1
|
Wu D, Fedorov Kukk A, Panzer R, Emmert S, Roth B. In vivo Raman spectroscopic and fluorescence study of suspected melanocytic lesions and surrounding healthy skin. JOURNAL OF BIOPHOTONICS 2024; 17:e202400050. [PMID: 38932707 DOI: 10.1002/jbio.202400050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 06/28/2024]
Abstract
Cutaneous melanoma is the most lethal skin cancer and noninvasively distinguishing it from benign tumor is a major challenge. Raman spectroscopic measurements were conducted on 65 suspected melanocytic lesions and surrounding healthy skin from 47 patients. Compared to the spectra of healthy skin, spectra of melanocytic lesions exhibited lower intensities in carotenoid bands and higher intensities in lipid and melanin bands, suggesting similar variations in the content of these components. Distinct variations were observed among the autofluorescence intensities of healthy skin, benign nevi and malignant melanoma. By incorporating autofluorescence information, the classification accuracy of the support vector machine for spectra of healthy skin, nevi, and melanoma reached 90.2%, surpassing the 87.9% accuracy achieved without autofluorescence, with this difference being statistically significant. These findings indicate the diagnostic value of autofluorescence intensity, which reflect differences in fluorophore content, chemical composition, and structure among healthy skin, nevi, and melanoma.
Collapse
Affiliation(s)
- Di Wu
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Hanover, Germany
| | - Anatoly Fedorov Kukk
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Hanover, Germany
| | | | | | - Bernhard Roth
- Hannover Centre for Optical Technologies, Leibniz University Hannover, Hanover, Germany
- Cluster of Excellence PhoenixD, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
2
|
Chen C, Chen Y, Wang X, Zhang L, Luo Y, Tang Q, Wang Y, Liang X, Ma C. In situ synthesized nanozyme for photoacoustic-imaging-guided photothermal therapy and tumor hypoxia relief. iScience 2023; 26:106066. [PMID: 36818293 PMCID: PMC9929682 DOI: 10.1016/j.isci.2023.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/27/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Nanozymes have attracted extensive research interest due to their ideal enzymatic catalytic performance; however, uncontrollable activities and nonspecific accumulation limit their further clinical application. To overcome these obstacles, we proposed in situ synthesized nanozyme, and realized the concept through an intelligent nanosystem (ISSzyme) based on Prussian blue (PB) precursor. PB nanozyme was synthesized at the tumor sites through the interaction of ISSzyme with glutathione, which was demonstrated by comparing with conventional PB nanozyme. ISSzyme is capable of tumor-specific photoacoustic imaging (PAI) and photothermal therapy (PTT), reducing the false-positive signals of PAI and the treatment side effects of PTT. ISSzyme has catalase-like activities, resulting in tumor hypoxia relief and metastasis inhibition. More importantly, the in situ synthesized PB nanozyme has the favorable property of minimal liver accumulation. Considering the above advantages, ISSzyme is expected to shed light on the design of the next-generation artificial enzymes, with many new biomedical applications.
Collapse
Affiliation(s)
- Chaoyi Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Yuwen Chen
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Xuanhao Wang
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Lulu Zhang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yan Luo
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
| | - Qingshuang Tang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Yuan Wang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China,Corresponding author
| | - Cheng Ma
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China,Institute for Precision Healthcare, Tsinghua University, Beijing 100084, China,Corresponding author
| |
Collapse
|
3
|
Mirg S, Turner KL, Chen H, Drew PJ, Kothapalli SR. Photoacoustic imaging for microcirculation. Microcirculation 2022; 29:e12776. [PMID: 35793421 PMCID: PMC9870710 DOI: 10.1111/micc.12776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 06/13/2022] [Accepted: 06/28/2022] [Indexed: 01/26/2023]
Abstract
Microcirculation facilitates the blood-tissue exchange of nutrients and regulates blood perfusion. It is, therefore, essential in maintaining tissue health. Aberrations in microcirculation are potentially indicative of underlying cardiovascular and metabolic pathologies. Thus, quantitative information about it is of great clinical relevance. Photoacoustic imaging (PAI) is a capable technique that relies on the generation of imaging contrast via the absorption of light and can image at micron-scale resolution. PAI is especially desirable to map microvasculature as hemoglobin strongly absorbs light and can generate a photoacoustic signal. This paper reviews the current state of the art for imaging microvascular networks using photoacoustic imaging. We further describe how quantitative information about blood dynamics such as the total hemoglobin concentration, oxygen saturation, and blood flow rate is obtained using PAI. We also discuss its importance in understanding key pathophysiological processes in neurovascular, cardiovascular, ophthalmic, and cancer research fields. We then discuss the current challenges and limitations of PAI and the approaches that can help overcome these limitations. Finally, we provide the reader with an overview of future trends in the field of PAI for imaging microcirculation.
Collapse
Affiliation(s)
- Shubham Mirg
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Kevin L. Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Haoyang Chen
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Patrick J. Drew
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA
- Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Sri-Rajasekhar Kothapalli
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Cancer Institute, Pennsylvania State University, Hershey, PA 17033, USA
- Graduate Program in Acoustics, Pennsylvania State University, University Park, PA 16802, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Jiao S, Jia Y, Yao X. Emerging imaging developments in experimental vision sciences and ophthalmology. Exp Biol Med (Maywood) 2021; 246:2137-2139. [PMID: 34404253 PMCID: PMC8718248 DOI: 10.1177/15353702211038891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Yali Jia
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Yang JM, Ghim CM. Photoacoustic Tomography Opening New Paradigms in Biomedical Imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1310:239-341. [PMID: 33834440 DOI: 10.1007/978-981-33-6064-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
After the emergence of the ultrasound, X-ray CT, PET, and MRI, photoacoustic tomography (PAT) is now in the phase of its exponential growth, with its expected full maturation being another form of mainstream clinical imaging modality. By combining the high contrast benefit of optical imaging and the high-resolution deep imaging capability of ultrasound, PAT can provide unprecedented anatomical image contrasts at clinically relevant depths as well as enable the use of a variety of functional and molecular imaging information, which is not possible with conventional imaging modalities. With these strengths, PAT has achieved numerous breakthroughs in various biomedical applications and also provided new technical platforms that may be able to resolve unmet issues in clinics. In this chapter, we provide an overview of the development of PAT technology for several major biomedical applications and provide an approximate projection of the future of PAT.
Collapse
Affiliation(s)
- Joon-Mo Yang
- Center for Photoacoustic Medical Instruments, Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| | - Cheol-Min Ghim
- Department of Physics, School of Natural Science, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
6
|
Dadkhah A, Jiao S. Integrating photoacoustic microscopy with other imaging technologies for multimodal imaging. Exp Biol Med (Maywood) 2020; 246:771-777. [PMID: 33297735 DOI: 10.1177/1535370220977176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
As a hybrid optical microscopic imaging technology, photoacoustic microscopy images the optical absorption contrasts and takes advantage of low acoustic scattering of biological tissues to achieve high-resolution anatomical and functional imaging. When combined with other imaging modalities, photoacoustic microscopy-based multimodal technologies can provide complementary contrast mechanisms to reveal complementary information of biological tissues. To achieve intrinsically and precisely registered images in a multimodal photoacoustic microscopy imaging system, either the ultrasonic transducer or the light source can be shared among the different imaging modalities. These technologies are the major focus of this minireview. It also covered the progress of the recently developed penta-modal photoacoustic microscopy imaging system featuring a novel dynamic focusing technique enabled by OCT contour scan.
Collapse
Affiliation(s)
- Arash Dadkhah
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
| |
Collapse
|
7
|
Nguyen VP, Li Y, Henry J, Zhang W, Aaberg M, Jones S, Qian T, Wang X, Paulus YM. Plasmonic Gold Nanostar-Enhanced Multimodal Photoacoustic Microscopy and Optical Coherence Tomography Molecular Imaging To Evaluate Choroidal Neovascularization. ACS Sens 2020; 5:3070-3081. [PMID: 32921042 PMCID: PMC8121042 DOI: 10.1021/acssensors.0c00908] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although photoacoustic microscopy (PAM) and optical coherence tomography (OCT) allow visualization of the retinal microvasculature, distinguishing early neovascularization from adjacent vessels remains challenging. Herein, gold nanostars (GNSs) functionalized with an RGD peptide were utilized as multimodality contrast agents for both PAM and OCT. GNSs have great absorption and scattering characteristics in the near-infrared region where most vasculature and tissue generates a less intrinsic photoacoustic signal while having a small size, excellent biocompatibility in vivo, and great photostability under nanosecond pulsed laser illumination. This enabled visualization and differentiation of individual microvasculature in vivo using multimodal PAM and OCT imaging. Detailed three-dimensional imaging of GNSs was achieved in an important choroidal neovascularization model in living rabbits. Through the administration of GNSs, PA contrast increased up to 17-fold and OCT intensities increased 167%. This advanced molecular-imaging platform with GNSs provides a unique tool for detailed mapping of the pathogenesis of the microvasculature.
Collapse
Affiliation(s)
- Van-Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- NTT-Hi Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh, Vietnam
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jessica Henry
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Michael Aaberg
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Sydney Jones
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Thomas Qian
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
8
|
Tsang VT, Li X, Wong TT. A Review of Endogenous and Exogenous Contrast Agents Used in Photoacoustic Tomography with Different Sensing Configurations. SENSORS 2020; 20:s20195595. [PMID: 33003566 PMCID: PMC7582683 DOI: 10.3390/s20195595] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/17/2022]
Abstract
Optical-based sensing approaches have long been an indispensable way to detect molecules in biological tissues for various biomedical research and applications. The advancement in optical microscopy is one of the main drivers for discoveries and innovations in both life science and biomedical imaging. However, the shallow imaging depth due to the use of ballistic photons fundamentally limits optical imaging approaches’ translational potential to a clinical setting. Photoacoustic (PA) tomography (PAT) is a rapidly growing hybrid imaging modality that is capable of acoustically detecting optical contrast. PAT uniquely enjoys high-resolution deep-tissue imaging owing to the utilization of diffused photons. The exploration of endogenous contrast agents and the development of exogenous contrast agents further improve the molecular specificity for PAT. PAT’s versatile design and non-invasive nature have proven its great potential as a biomedical imaging tool for a multitude of biomedical applications. In this review, representative endogenous and exogenous PA contrast agents will be introduced alongside common PAT system configurations, including the latest advances of all-optical acoustic sensing techniques.
Collapse
|
9
|
Dadkhah A, Jiao S. Optical coherence tomography-guided dynamic focusing for combined optical and mechanical scanning multimodal photoacoustic microscopy. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-6. [PMID: 31411011 PMCID: PMC7005572 DOI: 10.1117/1.jbo.24.12.121906] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/29/2019] [Indexed: 05/28/2023]
Abstract
To achieve fast imaging and large field of view (FOV), we improved our multimodal imaging system, which integrated optical resolution photoacoustic microscopy, optical coherence tomography (OCT), and confocal fluorescence microscopy in one platform, by combining optical scanning with mechanical scanning. To ensure good focusing of the objective lens over all the imaged area, we employed OCT-guided dynamic focusing. Different from our previous point-by-point dynamic focusing, we employed an area-by-area focusing adjustment strategy, in which each fast optical scanning area has a fixed focusing depth. We have demonstrated the performance of the system by imaging biological samples ex vivo (plant leaf) and in vivo (mouse ear). The system has achieved uniform resolution in an FOV of 10 mm × 10 mm with an imaging time of about 5 min.
Collapse
Affiliation(s)
- Arash Dadkhah
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| | - Shuliang Jiao
- Florida International University, Department of Biomedical Engineering, Miami, Florida, United States
| |
Collapse
|
10
|
Contrast Agent Enhanced Multimodal Photoacoustic Microscopy and Optical Coherence Tomography for Imaging of Rabbit Choroidal and Retinal Vessels in vivo. Sci Rep 2019; 9:5945. [PMID: 30976009 PMCID: PMC6459908 DOI: 10.1038/s41598-019-42324-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Multimodal imaging with photoacoustic microscopy (PAM) and optical coherence tomography (OCT) can be an effective method to evaluate the choroidal and retinal microvasculature. To improve the efficiency for visualizing capillaries, colloidal gold nanoparticles (AuNPs) have been applied as a multimodal contrast agent for both OCT and PAM imaging by taking advantage of the strong optical scattering and the strong optical absorption of AuNPs due to their surface plasmon resonance. Ultra-pure AuNPs were fabricated by femtosecond laser ablation, capped with polyethylene glycol (PEG), and administered to 13 New Zealand white rabbits and 3 Dutch Belted pigmented rabbits. The synthesized PEG-AuNPs (20.0 ± 1.5 nm) were demonstrated to be excellent contrast agents for PAM and OCT, and do not demonstrate cytotoxicity to bovine retinal endothelial cells in cell studies. The image signal from the retinal and choroidal vessels in living rabbits was enhanced by up to 82% for PAM and up to 45% for OCT, respectively, by the administered PEG-AuNPs, which enables detection of individual blood vessels by both imaging modalities. The biodistribution study demonstrated the AuNP accumulated primarily in the liver and spleen. Histology and TUNEL staining did not indicate cell injury or death in the lung, liver, kidney, spleen, heart, or eyes up to seven days after AuNP administration. PEG-AuNPs offer an efficient and safe contrast agent for multimodal ocular imaging to achieve improved characterization of microvasculature.
Collapse
|
11
|
Lapierre-Landry M, Carroll J, Skala MC. Imaging retinal melanin: a review of current technologies. J Biol Eng 2018; 12:29. [PMID: 30534199 PMCID: PMC6280494 DOI: 10.1186/s13036-018-0124-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/22/2018] [Indexed: 11/10/2022] Open
Abstract
The retinal pigment epithelium (RPE) is essential to the health of the retina and the proper functioning of the photoreceptors. The RPE is rich in melanosomes, which contain the pigment melanin. Changes in RPE pigmentation are seen with normal aging and in diseases such as albinism and age-related macular degeneration. However, most techniques used to this day to detect and quantify ocular melanin are performed ex vivo and are destructive to the tissue. There is a need for in vivo imaging of melanin both at the clinical and pre-clinical level to study how pigmentation changes can inform disease progression. In this manuscript, we review in vivo imaging techniques such as fundus photography, fundus reflectometry, near-infrared autofluorescence imaging, photoacoustic imaging, and functional optical coherence tomography that specifically detect melanin in the retina. These methods use different contrast mechanisms to detect melanin and provide images with different resolutions and field-of-views, making them complementary to each other.
Collapse
Affiliation(s)
- Maryse Lapierre-Landry
- 1Morgridge Institute for Research, Madison, WI USA.,2Department of Biomedical Engineering, Vanderbilt University, Nashville, TN USA.,6Department of Pediatrics, Case Western Reserve University, Cleveland, OH USA
| | - Joseph Carroll
- 3Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI USA.,4Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI USA
| | - Melissa C Skala
- 1Morgridge Institute for Research, Madison, WI USA.,5Department of Biomedical Engineering, University of Wisconsin Madison, Madison, WI USA
| |
Collapse
|
12
|
Nafar Z, Wen R, Jiao S. Visible-light optical coherence tomography-based multimodal system for quantitative fundus autofluorescence imaging. Exp Biol Med (Maywood) 2018; 243:1265-1274. [PMID: 30472882 PMCID: PMC6348593 DOI: 10.1177/1535370218813529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
IMPACT STATEMENT Quantitative fundus autofluorescence imaging with simultaneous visible-light optical coherence tomography-based multimodal technology has potential significant impact on the diagnosis and monitoring the progression of retinal diseases.
Collapse
Affiliation(s)
- Zahra Nafar
- Department of Biomedical Engineering, Florida International
University, Miami, FL 33174, USA
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami Miller School
of Medicine, Miami, FL 33136, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International
University, Miami, FL 33174, USA
| |
Collapse
|
13
|
Lapierre-Landry M, Huckenpahler AL, Link BA, Collery RF, Carroll J, Skala MC. Imaging Melanin Distribution in the Zebrafish Retina Using Photothermal Optical Coherence Tomography. Transl Vis Sci Technol 2018; 7:4. [PMID: 30197836 PMCID: PMC6126953 DOI: 10.1167/tvst.7.5.4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022] Open
Abstract
Purpose To demonstrate and validate that photothermal optical coherence tomography (PT-OCT) can image melanin in the retinal pigment epithelium (RPE) and can observe light-driven melanosome translocation in the zebrafish retina. Methods A commercial spectral domain OCT system was modified to perform both OCT and PT-OCT. Four adult tyrosinase-mosaic zebrafish with varying levels of melanin expression across their retinas were imaged, and the PT-OCT signal for pigmented and nonpigmented regions were compared. Wild-type dark-adapted (n = 11 fish) and light-adapted (n = 10 fish) zebrafish were also imaged with OCT and PT-OCT. Longitudinal reflectivity and absorption profiles were generated from B-scans to compare the melanin distribution between the two groups. Results A significant increase in PT-OCT signal (P < 0.0001, Student's t-test) was observed in pigmented regions of interest (ROI) compared to nonpigmented ROIs in the tyrosinase-mosaic zebrafish, which confirms the PT-OCT signal is specific to melanin in the eye. A significant increase in PT-OCT signal intensity (P < 0.0001, Student's t-test) was also detected in the light-adapted wild-type zebrafish group compared to the dark-adapted group. Additionally, light-adapted zebrafish display more distinct melanin banding patterns than do dark-adapted zebrafish in PT-OCT B-scans. Conclusions PT-OCT can detect different levels of melanin absorption and characterize pigment distribution in the zebrafish retina, including intracellular changes due to light-driven melanosome translocation within the RPE. Translational Relevance PT-OCT could quantify changes in pigmentation that occur in retinal diseases. The functional information provided by PT-OCT may also enable a better understanding of the anatomical features within conventional OCT images.
Collapse
Affiliation(s)
- Maryse Lapierre-Landry
- Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Alison L Huckenpahler
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ross F Collery
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA.,Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Melissa C Skala
- Morgridge Institute for Research, Madison, WI, USA.,Biomedical Engineering, University of Wisconsin Madison, Madison, WI, USA
| |
Collapse
|
14
|
Nafar Z, Wen R, Jiao S. Visible light OCT-based quantitative imaging of lipofuscin in the retinal pigment epithelium with standard reference targets. BIOMEDICAL OPTICS EXPRESS 2018; 9:3768-3782. [PMID: 30338154 PMCID: PMC6191616 DOI: 10.1364/boe.9.003768] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 05/24/2023]
Abstract
We developed a technology for quantitative retinal autofluorescence (AF, or FAF for fundus AF) imaging for quantifying lipofuscin in the retinal pigment epithelium (RPE). The technology is based on simultaneous visible light optical coherence tomography (VIS-OCT) and AF imaging of the retina and a pair of reference standard targets at the intermediate retinal imaging plane with known reflectivity for the OCT and fluorescence efficiency for the FAF. The technology is able to eliminate the pre-RPE attenuation in FAF imaging by using the simultaneously acquired VIS-OCT image. With the OCT and fluorescence images of the reference targets, the effects of illumination power and detector sensitivity can be eliminated.
Collapse
Affiliation(s)
- Zahra Nafar
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174, USA
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10 Ave, Miami, FL 33136, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler St, Miami, FL 33174, USA
| |
Collapse
|
15
|
Tian C, Zhang W, Nguyen VP, Huang Z, Wang X, Paulus YM. Retinal and choroidal imaging in vivo using integrated photoacoustic microscopy and optical coherence tomography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10474. [PMID: 31296972 DOI: 10.1117/12.2290667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Most reported photoacoustic ocular imaging work to date uses small animals, such as mice and rats, the eyes of which are small and less than one-third the size of a human eye, which poses a challenge for clinical translation. Here we achieved chorioretinal imaging of larger animals, i.e. rabbits, using a dual-modality photoacoustic microscopy (PAM) and optical coherence tomography (OCT) system. Preliminary experimental results in living rabbits demonstrate that the PAM can noninvasively visualize depth-resolved retinal and choroidal vessels using a safe laser exposure dose; and the OCT can finely distinguish different retinal layers, the choroid, and the sclera. This reported work might be a major step forward in clinical translation of photoacoustic microscopy.
Collapse
Affiliation(s)
- Chao Tian
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.,Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Van Phuc Nguyen
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA
| | - Ziyi Huang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48105, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA.,Department of Radiology, University of Michigan, Ann Arbor, MI 48105, USA
| | - Yannis M Paulus
- Kellogg Eye Center, Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
16
|
Pushing the Boundaries of Neuroimaging with Optoacoustics. Neuron 2017; 96:966-988. [DOI: 10.1016/j.neuron.2017.10.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
17
|
Shu X, Li H, Dong B, Sun C, Zhang HF. Quantifying melanin concentration in retinal pigment epithelium using broadband photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2017; 8:2851-2865. [PMID: 28663911 PMCID: PMC5480434 DOI: 10.1364/boe.8.002851] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 05/20/2023]
Abstract
Melanin is the dominant light absorber in retinal pigment epithelium (RPE). The loss of RPE melanin is a sign of ocular senescence and is both a risk factor and a symptom of age-related macular degeneration (AMD). Quantifying the RPE melanin concentration provides insight into the pathological role of RPE in ocular aging and the onset and progression of AMD. The main challenge in accurate quantification of RPE melanin concentration is to distinguish this ten-micrometer-thick cell monolayer from the underlying choroid, which also contains melanin but carries different pathognomonic information. In this work, we investigated a three-dimensional photoacoustic microscopic (PAM) method with high axial resolution, empowered by broad acoustic detection bandwidth, to distinguish RPE from choroid and quantify melanin concentrations in the RPE ex vivo. We first conducted numerical simulation on photoacoustic generation in the RPE, which suggested that a PAM system with at least 100-MHz detection bandwidth provided sufficient axial resolution to distinguish the melanin in RPE from that in choroid. Based on simulation results, we integrated a transparent broadband micro-ring resonator (MRR) based detector in a homebuilt PAM system. We imaged ex vivo RPE-choroid complexes (RCCs) from both porcine and human eyes and quantified the absolute melanin concentrations in the RPE and choroid, respectively. In our study, the measured melanin concentrations were 14.7 mg/mL and 17.0 mg/mL in human and porcine RPE, and 12 mg/mL and 61 mg/mL in human and porcine choroid, respectively. This study suggests that broadband PAM is capable of quantifying the RPE melanin concentration from RCCs ex vivo.
Collapse
Affiliation(s)
- Xiao Shu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
- Both authors contributed equally to this work
| | - Hao Li
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
- Both authors contributed equally to this work
| | - Biqin Dong
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60201, USA
- Department of Ophthalmology, Northwestern University, 645 North Michigan Ave., Chicago, IL 60611, USA
| |
Collapse
|
18
|
Wilk MA, Huckenpahler AL, Collery RF, Link BA, Carroll J. The Effect of Retinal Melanin on Optical Coherence Tomography Images. Transl Vis Sci Technol 2017; 6:8. [PMID: 28392975 PMCID: PMC5381330 DOI: 10.1167/tvst.6.2.8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/13/2017] [Indexed: 11/24/2022] Open
Abstract
Purpose We assessed the effect of melanin on the appearance of hyperreflective outer retinal bands in optical coherence tomography (OCT) images. Methods A total of 23 normal subjects and 51 patients with albinism were imaged using the Bioptigen high-resolution spectral-domain OCT. In addition, three wild type, three albino (slc45a2b4/b4), and eight tyrosinase mosaic zebrafish were imaged with the hand-held Bioptigen Envisu R2200 OCT. To identify pigmented versus nonpigmented regions in the tyrosinase mosaic zebrafish, en face summed volume projections of the retinal pigment epithelium (RPE) were created from volume scans. Longitudinal reflectivity profiles were generated from B-scans to assess the width and maximum intensity of the RPE band in fish, or the presence of one or two RPE/Bruch's membrane (BrM) bands in humans. Results The foveal RPE/BrM appeared as two bands in 71% of locations in patients with albinism and 45% of locations in normal subjects (P = 0.0003). Pigmented zebrafish retinas had significantly greater RPE reflectance, and pigmented regions of mosaic zebrafish also had significantly broader RPE bands than all other groups. Conclusions The hyperreflective outer retinal bands in OCT images are highly variable in appearance. We showed that melanin is a major contributor to the intensity and width of the RPE band on OCT. One should use caution in extrapolating findings from OCT images of one or even a few individuals to define the absolute anatomic correlates of the hyperreflective outer retinal bands in OCT images. Translational Relevance Melanin affects the appearance of the outer retinal bands in OCT images. Use of animal models may help dissect the anatomic correlates of the complex reflective signals in OCT retinal images.
Collapse
Affiliation(s)
- Melissa A Wilk
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Current affiliation: HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, USA
| | - Alison L Huckenpahler
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ross F Collery
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Brian A Link
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Cell Biology, Neurobiology, & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI, USA ; Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
19
|
Liu W, Zhang HF. Photoacoustic imaging of the eye: A mini review. PHOTOACOUSTICS 2016; 4:112-123. [PMID: 27761410 PMCID: PMC5063360 DOI: 10.1016/j.pacs.2016.05.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/15/2016] [Accepted: 05/17/2016] [Indexed: 05/04/2023]
Abstract
The eye relies on the synergistic cooperation of many different ocular components, including the cornea, crystalline lens, photoreceptors, and retinal neurons, to precisely sense visual information. Complications with a single ocular component can degrade vision and sometimes cause blindness. Immediate treatment and long-term monitoring are paramount to alleviate symptoms, restore vision, and cure ocular diseases. However, successful treatment requires understanding ocular pathological mechanisms, precisely detecting and monitoring the diseases. The investigation and diagnosis of ocular diseases require advanced medical tools. In this mini review, we discuss non-invasive photoacoustic (PA) imaging as a potential research tool and medical screening device. In the research setting, PA imaging can provide valuable information on the disease progression. In the clinical setting, PA imaging can potentially aid in disease detection and treatment monitoring.
Collapse
Affiliation(s)
- Wenzhong Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208,USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208,USA
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611, USA
- Corresponding author at: Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
20
|
Nafar Z, Jiang M, Wen R, Jiao S. Visible-light optical coherence tomography-based multimodal retinal imaging for improvement of fluorescent intensity quantification. BIOMEDICAL OPTICS EXPRESS 2016; 7:3220-3229. [PMID: 27699094 PMCID: PMC5030006 DOI: 10.1364/boe.7.003220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/31/2016] [Accepted: 07/31/2016] [Indexed: 05/03/2023]
Abstract
We developed a spectral-domain visible-light optical coherence tomography (VIS-OCT) based multimodal imaging technique which can accomplish simultaneous OCT and fluorescence imaging with a single broadband light source. Phantom experiments showed that by using the simultaneously acquired OCT images as a reference, the effect of light attenuation on the intensity of the fluorescent images by materials in front of the fluorescent target can be compensated. This capability of the multimodal imaging technique is of high importance for achieving quantification of the true intensities of autofluorescence (AF) imaging of the retina. We applied the technique in retinal imaging including AF imaging of the retinal pigment epithelium and fluorescein angiography (FA). We successfully demonstrated the effect of compensation on AF and FA images with the simultaneously acquired VIS-OCT images.
Collapse
Affiliation(s)
- Zahra Nafar
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler ST, EC-2610, Miami, FL 33174, USA
| | - Minshan Jiang
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler ST, EC-2610, Miami, FL 33174, USA
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, 1638 NW 10 Ave, Miami, FL 33136, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, 10555 W Flagler ST, EC-2610, Miami, FL 33174, USA
| |
Collapse
|
21
|
Shu X, Liu W, Zhang HF. Monte Carlo investigation on quantifying the retinal pigment epithelium melanin concentration by photoacoustic ophthalmoscopy. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:106005. [PMID: 26469564 PMCID: PMC4881288 DOI: 10.1117/1.jbo.20.10.106005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/04/2015] [Indexed: 05/20/2023]
Abstract
The retinal pigment epithelium (RPE) melanin plays an important role in maintaining normal visual functions. A decrease in the RPE melanin concentration with aging is believed to be associated with several blinding diseases, including age-related macular degeneration. Quantifying the RPE melanin noninvasively is therefore important in evaluating the retinal health and aging conditions. Photoacoustic ophthalmoscopy (PAOM), as an optical absorption-based imaging technology, can potentially be applied to measure variations in the RPE melanin if the relationship between the detected photoacoustic (PA) signal amplitudes and the RPE melanin concentrations can be established. In this work, we tested the feasibility of using PA signals from retinal blood vessels as references to measure RPE melanin variation using Monte Carlo (MC) simulation. The influences from PAOM axial resolution, the depth and diameter of the retinal blood vessel, and the RPE thickness were examined. We proposed a calibration scheme by relating detected PA signals to the RPE melanin concentrations, and we found that the scheme is robust to these tested parameters. This study suggests that PAOM has the capability of quantitatively measuring the RPE melanin in vivo.
Collapse
Affiliation(s)
- Xiao Shu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
| | - Wenzhong Liu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
| | - Hao F. Zhang
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
- Northwestern University, Department of Ophthalmology, Chicago, Illinois 60611
- Address all correspondence to: Hao F. Zhang, E-mail:
| |
Collapse
|
22
|
Combining microscopy with mesoscopy using optical and optoacoustic label-free modes. Sci Rep 2015; 5:12902. [PMID: 26306396 PMCID: PMC4549672 DOI: 10.1038/srep12902] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 07/08/2015] [Indexed: 01/05/2023] Open
Abstract
Biology requires observations at multiple geometrical scales, a feature that is not typically offered by a single imaging modality. We developed a hybrid optical system that not only provides different contrast modes but also offers imaging at different geometrical scales, achieving uniquely broad resolution and a 1000-fold volume sampling increase compared to volumes scanned by optical microscopy. The system combines optoacoustic mesoscopy, optoacoustic microscopy and two-photon microscopy, the latter integrating second and third harmonic generation modes. Label-free imaging of a mouse ear and zebrafish larva ex-vivo demonstrates the contrast and scale complementarity provided by the hybrid system. We showcase the superior anatomical orientation offered by the label-free capacity and hybrid operation, over fluorescence microscopy, and the dynamic selection between field of view and resolution achieved, leading to new possibilities in biological visualization.
Collapse
|
23
|
Dong B, Li H, Zhang Z, Zhang K, Chen S, Sun C, Zhang HF. Isometric multimodal photoacoustic microscopy based on optically transparent micro-ring ultrasonic detection. OPTICA 2015; 2:169-176. [PMID: 29805988 PMCID: PMC5969522 DOI: 10.1364/optica.2.000169] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Photoacoustic microscopy (PAM) is an attractive imaging tool complementary to established optical microscopic modalities by providing additional molecular specificities through imaging optical absorption contrast. While the development of optical resolution photoacoustic microscopy (ORPAM) offers high lateral resolution, the acoustically-determined axial resolution is limited due to the constraint in ultrasonic detection bandwidth. ORPAM with isometric spatial resolution along both axial and lateral direction is yet to be developed. Although recently developed sophisticated optical illumination and reconstruction methods offer improved axial resolution in ORPAM, the image acquisition procedures are rather complicated, limiting their capabilities for high-speed imaging and being easily integrated with established optical microscopic modalities. Here we report an isometric ORPAM based on an optically transparent micro-ring resonator ultrasonic detector and a commercial inverted microscope platform. Owing to the superior spatial resolution and the ease of integrating our ORPAM with established microscopic modalities, single cell imaging with extrinsic fluorescence staining, intrinsic autofluorescence, and optical absorption can be achieved simultaneously. This technique holds promise to greatly improve the accessibility of PAM to the broader biomedical researchers.
Collapse
Affiliation(s)
- Biqin Dong
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208
| | - Hao Li
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
| | - Zhen Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208
| | - Kevin Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
| | - Siyu Chen
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, Evanston IL 60208
- Corresponding author: &
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston IL 60208
- Department of Ophthalmology, Northwestern University, Chicago IL 60611
- Corresponding author: &
| |
Collapse
|
24
|
Zareba M, Skumatz CMB, Sarna TJ, Burke JM. Photic injury to cultured RPE varies among individual cells in proportion to their endogenous lipofuscin content as modulated by their melanosome content. Invest Ophthalmol Vis Sci 2014; 55:4982-90. [PMID: 25034597 DOI: 10.1167/iovs.14-14310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
PURPOSE We determined whether photic stress differentially impairs organelle motility of RPE lipofuscin and melanin granules, whether lethal photic stress kills cells in proportion to lipofuscin abundance, and whether killing is modulated by melanosome content. METHODS Motility of endogenous lipofuscin and melanosome granules within the same human RPE cells in primary culture was quantified by real-time imaging during sublethal blue light irradiation. Cell death during lethal irradiation was quantified by dynamic imaging of the onset of nuclear propidium iodide fluorescence. Analyzed were individual cells containing different amounts of autofluorescent lipofuscin, or similar amounts of lipofuscin and a varying content of phagocytized porcine melanosomes, or phagocytized black latex beads (control for light absorbance). RESULTS Lipofuscin granules and melanosomes showed motility slowing with mild irradiation, but slowing was greater for lipofuscin. On lethal irradiation, cell death was earlier in cells with higher lipofuscin content, but delayed by the copresence of melanosomes. Delayed death did not occur with black beads, suggesting that melanosome protection was due to properties of the biological granule, not simple screening. CONCLUSIONS Greater organelle motility slowing of the more photoreactive lipofuscin granule compared to melanosomes suggests that lipofuscin mediates mild photic injury within RPE cells. With lethal light stress endogenous lipofuscin mediates killing, but the effect is cell autonomous and modulated by coincident melanosome content. Developing methods to quantify the frequency of individual cells with combined high lipofuscin and low melanosome content may have value for predicting the photic stress susceptibility of the RPE monolayer in situ.
Collapse
Affiliation(s)
- Mariusz Zareba
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Christine M B Skumatz
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Tadeusz J Sarna
- Department of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Janice M Burke
- Department of Ophthalmology, Eye Institute, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
25
|
Nam SY, Emelianov SY. Array-Based Real-Time Ultrasound and Photoacoustic Ocular Imaging. ACTA ACUST UNITED AC 2014. [DOI: 10.3807/josk.2014.18.2.151] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Nan N, Wang X, Bu P, Li Z, Guo X, Chen Y, Wang X, Yuan F, Sasaki O. Full-range Fourier domain Doppler optical coherence tomography based on sinusoidal phase modulation. APPLIED OPTICS 2014; 53:2669-2676. [PMID: 24787594 DOI: 10.1364/ao.53.002669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/16/2014] [Indexed: 06/03/2023]
Abstract
A novel full-range Fourier domain Doppler optical coherence tomography (full-range FD-DOCT) using sinusoidal phase modulation for B-M scan is proposed. In this sinusoidal B-M scan, zero optical path difference (OPD) position does not move corresponding to lateral scanning points in contrast to linear B-M scan. Since high phase sensitivity arises around the zero OPD position, the proposed full-range FD-DOCT can achieve easily high velocity sensitivity without mirror image around the zero OPD position. Velocity sensitivity dependent on the OPD and the interval of scanning points is examined, and flow velocity detection capability is verified through Doppler imaging of a flow phantom and an in vivo biological sample.
Collapse
|
27
|
Tserevelakis GJ, Soliman D, Omar M, Ntziachristos V. Hybrid multiphoton and optoacoustic microscope. OPTICS LETTERS 2014; 39:1819-22. [PMID: 24686613 DOI: 10.1364/ol.39.001819] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a hybrid microscope combining multiphoton microscopy incorporating second-harmonic generation contrast and optical-resolution optoacoustic (photoacoustic) microscopy. We study the relative performance of the two systems and investigate the complementarity of contrast by demonstrating the label-free imaging capabilities of the hybrid microscope on zebrafish larvae ex vivo, concurrently visualizing the fish musculature and melanocytes. This implementation can prove useful in multiparametric microscopy studies, enabling broader information to be collected from biological specimens.
Collapse
|
28
|
Rao B, Soto F, Kerschensteiner D, Wang LV. Integrated photoacoustic, confocal, and two-photon microscope. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:36002. [PMID: 24589986 PMCID: PMC3939434 DOI: 10.1117/1.jbo.19.3.036002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/28/2014] [Indexed: 05/04/2023]
Abstract
The invention of green fluorescent protein and other molecular fluorescent probes has promoted applications of confocal and two-photon fluorescence microscopy in biology and medicine. However, exogenous fluorescence contrast agents may affect cellular structure and function, and fluorescence microscopy cannot image nonfluorescent chromophores. We overcome this limitation by integrating optical-resolution photoacoustic microscopy into a modern Olympus IX81 confocal, two-photon, fluorescence microscope setup to provide complementary, label-free, optical absorption contrast. Automatically coregistered images can be generated from the same sample. Imaging applications in ophthalmology, developmental biology, and plant science are demonstrated. For the first time, in a familiar microscopic fluorescence imaging setting, this trimodality microscope provides a platform for future biological and medical discoveries.
Collapse
Affiliation(s)
- Bin Rao
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130
| | - Florentina Soto
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences, Box 8096, St. Louis, Missouri 63110
| | - Daniel Kerschensteiner
- Washington University School of Medicine, Department of Ophthalmology and Visual Sciences, Box 8096, St. Louis, Missouri 63110
| | - Lihong V. Wang
- Washington University in St. Louis, Optical Imaging Laboratory, Department of Biomedical Engineering, One Brookings Drive, St. Louis, Missouri 63130
- Address all correspondence to: Lihong V. Wang, E-mail:
| |
Collapse
|
29
|
Ma T, Zhang X, Chiu CT, Chen R, Kirk Shung K, Zhou Q, Jiao S. Systematic study of high-frequency ultrasonic transducer design for laser-scanning photoacoustic ophthalmoscopy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:16015. [PMID: 24441942 PMCID: PMC3895818 DOI: 10.1117/1.jbo.19.1.016015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 12/02/2013] [Indexed: 05/04/2023]
Abstract
Photoacoustic ophthalmoscopy (PAOM) is a high-resolution in vivo imaging modality that is capable of providing specific optical absorption information for the retina. A high-frequency ultrasonic transducer is one of the key components in PAOM, which is in contact with the eyelid through coupling gel during imaging. The ultrasonic transducer plays a crucial role in determining the image quality affected by parameters such as spatial resolution, signal-to-noise ratio, and field of view. In this paper, we present the results of a systematic study on a high-frequency ultrasonic transducer design for PAOM. The design includes piezoelectric material selection, frequency selection, and the fabrication process. Transducers of various designs were successfully applied for capturing images of biological samples in vivo. The performances of these designs are compared and evaluated.
Collapse
Affiliation(s)
- Teng Ma
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California 90033
| | - Xiangyang Zhang
- University of Southern California, Keck School of Medicine, Department of Ophthalmology, Los Angeles, California 90033
| | - Chi Tat Chiu
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California 90033
| | - Ruimin Chen
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California 90033
| | - K. Kirk Shung
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California 90033
| | - Qifa Zhou
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California 90033
- Address all correspondence to: Qifa Zhou and Shuliang Jiao, E-mail: and
| | - Shuliang Jiao
- University of Southern California, Department of Biomedical Engineering, Los Angeles, California 90033
- University of Southern California, Keck School of Medicine, Department of Ophthalmology, Los Angeles, California 90033
- Address all correspondence to: Qifa Zhou and Shuliang Jiao, E-mail: and
| |
Collapse
|
30
|
Liu T, Li H, Song W, Jiao S, Zhang HF. Fundus camera guided photoacoustic ophthalmoscopy. Curr Eye Res 2013; 38:1229-34. [PMID: 24131226 DOI: 10.3109/02713683.2013.815219] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To demonstrate the feasibility of fundus camera guided photoacoustic ophthalmoscopy (PAOM) system and its multimodal imaging capabilities. METHODS We integrated PAOM and a fundus camera consisting of a white-light illuminator and a high-sensitivity, high-speed CCD. The fundus camera captures both retinal anatomy and PAOM illumination at the same time to provide a real-time feedback when we position the PAOM illuminating light. We applied the integrated system to image rat eyes in vivo and used full-spectrum, visible (VIS), and near infrared (NIR) illuminations in fundus photography. RESULTS Both albino and pigmented rat eyes were imaged in vivo. During alignment, different trajectories of PAOM laser scanning were successfully visualized by the fundus camera, which reduced the PAOM alignment time from several minutes to 30 s. In albino eyes, in addition to retinal vessels, main choroidal vessels were observed using VIS-illumination, which is similar to PAOM images. In pigmented eyes, the radial striations of retinal nerve fiber layer were visualized by fundus photography using full-spectrum illumination; meanwhile, PAOM imaged both retinal vessels and the retinal pigmented epithelium melanin distribution. CONCLUSIONS The results demonstrated that PAOM can be well-integrated with fundus camera without affecting its functionality. The fundus camera guidance is faster and easier comparing with our previous work. The integrated system also set the stage for the next-step verification between oximetry methods based on PAOM and fundus photography.
Collapse
Affiliation(s)
- Tan Liu
- Department of Biomedical Engineering, Northwestern University , Evanston, IL , USA
| | | | | | | | | |
Collapse
|
31
|
Zheng F, Zhang X, Chiu CT, Zhou BL, Shung KK, Zhang HF, Jiao S. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer. BIOMEDICAL OPTICS EXPRESS 2012; 3:2694-9. [PMID: 23162708 PMCID: PMC3493241 DOI: 10.1364/boe.3.002694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 08/26/2012] [Accepted: 09/28/2012] [Indexed: 05/18/2023]
Abstract
In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging.
Collapse
Affiliation(s)
- Fan Zheng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiangyang Zhang
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Chi Tat Chiu
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Bill L. Zhou
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - K. Kirk Shung
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Shuliang Jiao
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
32
|
Dai C, Liu X, Jiao S. Simultaneous optical coherence tomography and autofluorescence microscopy with a single light source. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:080502-1. [PMID: 23224153 PMCID: PMC3442158 DOI: 10.1117/1.jbo.17.8.080502] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 05/20/2023]
Abstract
We have accomplished simultaneous spectral domain optical coherence tomography (SD-OCT) and autofluorescence (AF) microscopy with a broadband light source centered at 415 nm. The light source was provided by frequency-doubling of an ultra-fast broadband Ti:Sapphire laser. With a bandwidth of 8 nm, the visible SD-OCT achieved a depth resolution of ~12 μm. Since the two imaging modalities are provided by the same group of photons, their images are intrinsically registered. The dual-modal system is capable of providing OCT imaging and molecular contrasts simultaneously. The imaging system was tested on imaging biological samples ex vivo and in vivo.
Collapse
Affiliation(s)
- Cuixia Dai
- Shanghai Institute of Technology, College of Science, 100 Haiquan Road, Shanghai 201418, China
| | - Xiaojing Liu
- University of Southern California, Department of Ophthalmology Keck School of Medicine, Los Angeles, California 90033
| | - Shuliang Jiao
- University of Southern California, Department of Ophthalmology Keck School of Medicine, Los Angeles, California 90033
- Address all correspondence to: Shuliang Jiao, University of Southern California, Department of Ophthalmology, Keck School of Medicine, 1450 San Pablo St., Room DVRC 307E Los Angeles, California 90033; E-mail: .
| |
Collapse
|
33
|
Baumann B, Baumann SO, Konegger T, Pircher M, Götzinger E, Schlanitz F, Schütze C, Sattmann H, Litschauer M, Schmidt-Erfurth U, Hitzenberger CK. Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization. BIOMEDICAL OPTICS EXPRESS 2012; 3:1670-83. [PMID: 22808437 PMCID: PMC3395490 DOI: 10.1364/boe.3.001670] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/14/2012] [Accepted: 06/15/2012] [Indexed: 05/18/2023]
Abstract
Polarization sensitive optical coherence tomography (PS-OCT) is a functional extension of OCT. In addition to imaging based on tissue reflectivity, PS-OCT also enables depth-resolved mapping of sample polarization properties such as phase-retardation, birefringent axis orientation, Stokes vectors, and degree of polarization uniformity (DOPU). In this study, PS-OCT was used to investigate the polarization properties of melanin. In-vitro measurements in samples with varying melanin concentrations revealed polarization scrambling, i.e. depolarization of backscattered light. Polarization scrambling in the PS-OCT images was more pronounced for higher melanin concentrations and correlated with the concentration of the melanin granules in the phantoms. Moreover, in-vivo PS-OCT was performed in the retinas of normal subjects and individuals with albinism. Unlike in the normal eye, polarization scrambling in the retinal pigment epithelium (RPE) was less pronounced or even not observable in PS-OCT images of albinos. These results indicate that the depolarizing appearance of pigmented structures like, for instance, the RPE is likely to be caused by the melanin granules contained in these cells.
Collapse
Affiliation(s)
- Bernhard Baumann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, A-1090 Vienna, Austria
| | - Stefan O. Baumann
- Institute of Materials Chemistry, Vienna University of Technology, A-1040 Vienna, Vienna, Austria
| | - Thomas Konegger
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, A-1040 Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, A-1090 Vienna, Austria
| | - Erich Götzinger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, A-1090 Vienna, Austria
| | - Ferdinand Schlanitz
- Department of Ophthalmology, Medical University and General Hospital of Vienna, A-1090 Vienna, Austria
| | - Christopher Schütze
- Department of Ophthalmology, Medical University and General Hospital of Vienna, A-1090 Vienna, Austria
| | - Harald Sattmann
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, A-1090 Vienna, Austria
| | - Marco Litschauer
- Institute of Materials Chemistry, Vienna University of Technology, A-1040 Vienna, Vienna, Austria
| | - Ursula Schmidt-Erfurth
- Department of Ophthalmology, Medical University and General Hospital of Vienna, A-1090 Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
34
|
Song W, Wei Q, Liu T, Kuai D, Burke JM, Jiao S, Zhang HF. Integrating photoacoustic ophthalmoscopy with scanning laser ophthalmoscopy, optical coherence tomography, and fluorescein angiography for a multimodal retinal imaging platform. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:061206. [PMID: 22734736 PMCID: PMC3380928 DOI: 10.1117/1.jbo.17.6.061206] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 11/23/2011] [Accepted: 12/12/2011] [Indexed: 05/18/2023]
Abstract
Photoacoustic ophthalmoscopy (PAOM) is a newly developed retinal imaging technology that holds promise for both fundamental investigation and clinical diagnosis of several blinding diseases. Hence, integrating PAOM with other existing ophthalmic imaging modalities is important to identify and verify the strengths of PAOM compared with the established technologies and to provide the foundation for more comprehensive multimodal imaging. To this end, we developed a retinal imaging platform integrating PAOM with scanning laser ophthalmoscopy (SLO), spectral-domain optical coherence tomography (SD-OCT), and fluorescein angiography (FA). In the system, all the imaging modalities shared the same optical scanning and delivery mechanisms, which enabled registered retinal imaging from all the modalities. High-resolution PAOM, SD-OCT, SLO, and FA images were acquired in both albino and pigmented rat eyes. The reported in vivo results demonstrate the capability of the integrated system to provide comprehensive anatomic imaging based on multiple optical contrasts.
Collapse
Affiliation(s)
- Wei Song
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
- Harbin Institute of Technology, Department of Physics, Nangang District, Harbin, Heilongjiang 150080, China
| | - Qing Wei
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
| | - Tan Liu
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
| | - David Kuai
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
| | - Janice M. Burke
- Medical College of Wisconsin, Department of Ophthalmology, Milwaukee, Wisconsin 53226
| | - Shuliang Jiao
- University of Southern California, Department of Ophthalmology, Los Angeles California 90033
| | - Hao F. Zhang
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208
- Address all correspondence to: Hao F. Zhang, Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208. Tel: +847 4912946; Fax: +847 4914928; E-mail:
| |
Collapse
|
35
|
Liu T, Wei Q, Song W, Burke JM, Jiao S, Zhang HF. Near-infrared light photoacoustic ophthalmoscopy. BIOMEDICAL OPTICS EXPRESS 2012; 3:792-9. [PMID: 22574266 PMCID: PMC3345807 DOI: 10.1364/boe.3.000792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/12/2012] [Indexed: 05/04/2023]
Abstract
We achieved photoacoustic ophthalmoscopy (PAOM) imaging of the retina with near-infrared (NIR) light illumination. A PAOM imaging system with dual-wavelength illumination at 1064 nm and 532 nm was built. We compared in vivo imaging results of both albino and pigmented rat eyes at the two wavelengths. The results show that the bulk optical absorption of the retinal pigment epithelium (RPE) is only slightly higher than that of the retinal vessels at 532 nm while it becomes more than an order of magnitude higher than that of the retinal vessels at 1064 nm. These studies suggest that although visible light illumination is suitable for imaging both the retinal vessels and the RPE, NIR light illumination, being more comfortable to the eye, is better suited for RPE melanin related investigations and diagnoses.
Collapse
Affiliation(s)
- Tan Liu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Qing Wei
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wei Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Physics, Harbin Institute of Technology, 92 West Da-Zhi Street Nangang District, Harbin, Heilongjiang 150080, China
| | - Janice M. Burke
- Department of Ophthalmology, The Medical College of Wisconsin, 925 N. 87th Street, Milwaukee, WI 53226, USA
| | - Shuliang Jiao
- Department of Ophthalmology, University of Southern California, Los Angeles, CA 90033, USA
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Ophthalmology, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
36
|
Zhang X, Hu J, Knighton RW, Huang XR, Puliafito CA, Jiao S. Dual-band spectral-domain optical coherence tomography for in vivo imaging the spectral contrasts of the retinal nerve fiber layer. OPTICS EXPRESS 2011; 19:19653-9. [PMID: 21996906 PMCID: PMC3290519 DOI: 10.1364/oe.19.019653] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 09/12/2011] [Accepted: 09/15/2011] [Indexed: 05/20/2023]
Abstract
The ultimate goal of the study is to provide an imaging tool to detect the earliest signs of glaucoma before clinically visible damage occurs to the retinal nerve fiber layer (RNFL). Studies have shown that the optical reflectance of the damaged RNFL at short wavelength (<560 nm) is reduced much more than that at long wavelength, which provides spectral contrast for imaging the earliest damage to the RNFL. To image the spectral contrast we built a dual-band spectral-domain optical coherence tomography (SD-OCT) centered at 808 nm (NIR) and 415 nm (VIS). The light at the two bands was provided by the fundamental and frequency-doubled outputs of a broadband Ti:Sapphire laser. The depth resolution of the NIR and VIS OCT systems are 4.7 µm and 12.2 µm in the air, respectively. The system was applied to imaging the rat retina in vivo. Significantly different appearances between the OCT cross sectional images at the two bands were observed. The ratio of the light reflected from the RNFL over that reflected from the entire retina at the two bands were quantitatively compared. The experimental results showed that the dual-band OCT system is feasible for imaging the spectral contrasts of the RNFL.
Collapse
Affiliation(s)
- Xiangyang Zhang
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033,
USA
| | - Jianming Hu
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033,
USA
- Chongqing Key Laboratory of Optics and Engineering, Chongqing Normal University, Chongqing 40047,
China
| | - Robert W. Knighton
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136,
USA
| | - Xiang-Run Huang
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136,
USA
| | - Carmen A. Puliafito
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033,
USA
| | - Shuliang Jiao
- Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033,
USA
| |
Collapse
|