1
|
Adachi T, Miyamoto N, Imamura H, Yamamoto T, Marin E, Zhu W, Kobara M, Sowa Y, Tahara Y, Kanamura N, Akiyoshi K, Mazda O, Nishimura I, Pezzotti G. Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation. Int J Mol Sci 2022; 23:ijms23158099. [PMID: 35897669 PMCID: PMC9332688 DOI: 10.3390/ijms23158099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
This study presents a set of vibrational characterizations on a nanogel-cross-linked porous freeze-dried gel (NanoCliP-FD gel) scaffold for tissue engineering and regenerative therapy. This scaffold is designed for the in vitro culture of high-quality cartilage tissue to be then transplanted in vivo to enable recovery from congenital malformations in the maxillofacial area or crippling jaw disease. The three-dimensional scaffold for in-plate culture is designed with interface chemistry capable of stimulating cartilage formation and maintaining its structure through counteracting the dedifferentiation of mesenchymal stem cells (MSCs) during the formation of cartilage tissue. The developed interface chemistry enabled high efficiency in both growth rate and tissue quality, thus satisfying the requirements of large volumes, high matrix quality, and superior mechanical properties needed in cartilage transplants. We characterized the cartilage tissue in vitro grown on a NanoCliP-FD gel scaffold by human periodontal ligament-derived stem cells (a type of MSC) with cartilage grown by the same cells and under the same conditions on a conventional (porous) atelocollagen scaffold. The cartilage tissues produced by the MSCs on different scaffolds were comparatively evaluated by immunohistochemical and spectroscopic analyses. Cartilage differentiation occurred at a higher rate when MSCs were cultured on the NanoCliP-FD gel scaffold compared to the atelocollagen scaffold, and produced a tissue richer in cartilage matrix. In situ spectroscopic analyses revealed the cell/scaffold interactive mechanisms by which the NanoCliP-FD gel scaffold stimulated such increased efficiency in cartilage matrix formation. In addition to demonstrating the high potential of human periodontal ligament-derived stem cell cultures on NanoCliP-FD gel scaffolds in regenerative cartilage therapy, the present study also highlights the novelty of Raman spectroscopy as a non-destructive method for the concurrent evaluation of matrix quality and cell metabolic response. In situ Raman analyses on living cells unveiled for the first time the underlying physiological mechanisms behind such improved chondrocyte performance.
Collapse
Affiliation(s)
- Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
- Correspondence: (T.A.); (G.P.)
| | - Nao Miyamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Infectious Diseases, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hayata Imamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
| | - Elia Marin
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
| | - Miyuki Kobara
- Department of Clinical Pharmacology, Division of Pathological Science, Kyoto Pharmaceutical University, Misasagi Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan;
| | - Yoshihiro Sowa
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiro Tahara
- Department of Chemical Engineering and Materials Science, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto 610-0394, Japan;
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
| | - Ichiro Nishimura
- Division of Oral Biology and Medicine, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA;
- Division of Advanced Prosthodontics, The Jane and Jerry Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Giuseppe Pezzotti
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan; (N.M.); (H.I.); (T.Y.); (E.M.); (N.K.)
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; (Y.S.); (O.M.)
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan;
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Correspondence: (T.A.); (G.P.)
| |
Collapse
|
2
|
Nandakumar KS, Collin M, Happonen KE, Lundström SL, Croxford AM, Xu B, Zubarev RA, Rowley MJ, Blom AM, Kjellman C, Holmdahl R. Streptococcal Endo-β- N-Acetylglucosaminidase Suppresses Antibody-Mediated Inflammation In Vivo. Front Immunol 2018; 9:1623. [PMID: 30061892 PMCID: PMC6054937 DOI: 10.3389/fimmu.2018.01623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 07/02/2018] [Indexed: 12/19/2022] Open
Abstract
Endo-β-N-acetylglucosaminidase (EndoS) is a family 18 glycosyl hydrolase secreted by Streptococcus pyogenes. Recombinant EndoS hydrolyzes the β-1,4-di-N-acetylchitobiose core of the N-linked complex type glycan on the asparagine 297 of the γ-chains of IgG. Here, we report that EndoS and IgG hydrolyzed by EndoS induced suppression of local immune complex (IC)-mediated arthritis. A small amount (1 µg given i.v. to a mouse) of EndoS was sufficient to inhibit IgG-mediated arthritis in mice. The presence of EndoS disturbed larger IC lattice formation both in vitro and in vivo, as visualized with anti-C3b staining. Neither complement binding in vitro nor antigen-antibody binding per se were affected. Thus, EndoS could potentially be used for treating patients with IC-mediated pathology.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Mattias Collin
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Kaisa E Happonen
- Department of Translational Medicine, Lund University, Lund, Sweden.,Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Allyson M Croxford
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Bingze Xu
- Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Merrill J Rowley
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Anna M Blom
- Department of Translational Medicine, Lund University, Lund, Sweden
| | | | - Rikard Holmdahl
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
3
|
Nandakumar KS. Targeting IgG in Arthritis: Disease Pathways and Therapeutic Avenues. Int J Mol Sci 2018; 19:E677. [PMID: 29495570 PMCID: PMC5877538 DOI: 10.3390/ijms19030677] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/25/2018] [Accepted: 02/22/2018] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis (RA) is a polygenic and multifactorial syndrome. Many complex immunological and genetic interactions are involved in the final outcome of the clinical disease. Autoantibodies (rheumatoid factors, anti-citrullinated peptide/protein antibodies) are present in RA patients' sera for a long time before the onset of clinical disease. Prior to arthritis onset, in the autoantibody response, epitope spreading, avidity maturation, and changes towards a pro-inflammatory Fc glycosylation phenotype occurs. Genetic association of epitope specific autoantibody responses and the induction of inflammation dependent and independent changes in the cartilage by pathogenic autoantibodies emphasize the crucial contribution of antibody-initiated inflammation in RA development. Targeting IgG by glyco-engineering, bacterial enzymes to specifically cleave IgG/alter N-linked Fc-glycans at Asn 297 or blocking the downstream effector pathways offers new avenues to develop novel therapeutics for arthritis treatment.
Collapse
Affiliation(s)
- Kutty Selva Nandakumar
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510000, China.
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
4
|
Collagen Autoantibodies and Their Relationship to CCP Antibodies and Rheumatoid Factor in the Progression of Early Rheumatoid Arthritis. Antibodies (Basel) 2017; 6:antib6020006. [PMID: 31548522 PMCID: PMC6698868 DOI: 10.3390/antib6020006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/23/2022] Open
Abstract
Serum autoantibodies to cyclic citrullinated peptides (anti-CCP) and rheumatoid factor (RF) are important markers for diagnosis and prognosis of rheumatoid arthritis (RA), but their autoantigens are not cartilage-specific. Autoantibodies to joint-specific type II collagen (CII) also occur in RA, and monoclonal antibodies of similar specificity induce collagen antibody-induced arthritis in animals, but their role in RA is uncertain. We utilized an enzyme-linked immunosorbent assay (ELISA) with the CB10 peptide of CII to compare the frequency of autoantibodies with those of anti-CCP and RF in stored sera from a prospective study of 82 patients with early RA to examine the outcome, defined as remission (n = 23), persisting non-erosive arthritis (n = 27), or erosions (n = 32). Initial frequencies of anti-CB10, anti-CCP and RF were 76%, 54%, and 57% in RA, and 4%, 0%, and 9% in 136 controls. The frequency of anti-CB10 was unrelated to outcome, but anti-CCP and RF increased with increasing severity, and the number of autoantibodies mirrored the severity. We suggest RA is an immune complex-mediated arthritis in which the three antibodies interact, with anti-CII inducing localized cartilage damage and inflammation resulting in citrullination of joint proteins, neoepitope formation, and a strong anti-CCP response in genetically-susceptible subjects, all amplified and modified by RF.
Collapse
|
5
|
Oinas J, Rieppo L, Finnilä MAJ, Valkealahti M, Lehenkari P, Saarakkala S. Imaging of Osteoarthritic Human Articular Cartilage using Fourier Transform Infrared Microspectroscopy Combined with Multivariate and Univariate Analysis. Sci Rep 2016; 6:30008. [PMID: 27445254 PMCID: PMC4956759 DOI: 10.1038/srep30008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 06/29/2016] [Indexed: 12/16/2022] Open
Abstract
The changes in chemical composition of human articular cartilage (AC) caused by osteoarthritis (OA) were investigated using Fourier transform infrared microspectroscopy (FTIR-MS). We demonstrate the sensitivity of FTIR-MS for monitoring compositional changes that occur with OA progression. Twenty-eight AC samples from tibial plateaus were imaged with FTIR-MS. Hyperspectral images of all samples were combined for K-means clustering. Partial least squares regression (PLSR) analysis was used to compare the spectra with the OARSI grade (histopathological grading of OA). Furthermore, the amide I and the carbohydrate regions were used to estimate collagen and proteoglycan contents, respectively. Spectral peak at 1338 cm(-1) was used to estimate the integrity of the collagen network. The layered structure of AC was revealed using the carbohydrate region for clustering. Statistically significant correlation was observed between the OARSI grade and the collagen integrity in the superficial (r = -0.55) and the deep (r = -0.41) zones. Furthermore, PLSR models predicted the OARSI grade from the superficial (r = 0.94) and the deep (r = 0.77) regions of the AC with high accuracy. Obtained results suggest that quantitative and qualitative changes occur in the AC composition during OA progression, and these can be monitored by the use of FTIR-MS.
Collapse
Affiliation(s)
- J Oinas
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Finland
| | - L Rieppo
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Finland
| | - M A J Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - M Valkealahti
- Medical Research Center, University of Oulu and Oulu University Hospital, Finland.,Department of Surgery, Oulu University Hospital, Finland
| | - P Lehenkari
- Medical Research Center, University of Oulu and Oulu University Hospital, Finland.,Department of Surgery, Oulu University Hospital, Finland.,Research Group of Cancer and Translational Medicine, Faculty of Medicine, University of Oulu, Finland
| | - S Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Finland.,Medical Research Center, University of Oulu and Oulu University Hospital, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Finland
| |
Collapse
|
6
|
O’Brien MP, Penmatsa M, Palukuru U, West P, Yang X, Bostrom MPG, Freeman T, Pleshko N. Monitoring the Progression of Spontaneous Articular Cartilage Healing with Infrared Spectroscopy. Cartilage 2015; 6:174-84. [PMID: 26175863 PMCID: PMC4481387 DOI: 10.1177/1947603515572874] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
OBJECTIVE Evaluation of early compositional changes in healing articular cartilage is critical for understanding tissue repair and for therapeutic decision-making. Fourier transform infrared imaging spectroscopy (FT-IRIS) can be used to assess the molecular composition of harvested repair tissue. Furthermore, use of an infrared fiber-optic probe (IFOP) has the potential for translation to a clinical setting to provide molecular information in situ. In the current study, we determined the feasibility of IFOP assessment of cartilage repair tissue in a rabbit model, and assessed correlations with gold-standard histology. DESIGN Bilateral osteochondral defects were generated in mature white New Zealand rabbits, and IFOP data obtained from defect and adjacent regions at 2, 4, 6, 8, 12, and 16 weeks postsurgery. Tissues were assessed histologically using the modified O'Driscoll score, by FT-IRIS, and by partial least squares (PLS) modeling of IFOP spectra. RESULTS The FT-IRIS parameters of collagen content, proteoglycan content, and collagen index correlated significantly with modified O'Driscoll score (P = 0.05, 0.002, and 0.02, respectively), indicative of their sensitivity to tissue healing. Repair tissue IFOP spectra were distinguished from normal tissue IFOP spectra in all samples by PLS analysis. However, the PLS model for prediction of histological score had a high prediction error, which was attributed to the spectral information being acquired from the tissue surface only. CONCLUSION The strong correlations between FT-IRIS data and histological score support further development of the IFOP technique for clinical applications, although further studies to optimize data collection from the full sample depths are required.
Collapse
Affiliation(s)
- Megan P. O’Brien
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Madhuri Penmatsa
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Uday Palukuru
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| | - Paul West
- Department of Mathematics, Engineering & Computer Science, LaGuardia Community College, Long Island City, NY, USA
| | - Xu Yang
- Hospital of Special Surgery; New York, NY, USA
| | | | - Theresa Freeman
- Department of Orthopaedics, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nancy Pleshko
- Department of Bioengineering, Temple University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Rieppo L, Saarakkala S, Jurvelin JS, Rieppo J. Optimal variable selection for Fourier transform infrared spectroscopic analysis of articular cartilage composition. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:027003. [PMID: 24522808 DOI: 10.1117/1.jbo.19.2.027003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
Articular cartilage (AC) is mainly composed of collagen, proteoglycans, chondrocytes, and water. These constituents are inhomogeneously distributed to provide unique biomechanical properties to the tissue. Characterization of the spatial distribution of these components in AC is important for understanding the function of the tissue and progress of osteoarthritis. Fourier transform infrared (FT-IR) absorption spectra exhibit detailed information about the biochemical composition of AC. However, highly specific FT-IR analysis for collagen and proteoglycans is challenging. In this study, a chemometric approach to predict the biochemical composition of AC from the FT-IR spectra was investigated. Partial least squares (PLS) regression was used to predict the proteoglycan content (n=32) and collagen content (n=28) of bovine cartilage samples from their average FT-IR spectra. The optimal variables for the PLS regression models were selected by using backward interval partial least squares and genetic algorithm. The linear correlation coefficients between the biochemical reference and predicted values of proteoglycan and collagen contents were r=0.923 (p<0.001) and r=0.896 (p<0.001), respectively. The results of the study show that variable selection algorithms can significantly improve the PLS regression models when the biochemical composition of AC is predicted.
Collapse
Affiliation(s)
- Lassi Rieppo
- University of Eastern Finland, Department of Applied Physics, FI-70211 Kuopio, FinlandbKuopio University Hospital, Department of Clinical Neurophysiology, FI-70029 Kuopio, Finland
| | - Simo Saarakkala
- University of Oulu, Institute of Biomedicine, Department of Medical Technology, FI-90014 Oulu, FinlanddOulu University Hospital, Department of Diagnostic Radiology, FI-90014 Oulu, FinlandeOulu University Hospital and University of Oulu, Medical Research C
| | - Jukka S Jurvelin
- University of Eastern Finland, Department of Applied Physics, FI-70211 Kuopio, Finland
| | - Jarno Rieppo
- University of Eastern Finland, Institute of Biomedicine, Anatomy, FI-70211 Kuopio, FinlandgIisalmi Hospital, FI-74101 Iisalmi, Finland
| |
Collapse
|
8
|
Croxford AM, Whittingham S, McNaughton D, Nandakumar KS, Holmdahl R, Rowley MJ. Type II collagen-specific antibodies induce cartilage damage in mice independent of inflammation. ACTA ACUST UNITED AC 2013; 65:650-9. [DOI: 10.1002/art.37805] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 11/15/2012] [Indexed: 12/18/2022]
|
9
|
Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnol Adv 2012; 30:1390-404. [PMID: 22401782 DOI: 10.1016/j.biotechadv.2012.02.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/20/2012] [Indexed: 11/24/2022]
Abstract
Extremely brilliant infrared (IR) beams provided by synchrotron radiation sources are now routinely used in many facilities with available commercial spectrometers coupled to IR microscopes. Using these intense non-thermal sources, a brilliance two or three order of magnitude higher than a conventional source is achievable through small pinholes (<10 μm) with a high signal to-noise ratio. IR spectroscopy is a powerful technique to investigate biological systems and offers many new imaging opportunities. The field of infrared biological imaging covers a wide range of fundamental issues and applied researches such as cell imaging or tissue imaging. Molecular maps with a spatial resolution down to the diffraction limit may be now obtained with a synchrotron radiation IR source also on thick samples. Moreover, changes of the protein structure are detectable in an IR spectrum and cellular molecular markers can be identified and used to recognize a pathological status of a tissue. Molecular structure and functions are strongly correlated and this aspect is particularly relevant for imaging. We will show that the brilliance of synchrotron radiation IR sources may enhance the sensitivity of a molecular signal obtained from small biosamples, e.g., a single cell, containing extremely small amounts of organic matter. We will also show that SR IR sources allow to study chemical composition and to identify the distribution of organic molecules in cells at submicron resolution is possible with a high signal-to-noise ratio. Moreover, the recent availability of two-dimensional IR detectors promises to push forward imaging capabilities in the time domain. Indeed, with a high current synchrotron radiation facility and a Focal Plane Array the chemical imaging of individual cells can be obtained in a few minutes. Within this framework important results are expected in the next years using synchrotron radiation and Free Electron Laser (FEL) sources for spectro-microscopy and spectral-imaging, alone or in combination with Scanning Near-field Optical Microscopy methods to study the molecular composition and dynamic changes in samples of biomedical interest at micrometric and submicrometric scales, respectively.
Collapse
|
10
|
Buchwald T, Niciejewski K, Kozielski M, Szybowicz M, Siatkowski M, Krauss H. Identifying compositional and structural changes in spongy and subchondral bone from the hip joints of patients with osteoarthritis using Raman spectroscopy. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:017007. [PMID: 22352673 DOI: 10.1117/1.jbo.17.1.017007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Raman microspectroscopy was used to examine the biochemical composition and molecular structure of extracellular matrix in spongy and subchondral bone collected from patients with clinical and radiological evidence of idiopathic osteoarthritis of the hip and from patients who underwent a femoral neck fracture, as a result of trauma, without previous clinical and radiological evidence of osteoarthritis. The objectives of the study were to determine the levels of mineralization, carbonate accumulation and collagen quality in bone tissue. The subchondral bone from osteoarthritis patients in comparison with control subject is less mineralized due to a decrease in the hydroxyapatite concentration. However, the extent of carbonate accumulation in the apatite crystal lattice increases, most likely due to deficient mineralization. The alpha helix to random coil band area ratio reveals that collagen matrix in subchondral bone is more ordered in osteoarthritis disease. The hydroxyapatite to collagen, carbonate apatite to hydroxyapatite and alpha helix to random coil band area ratios are not significantly changed in the differently loaded sites of femoral head. The significant differences also are not visible in mineral and organic constituents' content in spongy bone beneath the subchondral bone in osteoarthritis disease.
Collapse
Affiliation(s)
- Tomasz Buchwald
- Poznan University of Technology, Faculty of Technical Physics, Nieszawska 13a, 60-965 Poznań, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
This paper reviews work carried out in the Centre for Biospectroscopy, Monash University, at the Infrared Microspectroscopy Beamline on the Australian Synchrotron since the first synchrotron light. It discusses the attributes and advantages of the beamline for chemical spectroscopy and imaging of cellular and tissue samples and briefly summarizes new techniques that will come online in the near future.
Collapse
|