1
|
Scorzo AV, Kwon CY, Strawbridge RR, Jack Hoopes P, Roberts DW, Davis SC. Elucidating the effect of tumor and background region-of-interest selection on the performance metrics used to assess fluorescence imaging. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:046004. [PMID: 40177378 PMCID: PMC11963147 DOI: 10.1117/1.jbo.30.4.046004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 04/05/2025]
Abstract
Significance The development of fluorescent contrast agents for fluorescence-guided surgery is rapidly growing with many agents being designed for tumor visualization. Although efforts have been made to standardize the sensitivity of imaging system detection methods for these contrast agents, guidelines to evaluate tumor contrast agent performance, especially the selection of tumor and background regions of interest (ROIs), differ widely across studies. We examine how systematically changing tumor and background ROIs affects common metrics of contrast agent performance. Aim We aim to elucidate the influence of changing tumor and background brain regions of interest on fluorescent contrast agent performance. Approach Mice with orthotopic brain tumors were administered a non-targeted fluorescent contrast agent 40 min prior to sacrifice and then imaging of the specimen using whole-body fluorescence cryotomography. The reconstructed 3D fluorescence volumes were then used to compute contrast and diagnostic performance metrics [tumor-to-background brain ratio (TBR), contrast-to-noise (CNR), and area under the receiver operating characteristic curve (AUC)] while systematically varying tumor and normal brain ROIs. Results ROI selection had a significant impact on the reported values of metrics used to evaluate fluorescence imaging strategies. The use of contralateral background ROIs, commonly used in the field, produced elevated and favorable performance metric values. These metrics decreased as background ROIs approached regions adjacent to the tumor boundary. TBR changed by a factor of 5, CNR by a factor of 7, and AUC by over 10%, largely depending on the proximity of the background region to the tumor. Conclusions Background ROI selection has a significant impact on the performance metrics commonly used in the field. Future studies should carefully select ROIs relevant to the application and include clear descriptions of these regions.
Collapse
Affiliation(s)
- Augustino V. Scorzo
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Caleb Y. Kwon
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | | | - P. Jack Hoopes
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - David W. Roberts
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, United States
| | - Scott C. Davis
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| |
Collapse
|
2
|
Scorzo AV, Byrd BK, Kwon CY, Strawbridge RR, Samkoe KS, Hoopes PJ, Paulsen KD, Roberts DW, Davis SC. Whole-body fluorescence cryotomography identifies a fast-acting, high-contrast, durable contrast agent for fluorescence-guided surgery. Theranostics 2024; 14:6426-6445. [PMID: 39479457 PMCID: PMC11519800 DOI: 10.7150/thno.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
Imaging of tumor-specific fluorescent contrast agents to guide tumor removal has been shown to improve outcomes and is now standard practice for some neurosurgical procedures. However, many agents require administration hours before surgery, a practical challenge, and may exhibit inconsistent concordance with contrast-enhanced MRI (CE-MRI), the current standard for diagnosing and guiding glioma removal. A fluorescent agent that accurately marks tumor shortly after administration and is otherwise similar to CE-MRI would help overcome these shortcomings. Methods: We used whole-body 3-D fluorescence cryo-imaging and co-registered CE-MRI volumes to evaluate several fluorescent contrast agent candidates for diagnostic performance and concordance with CE-MRI. Mice with brain tumors were administered a cocktail of fluorescent agent candidates and a MRI contrast agent, and then imaged with MRI and fluorescence cryo-imaging at several timepoints after administration. The high-resolution 3-D cryo-imaging volumes of the fluorescent agents were used to determine diagnostic performance metrics and correlation with CE-MRI. Results: While all agents showed positive metrics, one agent, tetramethylrhodamine conjugated to a small polyethylene glycol chain (TMR-PEG1k), outperformed the others, exhibiting minimal normal brain signal, high tumor-to-background-ratio, diagnostic accuracy, and cross-correlation to CE-MRI at all post-administration timepoints (10-90 min) and tumor lines examined. Conclusion: These favorable properties establish TMR-PEG1k as a promising candidate for surgical guidance.
Collapse
Affiliation(s)
- Augustino V. Scorzo
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Brook K. Byrd
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | - Caleb Y. Kwon
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - P. Jack Hoopes
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Keith D. Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - David W. Roberts
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Department of Surgery, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| |
Collapse
|
3
|
Ebrahimpour A, Khoobi M, Riyahi Alam N, Masoumbeigi M, Tirgar F, Ebrahimi T. Reliable differentiation of necrosis and active metabolically contours of glioblastoma multiforme using susceptibility-based imaging. Heliyon 2024; 10:e28355. [PMID: 38571593 PMCID: PMC10987993 DOI: 10.1016/j.heliyon.2024.e28355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 04/05/2024] Open
Abstract
Purpose Gadolinium-enhancing necrosis in glioblastoma multiforme (GBM), as an occasionally occurring false positive in contrast enhancement (CE) imaging, leads to trouble for segmentation of GBM and treatment. Therefore, the investigation of complementary detection way to identify the metabolically active volume of the tumor with high reliability is very worth to be addressed. Here, we reported on a case of GBM with gadolinium-enhancing necrosis in an experimental CE imaging study in mice and evaluated the discrimination of the necrosis and metabolically active parts of the GBM using conventional and state-of-the-art susceptibility-based MRI. Methods In this study, following 5-aminolevulinic acid (ALA) and iron supplements (FAC, 6 h after ALA, intra-tumoral injection) to animal, T2*-W imaging and quantitative susceptibility mapping (QSM) were performed, and compared with CE imaging. Results The signal intensity (SI) of the active and necrosis areas of the case in the CE image demonstrated no significant difference while the SI on the T2*-W images and susceptibility value in QSM changed 24 and 150%, respectively. Conclusion The preclinical case report provides valuable insights into the potential of susceptibility-based MRI using ALA + FAC to apply as a robust discriminator between necrotic and viable tumors.
Collapse
Affiliation(s)
- Anita Ebrahimpour
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nader Riyahi Alam
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Masoumbeigi
- Department of Radiology, Faculty of Para-Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Fatemeh Tirgar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Ebrahimi
- Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Scorzo AV, Byrd BK, Strawbridge RR, Davis SC. A new candidate agent for fluorescence guided neurosurgery produces high, persistent tumor contrast shortly after administration. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12361:1236106. [PMID: 38765853 PMCID: PMC11101171 DOI: 10.1117/12.2650599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Neurosurgical fluorescence guidance relies on contrast agents to identify tumor regions to aid in increasing the extent of resection. Existing contrast agents for this indication each have their own limitation: unpredictable contrast from tumor heterogeneity, significant extravasation into the background brain and long incubation times. An ideal contrast agent should have high and rapid contrast that persists well into the surgical procedure. By using a whole animal hyperspectral cryo-imaging system several CAs were screened for these favorable properties and compared to the gold standard of gadolinium enhanced MR. Herein, we briefly report on the leading candidate Rd-PEG1k, which shows high contrast within minutes of administration that persists for at least 90 minutes.
Collapse
Affiliation(s)
- Augustino V Scorzo
- Dartmouth College, Thayer School of Engineering, 15 Thayer Drive, Hanover, NH, USA 03755
| | - Brook K Byrd
- Dartmouth College, Thayer School of Engineering, 15 Thayer Drive, Hanover, NH, USA 03755
| | - Rendall R Strawbridge
- Dartmouth College, Thayer School of Engineering, 15 Thayer Drive, Hanover, NH, USA 03755
| | - Scott C Davis
- Dartmouth College, Thayer School of Engineering, 15 Thayer Drive, Hanover, NH, USA 03755
| |
Collapse
|
5
|
Bhandari C, Fakhry J, Eroy M, Song JJ, Samkoe K, Hasan T, Hoyt K, Obaid G. Towards Photodynamic Image-Guided Surgery of Head and Neck Tumors: Photodynamic Priming Improves Delivery and Diagnostic Accuracy of Cetuximab-IRDye800CW. Front Oncol 2022; 12:853660. [PMID: 35837101 PMCID: PMC9273965 DOI: 10.3389/fonc.2022.853660] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Fluorescence image-guided surgery (IGS) using antibody conjugates of the fluorophore IRDye800CW have revolutionized the surgical debulking of tumors. Cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody, conjugated to IRDye800CW (Cet-IRDye800) is the first molecular targeted antibody probe to be used for IGS in head and neck cancer patients. In addition to surgical debulking, Cetuximab-targeted photodynamic therapy (photoimmunotherapy; PIT) is emerging in the clinic as a powerful modality for head and neck tumor photodestruction. A plethora of other photoactivable agents are also in clinical trials for photodynamic-based therapies of head and neck cancer. Considering the vascular and stromal modulating effects of sub-therapeutic photodynamic therapy, namely photodynamic priming (PDP), this study explores the potential synergy between PDP and IGS for a novel photodynamic image-guided surgery (P-IGS) strategy. To the best of our knowledge, this is the first demonstration that PDP of the tumor microenvironment can augment the tumor delivery of full-length antibodies, namely Cet-IRDye800. In this study, we demonstrate a proof-of-concept that PDP primes orthotopic FaDu human head and neck tumors in mice for P-IGS by increasing the delivery of Cet-IRDye800 by up to 138.6%, by expediting its interstitial accumulation by 10.5-fold, and by increasing its fractional tumor coverage by 49.5% at 1 h following Cet-IRDye800 administration. Importantly, PDP improves the diagnostic accuracy of tumor detection by up to 264.2% with respect to vicinal salivary glands at 1 h. As such, PDP provides a time-to-surgery benefit by reducing the time to plateau 10-fold from 25.7 h to 2.5 h. We therefore propose that a pre-operative PDP regimen can expedite and augment the accuracy of IGS-mediated surgical debulking of head and neck tumors and reduce the time-to-IGS. Furthermore, this P-IGS regimen, can also enable a forward-looking post-operative protocol for the photodestruction of unresectable microscopic disease in the surgical bed. Beyond this scope, the role of PDP in the homogenous delivery of diagnostic, theranostic and therapeutic antibodies in solid tumors is of considerable significance to the wider community.
Collapse
Affiliation(s)
- Chanda Bhandari
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - John Fakhry
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Menitte Eroy
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Jane Junghwa Song
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Kimberley Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kenneth Hoyt
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX, United States
| |
Collapse
|
6
|
Byrd BK, Duke RB, Fan X, Wirth DJ, Warner WR, Hoopes PJ, Strawbridge RR, Evans LT, Paulsen KD, Davis SC. Whole-brain MR-registered cryo-imaging of a porcine-human glioma model to compare contrast agent biodistributions. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 11943:1194303. [PMID: 36226235 PMCID: PMC9553323 DOI: 10.1117/12.2608252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
As rapidly accelerating technology, fluorescence guided surgery (FGS) has the potential to place molecular information directly into the surgeon's field of view by imaging administered fluorescent contrast agents in real time, circumnavigating pre-operative MR registration challenges with brain deformation. The most successful implementation of FGS is 5-ALA-PpIX guided glioma resection which has been linked to improved patient outcomes. While FGS may offer direct in-field guidance, fluorescent contrast agent distributions are not as familiar to the surgical community as Gd-MRI uptake, and may provide discordant information from previous Gd-MRI guidance. Thus, a method to assess and validate consistency between fluorescence-labeled tumor regions and Gd-enhanced tumor regions could aid in understanding the correlation between optical agent fluorescence and Gd-enhancement. Herein, we present an approach for comparing whole-brain fluorescence biodistributions with Gd-enhancement patterns on a voxel-by-voxel basis using co-registered fluorescent cryo-volumes and Gd-MRI volumes. In this initial study, a porcine-human glioma xenograft model was administered 5-ALA-PpIX, imaged with MRI, and euthanized 22 hours following 5-ALA administration. Following euthanization, the extracted brain was imaged with the cryo-macrotome system. After image processing steps and non-rigid, point-based registration, the fluorescence cryo-volume and Gd-MRI volume were compared for similarity metrics including: image similarity, tumor shape similarity, and classification similarity. This study serves as a proof-of-principle in validating our screening approach for quantitatively comparing 3D biodistributions between optical agents and Gd-based agents.
Collapse
Affiliation(s)
- B K Byrd
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - R B Duke
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - X Fan
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - D J Wirth
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - W R Warner
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - P J Hoopes
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - R R Strawbridge
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - L T Evans
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - K D Paulsen
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| | - S C Davis
- Thayer School of Engineering at Dartmouth College, 14 Engineering Dr. Hanover, NH, 03755
| |
Collapse
|
7
|
Meng B, Sadeghipour N, Folaron MR, Strawbridge RR, Samkoe KS, Tichauer KM, Davis SC. Examining the Feasibility of Quantifying Receptor Availability Using Cross-Modality Paired-Agent Imaging. Mol Imaging Biol 2021; 24:23-30. [PMID: 34286423 PMCID: PMC8760219 DOI: 10.1007/s11307-021-01629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/16/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022]
Abstract
Purpose The ability to noninvasively quantify receptor availability (RA) in solid tumors is an aspirational goal of molecular imaging, often challenged by the influence of non-specific accumulation of the contrast agent. Paired-agent imaging (PAI) techniques aim to compensate for this effect by imaging the kinetics of a targeted agent and an untargeted isotype, often simultaneously, and comparing the kinetics of the two agents to estimate RA. This is usually accomplished using two spectrally distinct fluorescent agents, limiting the technique to superficial tissues and/or preclinical applications. Applying the approach in humans using conventional imaging modalities is generally infeasible since most modalities are unable to routinely image multiple agents simultaneously. We examine the ability of PAI to be implemented in a cross-modality paradigm, in which the targeted and untargeted agent kinetics are imaged with different modalities and used to recover receptor availability. Procedures Eighteen mice bearing orthotopic brain tumors were administered a solution containing three contrast agents: (1) a fluorescent agent targeted to epidermal growth factor receptor (EGFR), (2) an untargeted fluorescent isotype, and (3) a gadolinium-based contrast agent (GBCA) for MRI imaging. The kinetics of all three agents were imaged for 1 h after administration using an MRI-coupled fluorescence tomography system. Paired-agent receptor availability was computed using (1) the conventional all-optical approach using the targeted and untargeted optical agent images and (2) the cross-modality approach using the targeted optical and untargeted MRI-GBCA images. Receptor availability estimates between the two methods were compared. Results Receptor availability values using the cross-modality approach were highly correlated to the conventional, single-modality approach (r = 0.94; p < 0.00001). Conclusion These results suggest that cross-modality paired-agent imaging for quantifying receptor availability is feasible. Ultimately, cross-modality paired-agent imaging could facilitate rapid, noninvasive receptor availability quantification in humans using hybrid clinical imaging modalities. Supplementary Information The online version contains supplementary material available at 10.1007/s11307-021-01629-6.
Collapse
Affiliation(s)
- Boyu Meng
- Thayer School of Engineering, Dartmouth College, 03755, Hanover, NH, USA
| | - Negar Sadeghipour
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Margaret R Folaron
- Thayer School of Engineering, Dartmouth College, 03755, Hanover, NH, USA
| | | | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, 03755, Hanover, NH, USA.,Geisel School of Medicine, Dartmouth College, 03755, Hanover, NH, USA
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, 03755, Hanover, NH, USA.
| |
Collapse
|
8
|
Batalov AI, Goryaynov SA, Zakharova NE, Solozhentseva KD, Kosyrkova AV, Potapov AA, Pronin IN. Prediction of Intraoperative Fluorescence of Brain Gliomas: Correlation between Tumor Blood Flow and the Fluorescence. J Clin Med 2021; 10:jcm10112387. [PMID: 34071447 PMCID: PMC8198656 DOI: 10.3390/jcm10112387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION The prediction of the fluorescent effect of 5-aminolevulinic acid (5-ALA) in patients with diffuse gliomas can improve the selection of patients. The degree of enhancement of gliomas has been reported to predict 5-ALA fluorescence, while, at the same time, rarer cases of fluorescence have been described in non-enhancing gliomas. Perfusion studies, in particular arterial spin labeling perfusion, have demonstrated high efficiency in determining the degree of malignancy of brain gliomas and may be better for predicting fluorescence than contrast enhancement. The aim of the study was to investigate the relationship between tumor blood flow, measured by ASL, and intraoperative fluorescent glow of gliomas of different grades. MATERIALS AND METHODS Tumoral blood flow was assessed in 75 patients by pCASL (pseudo-continuous arterial spin labeling) within 1 week prior to surgery. In all cases of tumor removal, 5-ALA had been administered preoperatively. Maximum values of tumoral blood flow (TBF max) were measured, and normalized tumor blood flow (nTBF) was calculated. RESULTS A total of 76% of patients had significant contrast enhancement, while 24% were non-enhancing. The histopathology revealed 17 WHO grade II gliomas, 12 WHO grade III gliomas and 46 glioblastomas. Overall, there was a relationship between the degree of intraoperative tumor fluorescence and ASL-TBF (Rs = 0.28, p = 0.02 or the TBF; Rs = 0.34, p = 0.003 for nTBF). Non-enhancing gliomas were fluorescent in 9/18 patients, with nTBF in fluorescent gliomas being 54.58 ± 32.34 mL/100 mg/s and in non-fluorescent gliomas being 52.99 ± 53.61 mL/100 g/s (p > 0.05). Enhancing gliomas were fluorescent in 53/57 patients, with nTBF being 170.17 ± 107.65 mL/100 g/s in fluorescent and 165.52 ± 141.71 in non-fluorescent gliomas (p > 0.05). CONCLUSION Tumoral blood flow levels measured by non-contrast ASL perfusion method predict the fluorescence by 5-ALA; however, the additional value beyond contrast enhancement is not clear. ASL is, however, useful in cases with contraindication to contrast.
Collapse
|
9
|
Wirth D, Byrd B, Meng B, Strawbridge RR, Samkoe KS, Davis SC. Hyperspectral imaging and spectral unmixing for improving whole-body fluorescence cryo-imaging. BIOMEDICAL OPTICS EXPRESS 2021; 12:395-408. [PMID: 33520389 PMCID: PMC7818953 DOI: 10.1364/boe.410810] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/13/2020] [Accepted: 11/25/2020] [Indexed: 05/06/2023]
Abstract
Whole-animal fluorescence cryo-imaging is an established technique that enables visualization of the biodistribution of labeled drugs, contrast agents, functional reporters and cells in detail. However, many tissues produce endogenous autofluorescence, which can confound interpretation of the cryo-imaging volumes. We describe a multi-channel, hyperspectral cryo-imaging system that acquires densely-sampled spectra at each pixel in the 3-dimensional stack. This information enables the use of spectral unmixing to isolate the fluorophore-of-interest from autofluorescence and/or other fluorescent reporters. In phantoms and a glioma xenograft model, we show that the approach improves detection limits, increases tumor contrast, and can dramatically alter image interpretation.
Collapse
Affiliation(s)
- Dennis Wirth
- Department of Surgery, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
- Indicates equal contributions
| | - Brook Byrd
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, USA
- Indicates equal contributions
| | - Boyu Meng
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, USA
| | | | - Kimberley S. Samkoe
- Department of Surgery, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH 03756, USA
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, USA
| | - Scott C. Davis
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH 03755, USA
| |
Collapse
|
10
|
Labuschagne J. 5-aminolevulinic acid-guided surgery for focal pediatric brainstem gliomas: A preliminary study. Surg Neurol Int 2020; 11:334. [PMID: 33194268 PMCID: PMC7656004 DOI: 10.25259/sni_246_2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022] Open
Abstract
Background: There is a growing body of literature supporting the use of 5-aminolevulinic acid (5-ALA) in the pediatric population, however, its use is still considered “off label” in this setting. In this retrospective study, we report our experience using 5-ALA in pediatric patients with focal brainstem gliomas (BSGs). Methods: Patients younger than 16 years presenting with a newly diagnosed BSG that was focal in nature were considered suitable for treatment with 5-ALA-assisted surgery. Exclusion criteria included MRI features suggestive of a diffuse intrinsic pontine glioma. A single dose of 5-ALA was administered preoperatively. Intraoperative fluorescence was recorded as “solid,” “vague,” or “none.” The effectiveness of the fluorescence was graded as “helpful” or “unhelpful.” Results: Eight patients underwent 5-ALA-assisted surgery. There were four tumors located in the pons, two midbrain tumors, and two cervicomedullary tumors. Histological analysis demonstrated three diffuse astrocytomas, three pilocytic astrocytomas, and two anaplastic astrocytomas. Solid fluorescence was found in three of the eight cases, vague fluorescence was found in two cases, and no fluorescence was found in three cases. Fluorescence was useful in 3 (37%) cases. No patients experienced any complications attributable to the administration of the 5-ALA. Conclusion: With a total fluorescence rate of 62.5% but a subjectively assessed “usefulness” rate of only 37.5%, the role of 5-ALA in BSG surgery is limited. Given the toxicological safety, however, of the agent, caution is perhaps needed before dismissing the use of 5-ALA entirely.
Collapse
Affiliation(s)
- Jason Labuschagne
- Department of Paediatric Neurosurgery, Nelson Mandela Childrens Hospital, Parktown, Johanessburg, South Africa
| |
Collapse
|
11
|
Mastrangelopoulou M, Grigalavicius M, Raabe TH, Skarpen E, Juzenas P, Peng Q, Berg K, Theodossiou TA. Predictive biomarkers for 5-ALA-PDT can lead to personalized treatments and overcome tumor-specific resistances. Cancer Rep (Hoboken) 2020; 5:e1278. [PMID: 32737955 PMCID: PMC9780429 DOI: 10.1002/cnr2.1278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a minimally invasive, clinically approved therapy with numerous advantages over other mainstream cancer therapies. 5-aminolevulinic acid (5-ALA)-PDT is of particular interest, as it uses the photosensitiser PpIX, naturally produced in the heme pathway, following 5-ALA administration. Even though 5-ALA-PDT shows high specificity to cancers, differences in treatment outcomes call for predictive biomarkers to better stratify patients and to also diversify 5-ALA-PDT based on each cancer's phenotypic and genotypic individualities. AIMS The present study seeks to highlight key biomarkers that may predict treatment outcome and simultaneously be exploited to overcome cancer-specific resistances to 5-ALA-PDT. METHODS AND RESULTS We submitted two glioblastoma (T98G and U87) and three breast cancer (MCF7, MDA-MB-231, and T47D) cell lines to 5-ALA-PDT. Glioblastoma cells were the most resilient to 5-ALA-PDT, while intracellular production of 5-ALA-derived protoporphyrin IX (PpIX) could not account for the recorded PDT responses. We identified the levels of expression of ABCG2 transporters, ferrochelatase (FECH), and heme oxygenase (HO-1) as predictive biomarkers for 5-ALA-PDT. GPX4 and GSTP1 expression vs intracellular glutathione (GSH) levels also showed potential as PDT biomarkers. For T98G cells, inhibition of ABCG2, FECH, HO-1, and/or intracellular GSH depletion led to profound PDT enhancement. Inhibition of ABCG2 in U87 cells was the only synergistic adjuvant to 5-ALA-PDT, rendering the otherwise resistant cell line fully responsive to 5-ALA-PDT. ABCG2 or FECH inhibition significantly enhanced 5-ALA-PDT-induced MCF7 cytotoxicity, while for MDA-MB-231, ABCG2 inhibition and intracellular GSH depletion conferred profound synergies. FECH inhibition was the only synergism to ALA-PDT for the most susceptible among the cell lines, T47D cells. CONCLUSION This study demonstrates the heterogeneity in the cellular response to 5-ALA-PDT and identifies biomarkers that may be used to predict treatment outcome. The study also provides preliminary findings on the potential of inhibiting specific molecular targets to overcome inherent resistances to 5-ALA-PDT.
Collapse
Affiliation(s)
- Maria Mastrangelopoulou
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Mantas Grigalavicius
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Tine H. Raabe
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Ellen Skarpen
- Department of Molecular Cell BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | - Petras Juzenas
- Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Qian Peng
- Department of PathologyThe Norwegian Radium Hospital, Oslo University HospitalOsloNorway
| | - Kristian Berg
- Department of Radiation BiologyInstitute for Cancer Research, Oslo University HospitalOsloNorway
| | | |
Collapse
|
12
|
Meng B, Strawbridge RR, Tichauer K, Samkoe KS, Davis SC. Estimating paired-agent uptake in altered tumor vasculature using MRI-coupled fluorescence tomography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11216:112160U. [PMID: 34446978 PMCID: PMC8386501 DOI: 10.1117/12.2546702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Angiogenesis inhibiting cancer therapy has become a standard treatment for many cancer types. The ability to examine the effects of these drugs in tumors noninvasively could help assess efficacy early in the treatment course or identify optimal times to introduce other combinatorial treatments. Herein, we examine whether a paired agent MRI-coupled fluorescence tomography approach can be used to monitor the effects of anti-angiogenesis therapy. Using small animal models bearing orthotopic glioma xenografts, we demonstrate noninvasive quantification of paired-agent uptake in response to anti-angiogenesis therapy in vivo. The result provides insights on receptor targeted drug delivery in altered vasculature, a potential important development for treatment monitoring and combinatorial strategies.
Collapse
Affiliation(s)
- Boyu Meng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | | | - Kenneth Tichauer
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616
| | | | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
13
|
Meng B, Byrd BK, Wirth DJ, Strawbridge RR, Davis SC. Developing a novel hyperspectral imaging cryomacrotome for whole body fluorescence imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11219:112190M. [PMID: 34446979 PMCID: PMC8386500 DOI: 10.1117/12.2544497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The ability to directly measure whole-body fluorescence can enable tracking of labeled cells, metastatic spread, and drug bio-distribution. We describe the development of a new hyperspectral imaging whole body cryo-macrotome designed to acquire 3-D fluorescence volumes in large specimens (whole animals) at high resolution. The use of hyperspectral acquisition provides full spectra at every voxel, enabling spectral decoupling of multiple fluorohpores and autofluorescence. We present examples of tissue spectra and spectral fitting in a rodent glioma xenograft.
Collapse
Affiliation(s)
- Boyu Meng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Brook K Byrd
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Dennis J Wirth
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | | | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
14
|
Meng B, Folaron MR, Strawbridge RR, Samkoe KS, Tichauer K, Davis SC. Estimating drug delivery using hybrid system for simultaneous dynamic MRI and fluorescence tomography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11219:09. [PMID: 34707326 PMCID: PMC8547771 DOI: 10.1117/12.2547083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Optical tomography is often coupled with high resolution imaging modality like MRI to provide functional information associated with specific anatomical structure noninvasively. MRI-coupled paired agent fluorescence molecular tomography (MRI-PAFT) is a hybrid imaging modality capable of noninvasively quantifying drug-target engagement in vivo utilizing a targeted and an untargeted fluorescence agent. This study compares the uptake kinetics of MRI contrast agent and fluorescence agents in tumor and normal tissue, and demonstrates the potential of utilizing MRI contrast agent kinetic and targeted fluorescence agent kinetics to quantify targeted tumor receptor concentration in glioma tumor model.
Collapse
Affiliation(s)
- Boyu Meng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | | | | | | | - Kenneth Tichauer
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616
| | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
15
|
Proton-dynamic therapy following photosensitiser activation by accelerated protons demonstrated through fluorescence and singlet oxygen production. Nat Commun 2019; 10:3986. [PMID: 31484929 PMCID: PMC6726622 DOI: 10.1038/s41467-019-12042-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/12/2019] [Indexed: 11/08/2022] Open
Abstract
We demonstrate excitation of photosensitisers (PSs) by accelerated protons to produce fluorescence and singlet oxygen. Their fluorescence follows a pattern similar to the proton energy loss in matter, while proton-derived fluorescence spectra match the photon-induced spectra. PSs excited in dry gelatin exhibit enhanced phosphorescence, suggesting an efficient PSs triplet state population. Singlet oxygen measurements, both optically at ~1270 nm and through the photoproduct of protoporphyrin IX (PpIX), demonstrate cytotoxic singlet oxygen generation by proton excitation. The singlet oxygen-specific scavenger 1,4-diazabicyclo[2.2.2]octane (DABCO) abrogates the photoproduct formation under proton excitation, but cannot countermand the overall loss of PpIX fluorescence. Furthermore, in two cell lines, M059K and T98G, we observe differential cell death upon the addition of the PS cercosporin, while in U87 cells we see no effect at any proton irradiation dose. Our results pave the way for a novel treatment combining proton therapy and “proton-dynamic therapy” for more efficient tumour eradication. The authors use accelerated protons on photosensitizers (PS, conventionally excited by light), to generate fluorescence and singlet oxygen which can enhance the efficacy of proton therapy. A pilot study on glioblastoma cells confirms differential cell death upon irradiation in the presence of PS.
Collapse
|
16
|
Folaron M, Strawbridge R, Samkoe KS, Filan C, Roberts DW, Davis SC. Elucidating the kinetics of sodium fluorescein for fluorescence-guided surgery of glioma. J Neurosurg 2019; 131:724-734. [PMID: 30192200 PMCID: PMC6995036 DOI: 10.3171/2018.4.jns172644] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/05/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The use of the optical contrast agent sodium fluorescein (NaFl) to guide resection of gliomas has been under investigation for decades. Although this imaging strategy assumes the agent remains confined to the vasculature except in regions of blood-brain barrier (BBB) disruption, clinical studies have reported significant NaFl signal in normal brain tissue, limiting tumor-to-normal contrast. A possible explanation arises from earlier studies, which reported that NaFl exists in both pure and protein-bound forms in the blood, the former being small enough to cross the BBB. This study aims to elucidate the kinetic binding behavior of NaFl in circulating blood and its effect on NaFl accumulation in brain tissue and tumor contrast. Additionally, the authors examined the blood and tissue kinetics, as well as tumor uptake, of a pegylated form of fluorescein selected as a potential optical analog of gadolinium-based MRI contrast agents. METHODS Cohorts of mice were administered one of the following doses/forms of NaFl: 1) high human equivalent dose (HED) of NaFl, 2) low HED of NaFl, or 3) pegylated form of fluorescein. In each cohort, groups of animals were euthanized 15, 30, 60, and 120 minutes after administration for ex vivo analysis of fluorescein fluorescence. Using gel electrophoresis and fluorescence imaging of blood and brain specimens, the authors quantified the temporal kinetics of bound NaFl, unbound NaFl, and pegylated fluorescein in the blood and normal brain tissue. Finally, they compared tumor-to-normal contrast for NaFl and pegylated-fluorescein in U251 glioma xenografts. RESULTS Administration of NaFl resulted in the presence of unbound and protein-bound NaFl in the circulation, with unbound NaFl constituting up to 70% of the signal. While protein-bound NaFl was undetectable in brain tissue, unbound NaFl was observed throughout the brain. The observed behavior was time and dose dependent. The pegylated form of fluorescein showed minimal uptake in brain tissue and improved tumor-to-normal contrast by 38%. CONCLUSIONS Unbound NaFl in the blood crosses the BBB, limiting the achievable tumor-to-normal contrast and undermining the inherent advantage of tumor imaging in the brain. Dosing and incubation time should be considered carefully for NaFl-based fluorescence-guided surgery (FGS) of glioma. A pegylated form of fluorescein showed more favorable normal tissue kinetics that translated to higher tumor-to-normal contrast. These results warrant further development of pegylated-fluorescein for FGS of glioma.
Collapse
Affiliation(s)
| | | | - Kimberley S. Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover
- Geisel School of Medicine, Dartmouth College, Hanover
- Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Caroline Filan
- Thayer School of Engineering, Dartmouth College, Hanover
| | - David W. Roberts
- Geisel School of Medicine, Dartmouth College, Hanover
- Section of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Scott C. Davis
- Thayer School of Engineering, Dartmouth College, Hanover
- Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| |
Collapse
|
17
|
Suero Molina E, Schipmann S, Stummer W. Maximizing safe resections: the roles of 5-aminolevulinic acid and intraoperative MR imaging in glioma surgery-review of the literature. Neurosurg Rev 2019; 42:197-208. [PMID: 28921173 PMCID: PMC6502775 DOI: 10.1007/s10143-017-0907-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/07/2017] [Accepted: 09/06/2017] [Indexed: 12/28/2022]
Abstract
Malignant glioma surgery involves the challenge of preserving the neurological status of patients harboring these lesions while pursuing a maximal tumor resection, which is correlated with overall and progression-free survival. Presently, several tools exist for assisting neurosurgeons in visualizing malignant tissue. Fluorescence-guided surgery (FGS) with 5-aminolevulinic acid (5-ALA) has increasingly been used during the last decade for identifying malignant glioma. Intraoperative magnetic resonance imaging (iMRI), first introduced in the mid-1990s, is being evaluated as a further tool to maximize the extent of resection. We aimed to evaluate the literature and discuss synergies and differences between FGS with 5-ALA and iMRI. We conducted and reported according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) statement. After excluding non-relevant articles, 16 articles were evaluated and included in the qualitative analysis, comprising 2 (n = 2) reviews of the literatures, 1 (n = 1) book chapter, and 13 (n = 13) clinical articles. ALA-induced fluorescence goes beyond the borders of gadolinium contrast enhancement. Several studies stress the synergy between both tools, enabling increase in extent of resection. We point out advantages of combining both methods. iMRI, however, is not widely available, is expensive, and is not recommended as sole resection control tool in high-grade glioma. For these centers, FGS together with mapping and monitoring techniques, neuronavigation and, when needed, intraoperative ultrasound provides an excellent setting for achieving state-of-the-art gross total resection of high-grade gliomas.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany.
| | - S Schipmann
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| | - W Stummer
- Department of Neurosurgery, University Hospital of Münster, Albert-Schweitzer-Campus 1, A1, 48149, Münster, Germany
| |
Collapse
|
18
|
Meng B, Folaron MR, Strawbridge RR, Sadeghipour N, Samkoe KS, Tichauer K, Davis SC. Noninvasive imaging of dual-agent uptake in glioma and normal tissue using MRI-coupled fluorescence tomography. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10874:1087413. [PMID: 31929675 PMCID: PMC6953723 DOI: 10.1117/12.2510515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As the role of immuno-oncological therapeutics expands, the capacity to noninvasively quantify molecular targets and drug-target engagement is increasingly critical to drug development efforts and treatment monitoring. Previously, we showed that MRI-coupled dual-agent fluorescence tomography (FMT) is capable of estimating the concentration of epidermal growth factor receptor (EGFR) in orthotopic glioma models noninvasively. This approach uses the dynamic information of two fluorescent agents (a targeted agent and untargeted isotype) to estimate tumor receptor concentration in vivo. This approach generally relies on the two tracers having similar kinetics in normal tissues, which may not always be the case. Herein, we describe an additional channel added to the MRI-FMT system which measures the uptake of both agents in the normal muscle, data which can be used to compensate for differing kinetic behavior.
Collapse
Affiliation(s)
- Boyu Meng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | | | | | - Negar Sadeghipour
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616
| | | | - Kenneth Tichauer
- Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616
| | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| |
Collapse
|
19
|
Della Puppa A, Rustemi O, Rampazzo E, Persano L. Letter: Combining 5-Aminolevulinic Acid Fluorescence and Intraoperative Magnetic Resonance Imaging in Glioblastoma Surgery: A Histology-Based Evaluation. Neurosurgery 2018; 80:E188-E190. [PMID: 28173486 DOI: 10.1093/neuros/nyw033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Oriela Rustemi
- Department of Neurosurgery, Padova University Hospital, Padua, Italy
| | - Elena Rampazzo
- Oncohematology Laboratory, IRP - Istituto di Ricerca Pediatrica, Città della Speranza, Department of Woman and Child Health, University of Padova, Padua, Italy
| | - Luca Persano
- Oncohematology Laboratory, IRP - Istituto di Ricerca Pediatrica, Città della Speranza, Department of Woman and Child Health, University of Padova, Padua, Italy
| |
Collapse
|
20
|
Sibai M, Fisher C, Veilleux I, Elliott JT, Leblond F, Roberts DW, Wilson BC. Preclinical evaluation of spatial frequency domain-enabled wide-field quantitative imaging for enhanced glioma resection. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:76007. [PMID: 28697235 PMCID: PMC5995142 DOI: 10.1117/1.jbo.22.7.076007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/21/2017] [Indexed: 05/19/2023]
Abstract
5-Aminolevelunic acid-induced protoporphyrin IX (PpIX) fluorescence-guided resection (FGR) enables maximum safe resection of glioma by providing real-time tumor contrast. However, the subjective visual assessment and the variable intrinsic optical attenuation of tissue limit this technique to reliably delineating only high-grade tumors that display strong fluorescence. We have previously shown, using a fiber-optic probe, that quantitative assessment using noninvasive point spectroscopic measurements of the absolute PpIX concentration in tissue further improves the accuracy of FGR, extending it to surgically curable low-grade glioma. More recently, we have shown that implementing spatial frequency domain imaging with a fluorescent-light transport model enables recovery of two-dimensional images of [PpIX], alleviating the need for time-consuming point sampling of the brain surface. We present first results of this technique modified for <italic<in vivo</italic< imaging on an RG2 rat brain tumor model. Despite the moderate errors in retrieving the absorption and reduced scattering coefficients in the subdiffusive regime of 14% and 19%, respectively, the recovered [PpIX] maps agree within 10% of the point [PpIX] values measured by the fiber-optic probe, validating its potential as an extension or an alternative to point sampling during glioma resection.
Collapse
Affiliation(s)
- Mira Sibai
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Ontario, Canada
- University Health Network, Princess Margaret Cancer Center, Ontario, Canada
| | - Carl Fisher
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Ontario, Canada
- University Health Network, Princess Margaret Cancer Center, Ontario, Canada
| | - Israel Veilleux
- University Health Network, Princess Margaret Cancer Center, Ontario, Canada
| | - Jonathan T. Elliott
- Dartmouth College, Thayer School of Engineering, New Hampshire, United States
| | - Frederic Leblond
- École Polytechnique De Montreal, Department of Engineering Physics, Québec, Canada
| | - David W. Roberts
- Dartmouth Hitchcock Medical Center, Department of Neurosurgery, New Hampshire, United States
| | - Brian C. Wilson
- University of Toronto, Department of Medical Biophysics, Faculty of Medicine, Ontario, Canada
- University Health Network, Princess Margaret Cancer Center, Ontario, Canada
- Address all correspondence to: Brian C. Wilson, E-mail:
| |
Collapse
|
21
|
|
22
|
Yamamoto J, Kakeda S, Yoneda T, Ogura SI, Shimajiri S, Tanaka T, Korogi Y, Nishizawa S. Improving contrast enhancement in magnetic resonance imaging using 5-aminolevulinic acid-induced protoporphyrin IX for high-grade gliomas. Oncol Lett 2016; 13:1269-1275. [PMID: 28454245 DOI: 10.3892/ol.2016.5539] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 10/28/2016] [Indexed: 12/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) with a gadolinium-based contrast agent is the gold standard for high-grade gliomas (HGGs). The compound 5-aminolevulinic acid (5-ALA) undergoes a high rate of cellular uptake, particularly in cancer cells. In addition, fluorescence-guided resection with 5-ALA is widely used for imaging HGGs. 5-ALA is water soluble, while protoporphyrin IX (PpIX) is water insoluble. It was speculated whether converting from 5-ALA to PpIX may relatively increase intracellular water content, and consequently, might enhance the T2 signal intensity in HGG. The aim of the present study was to assess whether 5-ALA-induced PpIX enhances the T2 signal intensity in patients with HGGs. A total of 4 patients who were candidates for HGG surgical treatment were prospectively analyzed with preoperative MRI. Patients received oral doses of 5-ALA (20 mg/kg) 3 h prior to anesthesia. At 2.5 h post-5-ALA administration, T2-weighted images (T2WIs) were obtained from all patients. Subsequently, tumors were evaluated via fluorescence using a modified operating microscope. Fluorescent tumor tissues were obtained to analyze the accumulation of 5-ALA-induced PpIX within the tumors, which was confirmed quantitatively by high-performance liquid chromatography (HPLC) analysis. The MRI T2 signal intensity within the tumors was evaluated prior to and following 5-ALA administration. Three glioblastoma multiformes (GBMs) and 1 anaplastic oligodendroglioma (AO) were included in the analysis. Intraoperatively, all GBMs exhibited strong fluorescence of 5-ALA-induced PpIX, whilst no fluorescence was observed in the AO sample. HPLC analysis indicated a higher accumulation of 5-ALA-induced PpIX in the GBM samples compared with the AO sample. In total, 48 regions of interest were identified within the tumors from T2-WIs. In the GBM group, the relative T2 signal intensity value within the tumors following 5-ALA administration was significantly increased compared with the T2 signal intensity value prior to 5-ALA administration (1.537±0.021 and 1.577±0.023, respectively; P=0.0055). No significant differences were observed in the AO group. These results suggest that the 5-ALA-induced PpIX enhanced the T2 signal intensity in HGG. Therefore, 5-ALA may be a potentially useful MRI contrast reagent for HGG.
Collapse
Affiliation(s)
- Junkoh Yamamoto
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0976, Japan
| | - Shun-Ichiro Ogura
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Shohei Shimajiri
- Department of Surgical Pathology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | | | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| | - Shigeru Nishizawa
- Department of Neurosurgery, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 807-8555, Japan
| |
Collapse
|
23
|
Abstract
5-aminolevulinic acid-induced protoporphyrin IX fluorescence was authorized in the EU for visualization of tumor tissue during surgery for WHO grade III and IV gliomas in 2007. It facilitates tumor identification and doubles the number of gross total resections that can be achieved in these tumors. The growing acceptance of fluorescence-guided surgery in malignant gliomas brings forward a substantial yield of data on many types of intracranial lesions. The following review summarizes the main findings of these publications and illustrates the limitations, caveats and future perspectives of 5-aminolevulinic acid-induced fluorescence in malignant glioma as well as in other brain neoplasms.
Collapse
Affiliation(s)
- Martin Hefti
- Department of Neurosurgery, Hirslanden Private Hospital Group, Brauerstrasse 95, 9016 St Gallen, Switzerland.
| |
Collapse
|
24
|
Holt RW, Demers JLH, Sexton KJ, Gunn JR, Davis SC, Samkoe KS, Pogue BW. Tomography of epidermal growth factor receptor binding to fluorescent Affibody in vivo studied with magnetic resonance guided fluorescence recovery in varying orthotopic glioma sizes. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:26001. [PMID: 25652703 PMCID: PMC4317247 DOI: 10.1117/1.jbo.20.2.026001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/23/2014] [Indexed: 05/20/2023]
Abstract
The ability to image targeted tracer binding to epidermal growth factor receptor (EGFR) was studied in vivo in orthotopically grown glioma tumors of different sizes. The binding potential was quantified using a dual-tracer approach, which employs a fluorescently labeled peptide targeted to EGFR and a reference tracer with similar pharmacokinetic properties but no specific binding, to estimate the relative bound fraction from kinetic compartment modeling. The recovered values of binding potential did not vary significantly as a function of tumor size (1 to 33 mm3), suggesting that binding potential may be consistent in the U251 tumors regardless of size or stage after implantation. However, the fluorescence yield of the targeted fluorescent tracers in the tumor was affected significantly by tumor size, suggesting that dual-tracer imaging helps account for variations in absolute uptake, which plague single-tracer imaging techniques. Ex vivo analysis showed relatively high spatial heterogeneity in each tumor that cannot be resolved by tomographic techniques. Nonetheless, the dual-tracer tomographic technique is a powerful tool for longitudinal bulk estimation of receptor binding.
Collapse
Affiliation(s)
- Robert W. Holt
- Dartmouth College, Department of Physics & Astronomy, Hanover, New Hampshire 03755, United States
| | - Jennifer-Lynn H. Demers
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
| | - Kristian J. Sexton
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
| | - Jason R. Gunn
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
| | - Scott C. Davis
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
| | - Kimberley S. Samkoe
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
- Geisel School of Medicine at Dartmouth, Department of Surgery, Hanover, New Hampshire 03755, United States
| | - Brian W. Pogue
- Dartmouth College, Department of Physics & Astronomy, Hanover, New Hampshire 03755, United States
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire 03755, United States
- Geisel School of Medicine at Dartmouth, Department of Surgery, Hanover, New Hampshire 03755, United States
- Address all correspondence to: Brian W. Pogue, E-mail:
| |
Collapse
|
25
|
Göbel W, Brucker D, Kienast Y, Johansson A, Kniebühler G, Rühm A, Eigenbrod S, Fischer S, Goetz M, Kreth FW, Ehrhardt A, Stepp H, Irion KM, Herms J. Optical needle endoscope for safe and precise stereotactically guided biopsy sampling in neurosurgery. OPTICS EXPRESS 2012. [PMID: 23187467 DOI: 10.1364/oe.20.026117] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proper treatment of deep seated brain tumors requires correct histological diagnosis which unambiguously necessitates biopsy sampling. Stereotactically guided sampling of biopsies is widely used but bears the danger of incorrect sampling locations and damage to intracerebral blood vessels. Here, we present a minimally invasive contact endoscopic probe that can be inserted into the tissue inside a standard biopsy needle and allows for fluorescence detection of both tumorous tissue and intracerebral blood vessels. Outer diameter of our contact probe is smaller than 1.5 mm, field-of-view in the range of several hundred microns; the optical design allows for simultaneous detection and visualization of tissue autofluorescence and selective fluorescence signals from deep seated brain tumors and vasculature as shown on in vivo animal models. We demonstrate the tumor detection capability during stereotactic needle insertion in a clinical pilot trial. Using our probe, we expect stereotactic interventions to become safer and more precise and the technology might ultimately be used also for various other kinds of applications.
Collapse
Affiliation(s)
- Werner Göbel
- Department of Research & Technology, KARL STORZ GmbH & Co. KG, Tuttlingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|