Involves TRPA1 and TRPV1. J Neurosci 2017; 36:5264-78. [PMID: 27170124 DOI: 10.1523/jneurosci.4268-15.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/22/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Photosensitization, an exaggerated sensitivity to harmless light, occurs genetically in rare diseases, such as porphyrias, and in photodynamic therapy where short-term toxicity is intended. A common feature is the experience of pain from bright light. In human subjects, skin exposure to 405 nm light induced moderate pain, which was intensified by pretreatment with aminolevulinic acid. In heterologous expression systems and cultured sensory neurons, exposure to blue light activated TRPA1 and, to a lesser extent, TRPV1 channels in the absence of additional photosensitization. Pretreatment with aminolevulinic acid or with protoporphyrin IX dramatically increased the light sensitivity of both TRPA1 and TRPV1 via generation of reactive oxygen species. Artificial lipid bilayers equipped with purified human TRPA1 showed substantial single-channel activity only in the presence of protoporphyrin IX and blue light. Photosensitivity and photosensitization could be demonstrated in freshly isolated mouse tissues and led to TRP channel-dependent release of proinflammatory neuropeptides upon illumination. With antagonists in clinical development, these findings may help to alleviate pain during photodynamic therapy and also allow for disease modification in porphyria patients. SIGNIFICANCE STATEMENT Cutaneous porphyria patients suffer from burning pain upon exposure to sunlight and other patients undergoing photodynamic therapy experience similar pain, which can limit the therapeutic efforts. This study elucidates the underlying molecular transduction mechanism and identifies potential targets of therapy. Ultraviolet and blue light generates singlet oxygen, which oxidizes and activates the ion channels TRPA1 and TRPV1. The disease and the therapeutic options could be reproduced in models ranging from isolated ion channels to human subjects, applying protoporphyrin IX or its precursor aminolevulinic acid. There is an unmet medical need, and our results suggest a therapeutic use of the pertinent antagonists in clinical development.
Collapse
|
11
|
Activation of p47phox as a Mechanism of Bupivacaine-Induced Burst Production of Reactive Oxygen Species and Neural Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8539026. [PMID: 28751934 PMCID: PMC5480047 DOI: 10.1155/2017/8539026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/04/2017] [Indexed: 12/02/2022]
Abstract
Bupivacaine has been shown to induce neurotoxicity through inducing excessive reactive oxygen species (ROS), but the underlying mechanism remains unclear. NOX2 is one of the most important sources of ROS in the nervous system, and its activation requires the membrane translocation of subunit p47phox. However, the role of p47phox in bupivacaine-induced neurotoxicity has not been explored. In our in vitro study, cultured human SH-SY5Y neuroblastoma cells were treated with 1.5 mM bupivacaine to induce neurotoxicity. Membrane translocation of p47phox was assessed by measuring the cytosol/membrane ratio of p47phox. The effects of the NOX inhibitor VAS2870 and p47phox-siRNA on bupivacaine-induced neurotoxicity were investigated. Furthermore, the effect of VAS2870 on bupivacaine-induced neurotoxicity was assessed in vivo in rats. All these changes were reversed by pretreatment with VAS2870 or transfection with p47phox-siRNA in SH-SY5Y cells. Similarly, pretreatment with VAS2870 attenuated bupivacaine-induced neuronal toxicity in rats. It is concluded that enhancing p47phox membrane translocation is a major mechanism whereby bupivacaine induced neurotoxicity and that pretreatment with VAS2870 or local p47phox gene knockdown attenuated bupivacaine-induced neuronal cell injury.
Collapse
|
12
|
Dąbrowski JM. Reactive Oxygen Species in Photodynamic Therapy: Mechanisms of Their Generation and Potentiation. ADVANCES IN INORGANIC CHEMISTRY 2017. [DOI: 10.1016/bs.adioch.2017.03.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Mitra K, Gautam S, Kondaiah P, Chakravarty AR. Platinum(II) Complexes of Curcumin Showing Photocytotoxicity in Visible Light. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201601078] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Koushambi Mitra
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560-012 Bangalore India
| | - Srishti Gautam
- Department of Molecular Reproduction; Development and Genetics; Indian Institute of Science; 560-012 Bangalore India
| | - Paturu Kondaiah
- Department of Molecular Reproduction; Development and Genetics; Indian Institute of Science; 560-012 Bangalore India
| | - Akhil R. Chakravarty
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; 560-012 Bangalore India
| |
Collapse
|
14
|
Mitra K, Gautam S, Kondaiah P, Chakravarty AR. BODIPY-Appended 2-(2-Pyridyl)benzimidazole Platinum(II) Catecholates for Mitochondria-Targeted Photocytotoxicity. ChemMedChem 2016; 11:1956-67. [PMID: 27465792 DOI: 10.1002/cmdc.201600320] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Indexed: 12/21/2022]
Abstract
Platinum(II) complexes of the type [Pt(L)(cat)] (1 and 2), in which H2 cat is catechol and L represents two 2-(2-pyridyl)benzimidazole ligands with 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) pendants, were synthesized to achieve mitochondria-targeted photocytotoxicity. The complexes showed strong absorptions in the range λ=510-540 nm. Complex 1 exhibited intense emission at λ=525 nm in 1 % DMSO/water solution (fluorescence quantum yield of 0.06). Nanosecond transient absorption spectral features indicated an enhanced population of the triplet excited state in di-iodinated complex 2. The generation of singlet oxygen by complex 2 upon exposure to visible light, as evidenced from experiments with 1,3-diphenylisobenzofuran, is suitable for photodynamic therapy because of the remarkable photosensitizing ability. The complexes resulted in excellent photocytotoxicity in HaCaT cells (half maximal inhibitory concentration IC50 ≈3 μm, λ=400-700 nm, light dose=10 J cm(-2) ), but they remained non-toxic in the dark (IC50 >100 μm). Confocal microscopy images of 1 and Pt estimation from isolated mitochondria showed colocalization of the complexes in the mitochondria. Complex 2 displayed generation of reactive oxygen species induced by visible light, disruption of the mitochondrial membrane potential, and apoptosis.
Collapse
Affiliation(s)
- Koushambi Mitra
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Srishti Gautam
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, Karnataka, India
| | - Paturu Kondaiah
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| | - Akhil R Chakravarty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, Karnataka, India.
| |
Collapse
|
15
|
Mattila H, Khorobrykh S, Havurinne V, Tyystjärvi E. Reactive oxygen species: Reactions and detection from photosynthetic tissues. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 152:176-214. [PMID: 26498710 DOI: 10.1016/j.jphotobiol.2015.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have long been recognized as compounds with dual roles. They cause cellular damage by reacting with biomolecules but they also function as agents of cellular signaling. Several different oxygen-containing compounds are classified as ROS because they react, at least with certain partners, more rapidly than ground-state molecular oxygen or because they are known to have biological effects. The present review describes the typical reactions of the most important ROS. The reactions are the basis for both the detection methods and for prediction of reactions between ROS and biomolecules. Chemical and physical methods used for detection, visualization and quantification of ROS from plants, algae and cyanobacteria will be reviewed. The main focus will be on photosynthetic tissues, and limitations of the methods will be discussed.
Collapse
Affiliation(s)
- Heta Mattila
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Sergey Khorobrykh
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, 20014 Turku, Finland.
| |
Collapse
|
16
|
Korzeniowska B, Nooney R, Wencel D, McDonagh C. Silica nanoparticles for cell imaging and intracellular sensing. NANOTECHNOLOGY 2013; 24:442002. [PMID: 24113689 DOI: 10.1088/0957-4484/24/44/442002] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
There is increasing interest in the use of nanoparticles (NPs) for biomedical applications. In particular, nanobiophotonic approaches using fluorescence offers the potential of high sensitivity and selectivity in applications such as cell imaging and intracellular sensing. In this review, we focus primarily on the use of fluorescent silica NPs for these applications and, in so doing, aim to enhance and complement the key recent review articles on these topics. We summarize the main synthetic approaches, namely the Stöber and microemulsion processes, and, in this context, we deal with issues in relation to both covalent and physical incorporation of different types of dyes in the particles. The important issue of NP functionalization for conjugation to biomolecules is discussed and strategies published in the recent literature are highlighted and evaluated. We cite recent examples of the use of fluorescent silica NPs for cell imaging in the areas of cancer, stem cell and infectious disease research, and we review the current literature on the use of silica NPs for intracellular sensing of oxygen, pH and ionic species. We include a short final section which seeks to identify the main challenges and obstacles in relation to the potential widespread use of these particles for in vivo diagnostics and therapeutics.
Collapse
Affiliation(s)
- B Korzeniowska
- Optical Sensors Laboratory, School of Physical Sciences, NCSR, Dublin City University, Dublin 9, Ireland
| | | | | | | |
Collapse
|
17
|
Vatansever F, de Melo WCMA, Avci P, Vecchio D, Sadasivam M, Gupta A, Chandran R, Karimi M, Parizotto NA, Yin R, Tegos GP, Hamblin MR. Antimicrobial strategies centered around reactive oxygen species--bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol Rev 2013; 37:955-89. [PMID: 23802986 DOI: 10.1111/1574-6976.12026] [Citation(s) in RCA: 617] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) can attack a diverse range of targets to exert antimicrobial activity, which accounts for their versatility in mediating host defense against a broad range of pathogens. Most ROS are formed by the partial reduction in molecular oxygen. Four major ROS are recognized comprising superoxide (O2•-), hydrogen peroxide (H2O2), hydroxyl radical (•OH), and singlet oxygen ((1)O2), but they display very different kinetics and levels of activity. The effects of O2•- and H2O2 are less acute than those of •OH and (1)O2, because the former are much less reactive and can be detoxified by endogenous antioxidants (both enzymatic and nonenzymatic) that are induced by oxidative stress. In contrast, no enzyme can detoxify •OH or (1)O2, making them extremely toxic and acutely lethal. The present review will highlight the various methods of ROS formation and their mechanism of action. Antioxidant defenses against ROS in microbial cells and the use of ROS by antimicrobial host defense systems are covered. Antimicrobial approaches primarily utilizing ROS comprise both bactericidal antibiotics and nonpharmacological methods such as photodynamic therapy, titanium dioxide photocatalysis, cold plasma, and medicinal honey. A brief final section covers reactive nitrogen species and related therapeutics, such as acidified nitrite and nitric oxide-releasing nanoparticles.
Collapse
Affiliation(s)
- Fatma Vatansever
- The Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA; Department of Dermatology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Thom SR, Yang M, Bhopale VM, Milovanova TN, Bogush M, Buerk DG. Intramicroparticle nitrogen dioxide is a bubble nucleation site leading to decompression-induced neutrophil activation and vascular injury. J Appl Physiol (1985) 2012; 114:550-8. [PMID: 23264541 DOI: 10.1152/japplphysiol.01386.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inert gases diffuse into tissues in proportion to ambient pressure, and when pressure is reduced, gas efflux forms bubbles due to the presence of gas cavitation nuclei that are predicted based on theory but have never been characterized. Decompression stress triggers elevations in number and diameter of circulating annexin V-coated microparticles (MPs) derived from vascular cells. Here we show that ∼10% MPs from wild-type (WT) but not inflammatory nitric oxide synthase-2 (iNOS) knockout (KO) mice increase in size when exposed to elevated air pressure ex vivo. This response is abrogated by a preceding exposure to hydrostatic pressure, demonstrating the presence of a preformed gas phase. These MPs have lower density than most particles, 10-fold enrichment in iNOS, and generate commensurately more reactive nitrogen species (RNS). Surprisingly, RNS only slowly diffuse from within MPs unless particles are subjected to osmotic stress or membrane cholesterol is removed. WT mice treated with iNOS inhibitor and KO mice exhibit less decompression-induced neutrophil activation and vascular leak. Contrary to injecting naïve mice with MPs from wild-type decompressed mice, injecting KO MPs triggers fewer proinflammatory events. We conclude that nitrogen dioxide is a nascent gas nucleation site synthesized in some MPs and is responsible for initiating postdecompression inflammatory injuries.
Collapse
Affiliation(s)
- Stephen R Thom
- Institute for Environmental Medicine, Univ. of Pennsylvania, Philadelphia, PA 19104-6068, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Banik B, Somyajit K, Koley D, Nagaraju G, Chakravarty AR. Cellular uptake and remarkable photocytotoxicity of pyrenylter pyridine oxovanadium(IV) complexes of dipyridophenazine bases. Inorganica Chim Acta 2012. [DOI: 10.1016/j.ica.2012.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Basu U, Khan I, Koley D, Saha S, Kondaiah P, Chakravarty AR. Nuclear targeting terpyridine iron(II) complexes for cellular imaging and remarkable photocytotoxicity. J Inorg Biochem 2012; 116:77-87. [DOI: 10.1016/j.jinorgbio.2012.06.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 06/02/2012] [Accepted: 06/04/2012] [Indexed: 01/13/2023]
|
21
|
Huang YY, Balasubramanian T, Yang E, Luo D, Diers JR, Bocian DF, Lindsey JS, Holten D, Hamblin MR. Stable synthetic bacteriochlorins for photodynamic therapy: role of dicyano peripheral groups, central metal substitution (2H, Zn, Pd), and Cremophor EL delivery. ChemMedChem 2012; 7:2155-67. [PMID: 23065820 DOI: 10.1002/cmdc.201200351] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Indexed: 12/14/2022]
Abstract
A series of four stable synthetic bacteriochlorins was tested in vitro in HeLa cells for their potential in photodynamic therapy (PDT). The parent bacteriochlorin (BC), dicyano derivative (NC)(2)BC and corresponding zinc chelate (NC)(2)BC-Zn and palladium chelate (NC)(2)BC-Pd were studied. Direct dilution of a solution of bacteriochlorin in an organic solvent (N,N-dimethylacetamide) into serum-containing medium was compared with the dilution of bacteriochlorin in Cremophor EL (CrEL; polyoxyethylene glycerol triricinoleate) micelles into the same medium. CrEL generally reduced aggregation (as indicated by absorption and fluorescence) and increased activity up to tenfold (depending on bacteriochlorin), although it decreased cellular uptake. The order of PDT activity against HeLa human cancer cells after 24 h incubation and illumination with 10 J cm(-2) of near-infrared (NIR) light is (NC)(2)BC-Pd (LD(50)=25 nM) > (NC)(2)BC > (NC)(2)BC-Zn ≈ BC. Subcellular localization was determined to be in the endoplasmic reticulum, mitochondria and lysosomes, depending on the bacteriochlorin. (NC)(2)BC-Pd showed PDT-mediated damage to mitochondria and lysosomes, and the greatest production of hydroxyl radicals as determined using a hydroxyphenylfluorescein probe. The incorporation of cyano substituents provides an excellent motif for the enhancement of the photoactivity and photostability of bacteriochlorins as PDT photosensitizers.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, 40 Blossom Street, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Photodynamic therapy relies on the interaction between light, oxygen and a photosensitizing agent. Its medical significance relates to the ability of certain agents, usually based on porphyrin or phthalocyanine structures, to localize somewhat selectively in neoplastic cells and their vasculature. Subsequent irradiation, preferably at a sufficiently high wavelength to have a significant pathway through tissues, results in a photophysical reaction whereby the excited state of the photosensitizing agent transfers energy to molecular oxygen and results in the formation of reactive oxygen species. Analogous reactive nitrogen species are also formed. These contain both nitrogen and oxygen atoms. The net result is both direct tumor cell death and a shutdown of the tumor vasculature. Other processes may also occur that promote the anti-tumor response but these are outside the scope of this review.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology Wayne State University School of Medicine Detroit, MI 48201 (USA) phone: +0013135771787
| | - John Reiners
- Institute of Environmental Health Sciences Wayne State University Detroit, MI 48201 (USA) phone: +0013135775594
| |
Collapse
|
23
|
Long Z, Ji J, Yang K, Lin D, Wu F. Systematic and quantitative investigation of the mechanism of carbon nanotubes' toxicity toward algae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:8458-8466. [PMID: 22759191 DOI: 10.1021/es301802g] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Concurrent with the increasing production and application of carbon nanotubes (CNTs) comes an increasing likelihood of CNTs presenting in the aquatic environment, and thereby potentially threatening aquatic organisms via toxic mechanisms that are, at present, poorly understood. This study systematically investigated the toxicity of three multiwalled CNT (MWCNT) samples toward a green alga (Chlorella sp.), focusing on examining and quantifying the contributions of five possible mechanisms to the algal growth inhibition. The results showed that the MWCNTs significantly inhibited the algal growth. The contribution of metal catalyst residues in the MWCNTs to the algal growth inhibition was negligible, as was the contribution from the MWCNTs' adsorption of nutrient elements. The algal toxicity of MWCNTs could mainly be explained by the combined effects of oxidative stress, agglomeration and physical interactions, and shading effects, with the quantitative contributions from these mechanisms depending on the MWCNT size and concentration. At MWCNT concentrations around 96 h IC(50), the oxidative stress accounted for approximately 50% of the algal growth inhibition, whereas the agglomeration and physical interactions, and the shading effects each took approximately 25% of the responsibility.
Collapse
Affiliation(s)
- Zhifeng Long
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | |
Collapse
|
24
|
Caputo F, Vegliante R, Ghibelli L. Redox modulation of the DNA damage response. Biochem Pharmacol 2012; 84:1292-306. [PMID: 22846600 DOI: 10.1016/j.bcp.2012.07.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/18/2012] [Accepted: 07/19/2012] [Indexed: 01/09/2023]
Abstract
Lesions to DNA trigger the DNA-damage response (DDR), a complex, multi-branched cell-intrinsic process targeted to DNA repair, or elimination of the damaged cells by apoptosis. DDR aims at reducing permanence of mutated cells, decreasing the risk of tumor development: the more stringent the response, the lower the likelihood that sub-lethally damaged, unrepaired cells survive and proliferate. Accordingly, leakage often occurs in tumor cells with compromised DDR, accumulating mutations and accelerating tumor progression. Oxidations mediate DNA damage upon different insults such as UV, X and γ radiation, pollutants, poisons, or endogenous disequilibria, producing different types of lesions that trigger DDR, which can be alleviated by antioxidants. But reactive oxygen species (ROS), and the enzymes involved in their production or scavenging, also participate in DDR signaling, modulating the activity of key enzymes, and regulating the stringency of DDR. Accordingly, antioxidant enzymes such as superoxide dismutase play intimate and complex roles in tumor development, exceeding the basal roles of preventing the initial DNA damage. Likewise, it is emerging that dietary antioxidants help controlling tumor onset and progression by preventing DNA damage and by acting on cell cycle checkpoints, opening a novel and promising frontier to anticancer therapy.
Collapse
Affiliation(s)
- Fanny Caputo
- Dipartimento di Scienze e Tecnologie Chimiche, Universita' di Roma Tor Vergata, Roma, Italy
| | | | | |
Collapse
|
25
|
Huang L, Xuan Y, Koide Y, Zhiyentayev T, Tanaka M, Hamblin MR. Type I and Type II mechanisms of antimicrobial photodynamic therapy: an in vitro study on gram-negative and gram-positive bacteria. Lasers Surg Med 2012; 44:490-9. [PMID: 22760848 DOI: 10.1002/lsm.22045] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Antimicrobial photodynamic therapy (APDT) employs a non-toxic photosensitizer (PS) and visible light, which in the presence of oxygen produce reactive oxygen species (ROS), such as singlet oxygen ((1) O(2), produced via Type II mechanism) and hydroxyl radical (HO(.), produced via Type I mechanism). This study examined the relative contributions of (1) O(2) and HO(.) to APDT killing of Gram-positive and Gram-negative bacteria. STUDY DESIGN/MATERIALS AND METHODS Fluorescence probes, 3'-(p-hydroxyphenyl)-fluorescein (HPF) and singlet oxygen sensor green reagent (SOSG) were used to determine HO(.) and (1) O(2) produced by illumination of two PS: tris-cationic-buckminsterfullerene (BB6) and a conjugate between polyethylenimine and chlorin(e6) (PEI-ce6). Dimethylthiourea is a HO(.) scavenger, while sodium azide (NaN(3)) is a quencher of (1) O(2). Both APDT and killing by Fenton reaction (chemical generation of HO(.)) were carried out on Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis) and Gram-negative bacteria (Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa). RESULTS Conjugate PEI-ce6 mainly produced (1) O(2) (quenched by NaN(3)), while BB6 produced HO(.) in addition to (1) O(2) when NaN(3) potentiated probe activation. NaN(3) also potentiated HPF activation by Fenton reagent. All bacteria were killed by Fenton reagent but Gram-positive bacteria needed a higher concentration than Gram-negatives. NaN(3) potentiated Fenton-mediated killing of all bacteria. The ratio of APDT killing between Gram-positive and Gram-negative bacteria was 2 or 4:1 for BB6 and 25:1 for conjugate PEI-ce6. There was a NaN(3) dose-dependent inhibition of APDT killing using both PEI-ce6 and BB6 against Gram-negative bacteria while NaN(3) almost failed to inhibit killing of Gram-positive bacteria. CONCLUSION Azidyl radicals may be formed from NaN(3) and HO(.). It may be that Gram-negative bacteria are more susceptible to HO(.) while Gram-positive bacteria are more susceptible to (1) O(2). The differences in NaN(3) inhibition may reflect differences in the extent of PS binding to bacteria (microenvironment) or differences in penetration of NaN(3) into cell walls of bacteria.
Collapse
Affiliation(s)
- Liyi Huang
- Department of Infectious Diseases, First Affiliated College & Hospital, Guangxi Medical University, Nanning 530021, China
| | | | | | | | | | | |
Collapse
|
26
|
Kessel D, Price M. Evaluation of diethyl-3-3'-(9,10-anthracenediyl)bis acrylate as a probe for singlet oxygen formation during photodynamic therapy. Photochem Photobiol 2012; 88:717-20. [PMID: 22296586 DOI: 10.1111/j.1751-1097.2012.01106.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The cell-permeable anthracene analog diethyl-3-3'-(9,10-anthracenediyl)bis acrylate (DADB) was recently identified as a highly selective probe for singlet oxygen ((1)O(2)). Now, we show that DADB can be used to monitor (1)O(2) formation in cell culture during photodynamic therapy. An atypical property of DADB is that fluorescence emission is decreased upon oxidation. Using photosensitizers that target specific organelles, we determined that DADB could detect (1)O(2) whether formed in ER, mitochondria or lysosomes. DADB fluorescence was not, however, significantly altered when the photosensitizing agent was the palladium bacteriopheophorbide termed WST11, an agent reported to produce mainly oxygen radicals upon irradiation in an aqueous environment, whereas singlet oxygen was formed in organic solvents.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.
| | | |
Collapse
|
27
|
Mroz P, Xia Y, Asanuma D, Konopko A, Zhiyentayev T, Huang YY, Sharma SK, Dai T, Khan UJ, Wharton T, Hamblin MR. Intraperitoneal photodynamic therapy mediated by a fullerene in a mouse model of abdominal dissemination of colon adenocarcinoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2011; 7:965-74. [PMID: 21645643 PMCID: PMC3183379 DOI: 10.1016/j.nano.2011.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/09/2011] [Accepted: 04/17/2011] [Indexed: 12/22/2022]
Abstract
Functionalized fullerenes represent a new class of photosensitizer (PS) that is being investigated for photodynamic therapy (PDT) of various diseases, including cancer. We tested the hypothesis that fullerenes could be used to mediate PDT of intraperitoneal (IP) carcinomatosis in a mouse model. In humans this form of cancer responds poorly to standard treatment and manifests as a thin covering of tumor nodules on intestines and on other abdominal organs. We used a colon adenocarcinoma cell line (CT26) stably expressing luciferase to allow monitoring of IP tumor burden in BALB/c mice by noninvasive real-time optical imaging using a sensitive low-light camera. IP injection of a preparation of N-methylpyrrolidinium-fullerene formulated in Cremophor-EL micelles, followed by white-light illumination delivered through the peritoneal wall (after creation of a skin flap), produced a statistically significant reduction in bioluminescence and a survival advantage in mice. FROM THE CLINICAL EDITOR This team of investigators report on functionalized fullerenes, to be used as photosensitizer for photodynamic therapy and demonstrate the efficacy of this method in an intraperitoneal carcinomatosis mouse model.
Collapse
Affiliation(s)
- Pawel Mroz
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
| | - Yumin Xia
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Daisuke Asanuma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Japan
| | - Aaron Konopko
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| | - Timur Zhiyentayev
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
- Aesthetic and Plastic Center of Guangxi Medical University, Nanning, P. R. China
| | - Sulbha K Sharma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
| | - Usman J. Khan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- University of Central Florida
| | | | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA
- Department of Dermatology, Harvard Medical School, Boston, MA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA
| |
Collapse
|
28
|
Gáspár S. Detection of Superoxide and Hydrogen Peroxide from Living Cells Using Electrochemical Sensors. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1083.ch010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Szilveszter Gáspár
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania
| |
Collapse
|